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Abstract—While the number of unsupervised samples for data
annotation is usually high, the absence of large supervised train-
ing sets for effective feature learning and design of high-quality
classifiers is a known problem whenever specialists are required
for data supervision. By exploring the feature space of supervised
and unsupervised samples, semi-supervised learning approaches
can usually improve the classification system. However, these
approaches do not usually exploit the pattern-finding power
of the user’s visual system during machine learning. In this
paper, we incorporate the user in the semi-supervised learning
process by letting the feature space projection of unsupervised
and supervised samples guide the label propagation actions of the
user to the unsupervised samples. We show that this procedure
can significantly reduce user effort while improving the quality
of the classifier on unseen test sets. Due to the limited number
of supervised samples, we also propose the use of auto-encoder
neural networks for feature learning. For validation, we compare
the classifiers that result from the proposed approach with
the ones trained from the supervised samples only and semi-
supervised trained using automatic label propagation.

I. INTRODUCTION

Discriminative deep neural networks have been successful
in image classification at the cost of processing many training
examples per class. Typical applications in the science areas,
such as medicine and biology, do not usually count on such
large and pre-annotated datasets. Moreover, manual annotation
of a large number of such training samples (e.g., images) by
specialists from the application area is usually impractical due
to high costs and their downtime.

Considering that the number of unsupervised (unlabeled)
samples is usually much higher than the number of supervised
(labeled) samples, semi-supervised learning methods have
explored the data feature space to propagate labels to the
unsupervised samples [1]–[7]. A classifier can then be trained
from the resulting large set of labeled samples. Even the
feature space can be redesigned by using that large labeled
set to train discriminative deep neural networks. Additionally,
there are methods that exploit generative deep neural networks
for semi-supervised learning [8]–[14]. Such works, however,
do not usually exploit the superior cognitive abilities of
humans in recognizing patterns during the semi-supervised
learning process. In contrast, crowd-sourcing tools rely on the
knowledge of multiple users for manual annotation [15], [16]
— an approach that could explore consensus and consistency

analysis among users, if they acted during the machine learn-
ing process.

In order to obtain a large training set with accurately
labeled samples, while keeping at minimum the user effort
in data supervision, we propose a semi-supervised approach
that exploits the superior pattern-finding power of the user’s
visual system to propagate labels to the unsupervised samples.
The user is guided by two-dimensional t-SNE projections [17]
of the feature space with the training samples, supervised and
unsupervised ones. The use of such information visualization
(infovis) technique to understand high-dimensional data and,
more specifically, the results of machine learning techniques
is not new [18]. Yet, the evidence that infovis and, more
specifically, its interactive hypothesis-forming-and-validation
sense making loop, known as Visual Analytics (VA), is effec-
tive to understand and improve machine learning [19]–[21], is
very recent. These results, however, rely on a reasonable (in
practice, large) number of supervised samples per category.
The use of projections to improve clustering has also been
proposed [22]. However, this approach only uses unsupervised
samples and does not aim at data annotation.

In this work, we advocate a different, and to our knowledge
novel, use of VA for supporting classification system engineer-
ing — the creation of large sets of labeled data that in turn
support the construction of high-quality classifiers. Also, we
explore the ability of Auto-encoder Neural Networks (AuNNs)
to learn features from unsupervised samples and compare
classifiers that result from the proposed method with others
trained from the supervised samples only and semi-supervised
trained using automatic label propagation. The results show
that our method can usually obtain significant accuracy gains,
better than the baselines, from little user effort. As main
contribution, humans can recognize groups of samples with
distinct shapes and limited class information in 2D better than
machines can recognize them in nD

II. PROPOSED PIPELINE

As stated earlier, the main question is how to support end
users in creating large and labeled training sets with little effort
such that this can provide high-quality classifiers? To answer
this question, we split it into sub-questions that are addressed
in turn. Figure 1 presents the workflows of the proposed visual



Fig. 1. The visual analytics workflow for interactive label propagation
(dashed green box on the left) and the baseline workflow with automatic
label propagation (solid blue box on the right). Both use the image features
from an AuNN (the red box).

analytics method based on interactive label propagation and
of the baselines based on automatic label propagation. The
individual steps are discussed in detail in the next sections.
1. Feature extraction: Given the limited number of
supervised samples, this module relies on an Auto-encoder
Neural Network (AuNN) [23] to learn the feature space
from the training images, supervised and unsupervised ones.
(Section III).
2. VA for interactive label propagation: The t-SNE
algorithm [17] projects on 2D the created feature space with
training samples to guide the interactive label propagation
(ILP) (Section IV).
3. Automatic methods: The semi-supervised approaches,
Laplacian Support Vector Machines (LapSVM) [1], [2]
and Optimum-Path Forest (OPF-Semi) [5], are used to
automatically propagate labels to the unsupervised samples
(Section V).
4. Quality comparison: For both workflows, we compare
the performance on unseen test sets of Support Vector
Machine (SVM) [24] and Optimum-Path Forest (OPF) [25]
classifiers trained with the large labeled set as well as with
the supervised samples only (Section VI).

III. FEATURE EXTRACTION

In order to keep at minimum the user effort, we assume
the number of supervised samples is considerably less than
the number of unsupervised samples in the training set. Thus,
for a given dataset, we partition it into three subsets by using
random and stratified sampling as follows: set S with 3% of

Fig. 2. AuNN architecture with convolutional layers used for image feature
extraction. The convolutional layers have A ≥ B ≥ C 3 × 3 dimensional
filters as shown, whose values depend on the dataset. The convolutional layers
are followed by ReLU activation and max-pooling in the encoder and, in the
decoder, by ReLu activation and up-sampling, except the last layer that uses
sigmoid activation.

supervised training samples, set U with 67% of unsupervised
training samples (their labels are never used during training),
and set T with 30% of unseen test samples. This procedure is
also repeated three times for statistical analysis.

The training images in S ∪ U are submitted to the
AuNN [23] for unsupervised feature learning. AuNNs consist
of two modules: an encoder module that reduces the input
image into a low-dimensional feature vector and a decoder
module that reconstructs the input image from that feature
vector [23], [26], [27]. The reconstruction errors are then
minimized by adjusting the weights of the neural layers in the
encoder and decoder during back-propagation. Different types
of AuNNs could have been tried: fully-connected architectures
with a single hidden layer [28]–[30], sparse networks with a
regularization constraint added to the reconstruction error [31],
and network architectures with a few hidden layers [26], [32].
We use an AuNN with convolutional layers due to their known
success in shape and color feature extraction from images [23]
(see Figure 2). This network is implemented in Python using
Keras [33]. It contains three convolutional layers in the en-
coder module and three others in the decoder module, built
using 3 × 3 dimensional filters. The convolutional layers are
followed by ReLu activation and max-pooling in the encoder
and by ReLu activation and 2× 2 up-sampling in the decoder.
The input images are normalized within [0, 1] and, therefore,
the last decoder layer uses a Sigmoid activation function, rather
than ReLu, to produce a normalized reconstructed image.

This network architecture has been chosen experimentally
on the training images by seeking a feature space after the
encoder in which the sample projection on 2D by the t-
SNE algorithm shows the structure of the data distributed into
separated clusters. The assumption here is that those clusters
are mostly populated by samples from a same class. Therefore,
the projection of the supervised samples using a distinct color
per class can guide the user to propagate the class labels to
unsupervised samples.

IV. INTERACTIVE LABEL PROPAGATION

The low-dimensional feature space created by applying
the AuNN on training images can still present thousands
of features. The use of non-linear projections on 2D seems



Fig. 3. The user (a) manually selects a sample group to (b) propagate labels
to unsupervised samples.

Fig. 4. (a) Projection of a training set with images of helminth eggs showing
eight well-separated clusters. (b) The tooltips of the samples (small images)
can be displayed to study the clusters.

to be the most suitable approach to understand such data
distribution [32], [34]. Motivated by recent works [19]–[21]
that indicate a strong relation between class separation in the
high-dimensional feature space and the corresponding sample
coordinates on 2D t-SNE projections [17], we adopted this
method to guide the user’s actions for label propagation.
Moreover, it has been shown that the t-SNE algorithm can
usually preserve the data distribution on the projection space
better than other algorithms [35]. We have then used the t-
SNE algorithm with its perplexity parameter fixed at 40 during
1,000 iterations.

For interactive label propagation (ILP), we developed a
simple tool that starts by showing the t-SNE projection of
S∪U with the class of the supervised samples in S color-coded
by a categorical color map and the unsupervised samples in
U shown in black. The visual identification of groups with
a few samples from a same class and the remaining ones in
back guides the user to propagate the label of that class to the
unsupervised samples in that group. The extent of this label
propagation is decided by manual free-sketching delineation
using the mouse (see Figure 3). This label propagation is then
limited to the most confident samples with respect to that
class. It can be repeated multiple times and for any region
of the projection. The tooltip (small image) is also displayed
as the user moves the mouse over the corresponding 2D points
(Figure 4). This cannot be considered label supervision, but
it can quickly indicate whether the majority of the images in
that group are from the same class and help the user to limit
the extent of that label propagation.

V. AUTOMATIC LABEL PROPAGATION

Semi-supervised learning techniques, such as LapSVM [1],
[2] and Optimum-Path Forest [5], can explore the feature space

with supervised and unsupervised samples to automatically
assign labels to the unsupervised ones. SVM-based techniques
usually rely on grid search with training images to determine
its parameter values. However, due to the very limited number
of supervised samples, we found better results by fixing the
parameters of LapSVM as follows: kernel=RBF, kernel size=5,
number of neighbors=6, γA = 0.00001, and γI = 1.0. The
semi-supervised OPF (OPF-Semi) [5] does not have param-
eters. While LapSVM explores manifold regularization for
label propagation, OPF-Semi interprets the training samples
as nodes of a complete graph, computes a minimum-spanning
tree in that graph, selects the supervised samples as seeds
(prototypes), and then computes an optimum-path forest rooted
at those prototypes, such that each unsupervised sample is
assigned to the class of its most closely connected root in the
feature space. The experiments then use these techniques to
propagate labels from S to U .

VI. QUALITY COMPARISON

The success of the interactive and automatic label propa-
gation processes can be measured by comparing the class of
each sample in U and the propagated label. At the same time,
it is desirable to train a classifier from the large labeled set
S ∪U such that its performance in assigning the correct label
to the unseen test samples in T is high. Note, however, that
errors in label propagation exist and so that training set S∪U
may not be good enough to create an effective classifier. In
order to evaluate the methods, we then use Support Vector
Machine (SVM) [24] and Optimum-Path Forest (OPF) [25] as
classifiers. We compare SVM trained on S – called “baseline”
– with SVM trained on S ∪ U , being U labeled by LapSVM
and by ILP. We also compare OPF trained on S with OPF
trained on S ∪ U , being U labeled by OPF-Semi and by ILP.

When SVM is trained on S ∪U , its parameters are learned
by grid search (3 splits with stratified random sampling)
using 70% and 30% of the samples in S ∪ U for training
and validation, respectively. OPF does not have parameters.
Afterwards, the effectiveness of these classifiers was measured
on T . As said, the whole process was repeated three times, as
well as the label propagation, using random choices of S, U ,
and T , for statistical analysis, as discussed next. A single user
with machine learning knowledge performed the ILP.

VII. EXPERIMENTS AND RESULTS

We applied the pipeline described so far to several real-
world datasets and classification problems. We next introduce
the datasets and related classification tasks, discuss specific
settings for our pipeline that depend on these datasets and
tasks, present the effectiveness measures, and discuss the
results.

A. Datasets

In order to validate the methodology, we first used the
MNIST [36] public dataset. The MNIST dataset contains
28×28 dimensional images of handwritten digits from 0 to 9.



Fig. 5. Example of the parasites datasets: (a) parasites and its (b) impurities.

A random subset with 5, 000 images from the original training
set with 60, 000 examples was chosen.

Next, we considered three medical image datasets. For these
datasets, classical manual labeling (by actually viewing the
images) would be both expensive and require a specialist
user, so we argue that our VA label propagation is of added
value in terms of cost saving. These datasets contain color
images of human intestinal parasites already segmented from
the background, centered, and resized to a 200 × 200 pixel
resolution.

The datasets are separated in different stages: (i) Helminth
larvae, (ii) Helminth eggs and (iii) Protozoan cysts. Besides
these three classes, a fourth one exists: impurities. These are
visually very similar to parasites (see example in Figure 5).
Dataset (i) has 3, 514 images of two categories: helminth lar-
vae and impurities. Dataset (ii) has 5, 112 images of nine cat-
egories: H.nana, H.diminuta, Ancilostomideo, E.vermicularis,
A.lumbricoides, T.trichiura, S.mansoni, Taenia, and impurities.
Dataset (iii) has 9, 568 images of seven categories: E.coli,
E.histolytica, E.nana, Giardia, I.butschlii, B.hominis, and im-
purities. All three datasets are unbalanced. We also considered
the datasets (ii) and (iii) without the impurity category for
the purpose of exploring different levels of difficulty. Table I
shows the number of images of each type in the considered
datasets, considering also the split percentages for S, U and
T defined in Section III.

B. Autoencoder Neural Network Set-up

For the MNIST dataset, the convolutional layers present
16, 8, 8, 8, 8 and 16 filters. For the Parasites datasets, we
use 32, 16, 8, 8, 16 and 32 filters respectively. As a cost
function to optimize, we considered both mean squared error
and binary cross entropy, the latter giving better results with
fewer training epochs, i.e. 50 for the easier datasets (MNIST
and Helminth Eggs without impurity) and 100 for all other
datasets, respectively. For MNIST, the feature vector has 128

TABLE I
NUMBER OF SUPERVISED AND UNSUPERVISED TRAIN SAMPLES AND TEST

SAMPLES.

Database | S | | U | | S ∪ U | | T |
MNIST 175 3325 3500 1500
Larvae with impurity 122 2337 2459 1055

Egg w/o impurity 61 1176 1237 531
with impurity 178 3400 3578 1534

Proto w/o impurity 134 2562 2696 1156
with impurity 334 6363 6697 2871

dimensions. For the Parasites database, the feature vector has
5, 000 dimensions.

C. Effectiveness measures

The Cohen’s kappa coefficient [37], [38] is more suitable to
measure effectiveness in the case of unbalanced datasets, such
as those used in this work. Thus, the performance of each
method on the test sets is measured by the Cohen’s kappa
coefficient

κ =
po − pe
1− pe

, (1)

where po is the simple accuracy and

pe =
1

N2

∑
k

nkαnkβ , (2)

where k is the number of categories, N is the number of
samples, and nkα and nkβ are the predicted category k given
by classifiers α and β, respectively. The κ coefficient is in a
[−1, 1] range, where κ ≤ 0 means no agreement and κ = 1
means complete agreement between two classifiers α and β.

Apart from the above, we also compute the accuracy of the
label propagation from S to U for the three label propagation
methods tested (ILP, LapSVM, and OPF-Semi). We performed
all computations (the entire workflow in Figure 1) three times
to obtain more reliable statistics on our results.

We next present the results of the experiments, in increasing
order of difficulty (MNIST dataset, Parasites dataset without
impurities, and Parasites dataset with impurities).

D. MNIST dataset results

Figure 6 shows the t-SNE projection for the MNIST. As
visible, smaller clusters have one predominant label color only,
while larger ones contain more label values (colors). The user
can reasonably easily ‘split’ these groups to propagate labels
to the most confident samples.

Table II shows the classification results, the propagation
accuracy and the number of labeled samples by each approach,
averaged over three executions of the entire pipeline. The av-
erage Kappa for the baseline experiment considering the SVM
and OPF classifiers shows a good degree of agreement. For

Fig. 6. 2D t-SNE projection of the MNIST dataset, with the label set S ∪U
color-coded by label values and the points in U drawn in black.



the SVM results, the label propagation done by ILP surpasses
the baseline and LapSVM and OPF-Semi. In addition, note
that even if the user propagates labels only to roughly 50%
of the U , this performs better than when propagating samples
automatically to all labels.

E. Parasites dataset results

Figure 7 shows the t-SNE projections for the Helminth
eggs and Protozoan cysts datasets without impurities. The
projection in Figure 7a allows to identify one consistent group
per each category (label value) of the Helminth eggs. In
Figure 7b, groups are much more mixed vs colors. This tells us
that the Protozoan cysts dataset is more challenging than the
Helminth eggs one, even when impurities are not considered.

Table III shows the classification results and label prop-
agation accuracies for these two datasets. For the Helminth
eggs, the average Kappa for SVM and OPF classifiers achieves
results close to 1, i.e., a high inter-rate of agreement. The ILP
performs, again, better than the baseline for the SVM and OPF
classifiers, with roughly the same number of annotated samples
as the automatic propagation methods. Interestingly, LapSVM
performs worse than the baseline for both classifiers. For the
Protozoan cysts datasets, the ILP also gets better average
Kappa than the baseline for the SVM and OPF classifiers.
The LapSVM achieves a Kappa value less than 0.4 for both
classifiers, which means fair agreement, while the other label
propagation methods yield a Kappa of 0.7. This is in line with
the perceived difficulty of this dataset reflected in Figure 7.
Note also that the user propagates to only roughly 80% of the
samples and obtains the best classification result.

Figure 8 shows the projections for the Helminth larvae,
Helminth eggs, and Protozoan cysts datasets with impurities.
For the Helminth larvae, we see that, although there are
only two categories, a high mixture exists. Also, most of the
impurities are located in the larger group (Figure 8b, light
blue). Finally, the Protozoan cysts projection (Figure 8c) shows
almost no separated groups, high label mixing, and an uniform
spread of impurities (light blue). As such, we find this to be
our most challenging (and actually also largest) dataset.

Table IV shows the classification results and propagation
accuracies for the datasets in Figure 8. For the Helminth larvae,

Fig. 7. t-SNE projection showing the S ∪ U sets of the (a) Helminth Eggs
and (b) Protozoan cysts datasets without impurities.

the Kappa coefficient obtained by the baseline is less than
0.55 for the SVM and OPF classifiers. The label propagation
made by ILP yields a Kappa of 0.7 for both classifiers, thus
surpassing the automatic label propagation methods. Even
though these datasets are quite challenging, as discussed earlier
and visible in Figure 8, the ILP propagated the labels with
an accuracy of 98%. For the Helminth eggs dataset, the ILP
gets the Kappa coefficient less than the baseline for 2% with
the SVM classifier, but gets an increase of 3% with the OPF
classifier. Again, LapSVM yields a Kappa value worse than the
baseline for both classifiers. For the Protozoan cysts dataset,
the ILP yields a Kappa value for the SVM and OPF classifiers
which is less than the baseline by 4% and 0.2% respectively;
however, it surpasses the automatic label propagation methods
for both classifiers. We can see that this is the most difficult
dataset reflected in all these results.

VIII. DISCUSSION

Let us revisit our proposed workflow and discuss its strong
points and limitations.

A. User labeling added-value

The experiments realized in Section VII aim to compare the
ILP with two automatic methods. For all considered datasets,
in increasing level of difficulty, starting with MNIST and
ending with the Parasites with impurities, we found that the
user-based label propagation achieves in the end better classi-
fication results than the automatic label propagation methods
considered, and also better than a classifier trained without
any label propagation. As such, the added value of user-driven
label propagation is justified.

B. Way of working

The proposed VA procedure is quite simple and does not
require special training: The user sees a color-coded projection
and is guided by the perceived shapes, clusters, and distances
to decide where from, and how far, to propagate labels.
Typically, one starts in the ‘easy’ areas showing compact
groups containing only labels of the same class (color). One
stops either when the allocated time (effort) for labeling has
expired, or when the remaining samples are located in too
complex (mixed) regions.

Understanding when to stop propagating is an interesting
question: Propagating too little will yield limited added-value;
propagating too far may create wrong labels, thus decrease
the quality of the final classifier and also waste effort. To
understand this process, we recorded the order in which the
user labeled the Helminth larvae dataset, and plotted the
increase or decrease of quality (measured by Kappa) and also
the increase or decrease of propagation accuracy as a function
of the number of added samples. Figure 9 shows these results.

Several insights appear from Figure 9. First, we see that
the two considered classifiers (OPF and SVM) behave almost
identically, so, the user should not be concerned by this choice
during label propagation. Second, the increase of quality is not
linear with the labeling effort. We see that a “saturation” effect



TABLE II
AVERAGE KAPPA AND ITS STANDARD DEVIATION FOR THE SVM AND OPF CLASSIFICATION RESULTS ON THE T SET OF MNIST DATASET. THE BEST

RESULTS FOR EACH COLUMN OF QUALITY ARE IN BOLD.

Technique | S | Average | U | Average
Propagation Accuracy Average | S ∪ U | Average Kappa

(SVM)
Average Kappa

(OPF)
baseline 175 - - 175 0.813415 ± 0.001 0.709450 ± 0.021
LapSVM 175 3325 0.095639 3500 0.000000 ± 0.000 0.051110 ± 0.006
OPF-Semi 175 3325 0.763308 3500 - 0.721600 ± 0.043
ILP 175 1864 0.974718 2039 0.844264 ± 0.027 0.776241 ± 0.036

TABLE III
AVERAGE KAPPA AND ITS STANDARD DEVIATION FOR THE SVM AND OPF CLASSIFICATION RESULTS ON THE T SET OF HELMINTH EGGS AND

PROTOZOAN CYSTS WITHOUT IMPURITIES.THE BEST RESULTS FOR EACH COLUMN OF QUALITY AND DATASET ARE IN BOLD.

Database Technique | S | Average | U | Average
Propagation Accuracy Average | S ∪ U | Average Kappa

(SVM)
Average Kappa

(OPF)

Helminth Eggs

baseline 61 - - 61 0.961366 ± 0.023 0.941358 ± 0.026
LapSVM 61 1176 0.886338 1236 0.873472 ± 0.035 0.877344 ± 0.037
OPF-Semi 61 1176 0.947563 1236 - 0.939834 ± 0.051
ILP 61 1171 0.996014 1232 0.986624 ± 0.009 0.987364 ± 0.003

Protozoan cysts

baseline 134 - - 134 0.823106 ± 0.016 0.762682 ± 0.008
LapSVM 134 2562 0.521598 2696 0.346761 ± 0.001 0.371770 ± 0.005
OPF-Semi 134 2562 0.802238 2696 - 0.729438 ± 0.052
ILP 134 1999 0.947177 2133 0.851948 ± 0.006 0.841023 ± 0.002

Fig. 8. t-SNE projection color-coded for the S ∪ U sets of the (a) Helminth larvae, (b) Helminth eggs and (c) Protozoan cysts datasets with impurities (the
latter are colored light blue).

is reached at around 1900 added labeled samples. Adding more
samples does not increase quality, and actually the propagation
accuracy also drops slightly. This is because the used visual
metaphor to propagate labels (projection) favors propagating
from the “easy cases” (not mixed groups) first. When these
cases are exhausted, only the complex (mixed and confusing)
regions remain. From this point, further propagation is likely
of limited or even negative value.

C. Effectiveness as a function of the data

It is also interesting to study how the classification quality
and propagation accuracy correlate with the type of datasets
being treated. For this, we plot the average Kappa and prop-
agation accuracy per dataset, for our six studied datasets, for
all the three considered propagation techniques (LapSVM,
OPF-Semi, and ILP). Figure 10 shows these results for the
OPF classifier, with the datasets sorted along the x axis on
decreasing values of the quality of classifiers trained with user-
propagated labels.

Several insights appear from this figure. First, we see
that the ILP consistently beats the automatic propagation for
all datasets. More interestingly, we see that this is more
pronounced for the difficult datasets, i.e., the ones for which
the Kappa values are the smallest (shown to the right of the
figure). Also, we see that the quality is correlated positively
with the propagation accuracy – higher accuracies lead to
a higher classification quality. Last but not least, the chart
reflects an ordering of the datasets from easy to challenging
which is in line with our own insights and what the projections
shown in the earlier figures tell us. All in all, we see that
manual propagation is of clear added value, and this value is
relatively larger for complex datasets.

D. Scalability

In our experiments, we used datasets ranging from roughly
1, 000 to 7, 000 samples in the projection (set S ∪ U ), see
Table I. Significantly larger datasets, e.g. having tens of
thousands of samples, can pose problems as the projection



TABLE IV
AVERAGE KAPPA AND ITS STANDARD DEVIATION FOR THE SVM AND OPF CLASSIFICATION RESULTS ON THE T SET OF HELMINTH EGGS AND

PROTOZOAN CYSTS WITH IMPURITIES. THE BEST RESULTS FOR EACH COLUMN OF QUALITY AND DATASET ARE IN BOLD.

Database Technique | S | Average | U | Average Propagation
Accuracy Average | S ∪ U | Average Kappa

(SVM)
Average Kappa

(OPF)

Helminth Larvae

baseline 122 - - 122 0.375378 ± 0.333 0.531080 ± 0.035
LapSVM 122 2337 0.882613 2459 0.121253 ± 0.086 0.173416 ± 0.088
OPF-Semi 122 2337 0.920696 2459 - 0.600475 ± 0.071
ILP 122 2080 0.981273 2202 0.727843 ± 0.013 0.723049 ± 0.016

Helminth Eggs

baseline 178 - - 178 0.705972 ± 0.037 0.568304 ± 0.034
LapSVM 178 3400 0.654118 3578 0.000000 ± 0.000 0.076043 ± 0.016
OPF-Semi 178 3400 0.504510 3578 - 0.392956 ± 0.021
ILP 178 1547 0.914358 1725 0.683544 ± 0.033 0.593104 ± 0.034

Protozoan cysts

baseline 334 - - 334 0.628584 ± 0.024 0.476051 ± 0.010
LapSVM 334 6363 0.622662 6697 0.232800 ± 0.104 0.202826 ± 0.030
OPF-Semi 334 6363 0.468804 6697 - 0.339095 ± 0.033
ILP 334 1787 0.826867 2121 0.589643 ± 0.036 0.472148 ± 0.008
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Fig. 9. Experiment presents the added quality by the number of additional
labeled samples for the Helminth Larvae dataset during the ILP. Between the
brackets at the legend, it is indicate the type of classifier (SVM or OPF) that
was constructed given the propagated labels. The baseline quality is given by
the squares. It is also shown the propagation accuracy.

will become cluttered, leading in turn to potential propagation
errors.

E. Limitations

While demonstrably effective, our proposed VA approach
has several limitations. As already noted, the projection
metaphor becomes cluttered around 10, 000 samples, poten-
tially leading to propagation errors. Also, we have shown
that propagation becomes ineffective or even undesired after
a certain threshold. Currently, this threshold is determined by
the user based on the perceived difficulty of the visual patterns
shown in the projection. Designing VA mechanisms to assist
the user both in deciding the order in which to propagate
and when to stop based on the data characteristics is a high-
potential idea for future work. Separately, the number of dis-
played classes is limited inherently by categorical color coding
to around 10. Overcoming this limit is an open problem in
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Fig. 10. Quality and propagation accuracy for six studied datasets vs three
label propagation methods (LapSVM=blue, OPF-Semi=red, ILP=yellow). The
top bars show quality (Kappa). The bottom bars show propagation accuracy.

information visualization. However, solutions can be explored
e.g. based on the fact that not all labels need to be shown at
the same time to support label propagation.

IX. CONCLUSION

In this paper, we addressed the problem of sparsely-
annotated datasets for classifier engineering by using a visual
analytics based approach that leverages the pattern-finding
power of the human eye to ‘fill in’ gaps in annotated visu-
alizations. For this, we construct a projection of an image
dataset by using autoencoder networks to extract features, and
next project the feature space on a 2D scatterplot using t-
SNE. Next, we let the user propagate labels (from a small set
of existing ones) directly in the projection space. Finally, we
use the augmented labeled set to train and test classifiers that
use the extracted features.

While the actual VA technique being used to propagate
labels is very simple, its end-to-end results are surprisingly
good: Manual label propagation, even subject to errors done
by the human user, achieves in the end consistent and better



classification performance than two modern automatic label
propagation methods, for two different classifier techniques,
over a collection of datasets and classification tasks ranging
from simple to complex. This suggests that adding more
support for the user during label propagation would only
increase the quality of the obtained results even further.

We next plan to address precisely this last goal, by designing
new visual mechanisms to inform and support the user during
label propagation by using the nearest neighbors of a given
point in nD space. Thus, we expect to maximize the quality
of the obtained labels, minimize the propagation effort, and
overall make the entire propagation process more transparent.
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