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Abstract—Biometrics emerged as a robust solution for security
systems. However, given the dissemination of biometric applica-
tions, criminals are developing techniques to circumvent them by
simulating physical or behavioral traits of legal users (spoofing
attacks). Despite face being a promising characteristic due to
its universality, acceptability and presence of cameras almost
everywhere, face recognition systems are extremely vulnerable
to such frauds since they can be easily fooled with common
printed facial photographs. State-of-the-art approaches, based on
Convolutional Neural Networks (CNNs), present good results in
face spoofing detection. However, these methods do not consider
the importance of learning deep local features from each facial
region, even though it is known from face recognition that each
facial region presents different visual aspects, which can also be
exploited for face spoofing detection. In this work we propose
a novel CNN architecture trained in two steps for such task.
Initially, each part of the neural network learns features from a
given facial region. Afterwards, the whole model is fine-tuned on
the whole facial images. Results show that such pre-training step
allows the CNN to learn different local spoofing cues, improving
the performance and the convergence speed of the final model,
outperforming the state-of-the-art approaches.

I. INTRODUCTION

Biometric systems are increasingly common in our everyday
activities [1]. People recognition through their own physical,
physiological or behavioral traits inhibits most of the frauds
often committed in security systems based on knowledge
(passwords) or tokens (cards, keys, etc.). However, nowadays
criminals are already developing techniques to accurately
simulate the biometric characteristics of valid users, such as
face, fingerprint and iris, to gain access to places or systems,
process known as spoofing attack [2], [3]. In this context,
robust countermeasure techniques must be developed and
integrated into the traditional biometric applications in order
to prevent such frauds. Despite face being a promising trait
due to its convenience for users, universality and acceptability,
traditional face recognition systems can be easily fooled with
common printed facial photographs [2], which nowadays can
be obtained by criminals on the worldwide network, especially
due to the dissemination of social medias and networks.

Spatial image information is extremely important in tasks
involving faces, such as face detection [4] and face recog-
nition [5], [6]. The different visual patterns of each facial
region encode rich and discriminative information necessary
to distinguish a face from other objects, and also from other
faces. Regarding face spoofing detection, some works based

on handcrafted features have mentioned that different spoofing
cues can be extracted from different facial regions [7], [8].

Recently, deep learning architectures have emerged as good
alternatives for solving complex problems and have reached
state-of-the-art results in many tasks due to their great power of
abstraction and robustness, working with high-level features,
self-learned from the training data [9], [10]. Among the
proposed deep learning architectures, Convolutional Neural
Networks (CNN) [11] have appeared as one of the most
important classes of deep neural networks able to deal with
digital images with great performances.

Some CNN based state-of-the-art methods were recently
proposed for face spoofing detection [12]–[15]. However, none
of them take into account the different visual aspects of each
facial region and, consequently, the different local spoofing
cues that could be learned by the neural networks to improve
their performances. All proposed methods work on whole
faces, in a holistic way, or with random and small patches,
i.e., they train the neural networks with samples extracted
from random regions of the faces, all together. This can
degrade the performance of the training algorithm since the
backpropagation method can be distracted by the different
visual information extracted from random regions of the face,
instead of learning the real differences between real and
fake faces in each facial region, with similar visual aspects,
differing only by spoofing cues.

In this context, we propose a novel CNN architecture
trained in two steps for a better performance in face spoofing
detection: (i) the local pre-training phase, in which each part of
the model is trained on each main facial region, learning deep
local features for attack detection and initializing the whole
model in a great position in the search space (the network
learns to detect multiple and different spoofing cues from
all the facial regions); (ii) the global fine tuning phase, in
which the whole model is fine-tuned based on the weights
learned independently by its parts and on whole real and fake
facial images, in order to improve the model generalization.
Results obtained on two major datasets used for the evaluation
of face spoofing detection techniques, Replay-Attack [8] and
CASIA FASD (Face Antispoofing Database) [16], show that
the pre-training step on local and fixed regions of the faces im-
proves the performance of the final model and its convergence
speed. The proposed approach outperformed the state-of-the-
art methods while working with an efficient CNN architecture.



II. TECHNICAL BACKGROUND

In this section we briefly present some concepts regarding
the importance of spatial information and differences of the
facial regions for face detection, face recognition and face
spoofing detection, as well as some related works.

A. Facial Regions and Spatial Information

The spatial relationship between the facial elements and
regions in the images encodes rich information that can be
used to distinguish a face from the background, from other
objects or even from other faces [4], [5]. The first works on
automated face detection and recognition already used such
kind of information, presenting good results and efficiency.

Regarding face detection, the early work of Viola and
Jones [4] used Haar-like features to detect the presence of
faces in digital images. In short, they apply, to each area of a
given image, a cascade classifier which verifies, hierarchically,
whether all main facial features are present in that area. The
Haar-like features are designed to capture typical differences
existing in neighboring regions of human faces. Fig. 1 shows
two Haar-like features and their correspondence to the regions
of human faces. The black rectangles indicate that darker
regions are expected, while white rectangles indicate that
brighter regions are expected in a certain area. The feature
showed in the middle focus on darker and brighter regions
corresponding to the eyes (especially due to eyebrows) and
cheeks, respectively. The feature on the right searches for the
contrast of the nose and eyes in human faces.

Fig. 1. Left: face detected based on the Haar-like features used by Viola and
Jones [4]. Center and right: examples of Haar-like features. Images from the
OpenCV documentation [17].

Based on the work of Viola and Jones [4], which allowed
automated face detection in reasonable time for real applica-
tions, many works were later proposed that also explored the
contrasts existing in neighboring regions of the face [18]–[20].

In the context of face recognition, the first effective method
for real scenarios was proposed by Turk and Pentland [5],
based on the Principal Component Analysis (PCA) [21], which
can be used to find the most discriminative eigenvectors that
best describe the variance of the set of data under analysis
(facial images, in this case) and reduce the dimensionality of
the problem. Given the similarity of such eigenvectors (when
represented as 2D images) to facial images, Turk and Pentland
called them eigenfaces [5], [22]. It is possible to identify
the facial elements and regions (and their spatial relationship)
in the eigenfaces, indicating that this kind of information is
important to differentiate faces from different people.

Works based on other transformations for reducing the
dimensionality of the facial images space, such as the ones

based on the Linear Discriminat Analysis (LDA) [23], also
usually obtain, as the “basis” of the new coordinate systems,
vectors that ensemble human faces when viewed as 2D images,
with the different facial regions in them being noticeable. The
CNN based architectures for face recognition, which self-learn
the most discriminative features for face representation from
the training datasets, also capture the spatial information and
relationships between facial elements and regions, presenting
connection weights between neurons that act as edge and facial
elements detectors (eyes, nose, etc.) [24].

Researches in Psychology show that human beings have
an extreme ability to detect faces, more accurately and much
faster than any other object, and also highlighted the impor-
tance of spatial information and the positioning of each facial
region and element for face detection and recognition [25],
[26]. In [26], for instance, the authors found that the time
required by a group of people to identify a visual stimulus
as a face was shorter when normal faces were presented than
when jumbled faces, i.e., faces with parts out of place (the
mouth region above the eyes, etc.), were presented.

Despite all this, to the best of our knowledge, no work has
investigated the usage of deep local features, learned from each
facial region (with its particular visual aspect), to improve the
performance of the state-of-the-art deep learning architectures
for face spoofing detection, our main goal.

B. Face Spoofing Detection

According to Ratha, Connell and Bolle [3], as in any other
security system, there are many ways to attack a biometric
system. In short, the attacks to biometric applications can
be divided in two groups: direct and indirect attacks. In the
direct attacks (spoofing attacks), criminals generate synthetic
samples of biometric traits of legal users, such as photographs
(face simulation), gelatin fingers (fingerprint simulation), con-
tact lenses (iris simulation), among others, to obtain access
to places or systems. Criminals try to fool the capture sensor
with such samples, the most vulnerable point of the biometric
recognition system [3].

In the indirect attacks, criminals, after investigating the inner
working of the system and based on some fragility, act by
modifying the algorithms used to match templates or internal
messages exchanged by the system modules [3]. Fig. 2 shows
the main points of attack of a biometric system. It is important
to know, however, that the vast majority of attacks on biometric
applications are direct, due to the simplicity for attackers who
do not need to investigate the inner working of the system.

Among the main biometric traits, as said, face is a promising
one especially due to its convenience, low cost of acquisi-
tion, universality and acceptability by users [1], being very
suitable to a wide variety of environments, including mobile
ones. However, despite all these advantages, face recognition
systems are the ones that most suffer from spoofing attacks
since they can be easily fooled even with common printed
photographs [2]. Fig. 3 shows some real and fake faces from
the Replay-Attack [8] dataset. As one can observe, it is very
difficult to distinguish between real and fake faces.
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Fig. 2. Points of attack in a traditional biometric system. The spoofing attacks
occur in point “1”, i.e., by fooling the sensor (presentation of fake traits) [27].

Regarding face spoofing attacks, these can be performed by
presenting to the camera of a biometric system a static face
image (printed, digital image displayed on a mobile device, or
a 3D mask) or a dynamic set of face images (videos recorded
from the faces of legal users displayed on mobile devices) [2].
As one can observe in Fig. 3, different spoofing cues can
be analyzed in each facial region, such as shadows (more
common in real faces, especially in their outer regions, than
in 2D fake faces).

C. Related Works

Face spoofing detection methods have been proposed in
literature in the last years. Regarding the approaches that work
with handcrafted features, most of them focus on detecting
spoofing artifacts and image quality distortions in order to
identify fake faces. Some of them, such as [28], extract color
features, based on the assumption that, when recaptured by
the cameras of the biometric systems, fake faces present
distortions in colors, reflectance, etc., due to the properties of
the materials they are made with. In [28], the authors argue that
fake faces tend to present darker colors and different contrasts,
as well as more low-frequency areas than real faces. They use
such information to extract features for face classification.

Other works extract texture features based on the LBP
(Local Binary Patterns) [29] descriptor and its variations,
to characterize real and fake faces, presenting good results
[30]–[32]. In [30], the authors extract specific features from
each facial region and combine them into a final feature

Fig. 3. Images from real (first row) and fake faces (second row) from the
Replay-Attack [8] dataset.

vector in the end of the process for classification, improving
significantly the results of the method compared to when
working with features from the whole face. Some of these
works also mentioned that the best features were extracted
from specific facial regions, especially the central one and
from the forehead area [30].

Among the approaches for face spoofing detection which
use deep learning architectures, more specifically Convo-
lutional Neural Networks (CNN) [11], since for this task
they obtained the state-of-the-art results, to the best of our
knowledge, all of them work on whole faces, learning global
spoofing cues, or on random and small patches extracted from
the faces, not focusing on the learning of local spoofing cues
from each facial region. In [12], for instance, the authors
apply a transfer learning algorithm in order to adapt the VGG-
Face [24] model, a benchmark CNN for face recognition
trained on 2.6 million facial images from 2, 622 people, for
spoofing detection, obtaining good results given the similar
domains of the problems. In [33], the authors also apply a
similar transfer learning algorithm on VGG-Face [24] model
using it for feature extraction, without modifying the original
model, focusing on efficiency. In [34], a more time consuming
algorithm for transfer learning is applied to the VGG-Face [24]
neural network, in which layers of the original CNN are
updated for the spoofing detection task, obtaining great results,
but also making the process more expensive and requiring
more processing power (advanced GPUs) and time.

All these aforementioned works based on the VGG-
Face [24] consider whole facial images as input. Other impor-
tant works in the literature such as [15], [35] also extract global
deep spoofing cues from the faces based on other architectures.
In [14], the authors propose a CNN model and integrate it with
a Long-Short Term Memory (LSTM) [36] neural network for
learning temporal holistic features from the faces in sequences
of images (videos), also obtaining a good performance.

In [13], the authors explore random patches for face
spoofing detection. They use such approach especially for
augmenting the dataset but present the patches all together
(from random and different parts of the faces) to train their
CNN architecture. Despite the good results, given the different
visual patterns of each facial region, the neural network can be
distracted and base its learning for spoofing detection mainly
on the structural information of the faces, much more evident
in the images, not focusing on the spoofing cues themselves.
In other words, the backpropagation algorithm can be more
influenced by the structural aspects of the facial elements (e.g.
presence or absence, size, shape, etc. of the eyes) in a given
patch, than by the subtle spoofing cues in it.

Another well-known patch based approach for face spoofing
detection, presented in [7], works with small and not fixed
patches (regions) from the faces to train traditional classifica-
tion models. In each face, given an extensive analysis based
on several metrics, they select the best patches to represent
the whole facial image in order to classify it as real or fake.
They use many metrics to determine which patches should
be selected to represent the face, which are obtained from



different regions of the faces for each sample, also degrading
the performance of the method in learning spoofing cues.

Despite the lack of attention to deep local features regarding
face spoofing detection, Krizhevsky [37] demonstrated, on
other image classification tasks, that the use of local (and fixed)
regions of the images (visual local information), in an initial
training step of the deep learning model, tends to improve its
performance, also avoiding getting stuck in local minima in
the hyperparameter search space. Ba et al. [38] also suggested
the use of facial patches for initializing deep models applied
to face recognition based on studies in Neuroscience. Another
work [39] uses this initial training step based on fixed image
patches for improving vehicle classification in images.

III. PROPOSED APPROACH

In this work, we propose a novel CNN architecture for
face spoofing detection, which we called lsCNN (Locally
Specialized CNN), with a novel training algorithm for a more
effective learning of deep local spoofing features, based on
two steps: (i) the local pre-training phase, in which each part
of the model is trained on each main facial region (predefined
and fixed), learning deep local features for attack detection and
allowing to initialize the whole model in a better position in
the search space; and (ii) the global fine tuning phase, in which
the whole model is fine-tuned based on the weights learned
independently by its parts on the facial regions, in order to
improve its generalization.

A. lsCNN Architecture
Basically, the lsCNN presents 4 convolutional and pooling

layers (Conv1/Pool1 to Conv4/Pool4) at the bottom, with
each convolutional layer being immediately followed by a
batch normalization, scale and signal rectification (ReLU -
Rectified Linear Unit) layers. The batch normalization and
scale layers serve to normalize the output feature maps ob-
tained in the convolutional layers, improving learning [40].
The rectification function, in each neuron, acts as activation
function, eliminating negative values in the resultant feature
maps and also accelerating training. At the top of the network
is a fully-connected layer (FC1), also followed by a batch
normalization, scale and ReLU layers, as well as a dropout one
(Drop1). Finally, there is a softmax layer with two neurons
in order to classify the faces as being real or fake. Tab. I
presents the lsCNN architecture in terms of its layers, i.e., size
of kernels, strides, sizes of input and output feature maps.

As shown in Tab. I, lsCNN expects 3-channels facial images
in RGB color space as input. Although other color spaces
allow dealing more accurately with illumination issues, in
order to approximate the model to the inner working of human
eyes (which capture only red, green and blue waves of light)
and their perception in natural conditions, as well as by the fact
that most digital cameras capture images in RGB mode, we
opted for this image representation over other color models.

B. Local Pre-training
Similar to [37], in order to initialize the whole lsCNN model

in a better position in the search space and make it specialized

TABLE I
ARCHITECTURE OF THE PROPOSED LSCNN. THE INPUTS OF LSCNN ARE
RGB (3 CHANNELS) FACIAL IMAGES WITH 96× 96 PIXELS: 3× (96× 96)

MAPS.

Layer Kernel Size Stride Input Maps Output Maps
Conv1 3× 3 1 3× (96× 96) 27× (94× 94)
Pool1 2× 2 2 27× (94× 94) 27× (47× 47)
Conv2 3× 3 1 27× (47× 47) 36× (45× 45)
Pool2 2× 2 2 36× (45× 45) 36× (23× 23)
Conv3 3× 3 1 36× (23× 23) 45× (21× 21)
Pool3 2× 2 2 45× (21× 21) 45× (11× 11)
Conv4 3× 3 1 45× (11× 11) 54× (9× 9)
Pool4 2× 2 2 54× (9× 9) 54× (5× 5)
FC1 — — 54× (5× 5) 1× (450)

Drop1 — — — —
Softmax — — 1× (450) 1× (2)

in deep local spoofing features from each region of the faces,
we split each training face into 9 main regions (patches), as
shown in Fig. 4, regions also adopted for face recognition [1].

p1 p2 p3

p4 p5 p6

p7 p8 p9

96

96

32

32

Fig. 4. A face image (96 × 96 pixels) from the Replay-Attack dataset [8]
split into 9 fixed patches (non-overlapping regions of 32× 32 pixels).

After this, we also split the lsCNN architecture into 9
independent smaller CNNs, called PatchNets for simplicity,
presenting, each of them, a ninth of the size of the original
model, and being trained on each of the 9 main facial regions
considered from the faces, from p1 to p9. Each PatchNet has
as input RGB patches with 32 × 32 pixels from a respective
region of the training faces. Tab. II shows the architecture of
each PatchNet and Fig. 5 illustrates the training process of
the 9 instances of this smaller neural network on the facial
regions of a given image. As one can observe, on the top of
each PatchNet are 2 softmax neurons since they are trained to
classify their respective patches as being real or fake.

C. Global Fine Tuning

After training the 9 smaller neural networks in their res-
pective facial regions, their weights and biases are used to
initialize the parts of the whole lsCNN for a fine tuning step
of such larger model on the whole training facial images, in
order to improve its generalization.

As shown in Fig. 6, each smaller network initializes the
weights of the connections and biases of a partition (a ninth)
of the lsCNN model, from the left (top) to the right (bottom)



TABLE II
ARCHITECTURE OF EACH SMALLER CNN (PATCHNET), PART OF THE
LSCNN, TRAINED ON EACH FACIAL REGION, FROM p1 TO p9 (FIXED

PATCHES WITH 32× 32 PIXELS, ALSO IN RGB COLOR SPACE).

Layer Kernel Size Stride Input Maps Output Maps
Conv1 3× 3 1 3× (32× 32) 3× (30× 30)
Pool1 2× 2 2 3× (30× 30) 3× (15× 15)
Conv2 3× 3 1 3× (15× 15) 4× (13× 13)
Pool2 2× 2 2 4× (13× 13) 4× (7× 7)
Conv3 3× 3 1 4× (7× 7) 5× (5× 5)
Pool3 2× 2 2 5× (5× 5) 5× (3× 3)
Conv4 3× 3 1 5× (3× 3) 6× (1× 1)
Pool4 2× 2 2 6× (1× 1) 6× (1× 1)
FC1 — — 6× (1× 1) 1× (50)

Drop1 — — — —
Softmax — — 1× (50) 1× (2)

side of the lsCNN model. The weights of the first PatchNet,
for example, initialize the connections between the most left
neurons of the lsCNN model, responsible for first feature maps
(FM1 to FM3 in the case of the first network layer), and
so on (similarly to [37]). The connections of lsCNN between
neurons from different parts of it are zero-initialized.

The weights of the two fully-connected layers on top are
randomly initialized from a normal distribution in order to
improve the generalization of model even more, as in [37].
Their biases are zero-initialized. In Fig. 6, for simplicity, in
each partition of lsCNN, only the connections from a neuron
in a given feature map to the neurons of the previous layer
are shown, as well as the connections of the selected neurons
in the first part of lsCNN to their receptive fields in the other
parts of such whole model. However, the lsCNN has all the
connections of a traditional CNN.
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Fig. 5. Illustration of the local pre-training process of lsCNN. Given a facial
image, it is split into its 9 main regions, from p1 to p9, and 9 instances of
the smaller CNN architecture (PatchNet) are trained on each of them.

After the initialization, the same training facial images
(which were split into patches in the former step) are used to
fine tune the weights of the whole lsCNN model, also allowing
it to detect some global or more generic features from whole
faces, which were not learned locally in the pre-training step.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

We evaluated the proposed lsCNN architecture on three im-
portant face spoofing detection databases: (i) NUAA Imposter
Database [41]; (ii) Replay-Attack [8] dataset; and (iii) CASIA
FASD (Face Antispoofing Database) [16]. Subsecs. IV-A and
IV-B describe the experiments and the great results obtained,
as well as some discussion.

A. NUAA Imposter Database

NUAA Photograph Imposter Database [41] contains
grayscale facial photographs (already cropped) obtained from
real and fake faces: 3, 491 images for training (1, 743 from real
faces and 1, 748 from printed facial photographs) and 9, 123
images for testing (3, 362 from real faces and 5, 761 from
printed facial images). We performed an initial experiment
on this small dataset and, for this, we had to reduced the
depth of the lsCNN model, eliminating the third and fourth
convolutional and pooling layers due to the small size of
the input faces (64 × 64 pixels - input patches with only
21 × 21 pixels). Given this reduction in depth, for this
experiment we augmented the width of the original lsCNN:
the first and second convolutional layers presented 90 and 135
output feature maps, respectively. The fully-connected layer
presented 1, 350 neurons and, following [11], 5 × 5 kernels
(with stride of 2 pixels) were used in the convolutions, given
the formed shallow architecture. The first convolutional layer
of the lsCNN and of the PatchNets had as input, respectively,
1×(64×64) and 1×(21×21) sized feature maps (by working
with grayscale images).

The whole lsCNN model was also divided into 9 parts and
we initialized all weights of the PatchNets based on random
values from a zero-mean normal distribution (with standard
deviation of 0.0001), and normalized the input facial images
(before splitting them) by subtracting the mean value of the
training set and dividing the values of the pixels by 128, in
order to ensure that most of them would belong to the interval
[−1; 1]. The biases of the neurons were all zero-initialized.

As optimizer, we used the Adam method [42], with the fol-
lowing parameters: 64 training images per batch, base learning
rate of 0.0001, first momentum of 0.9 and second momentum
of 0.999. We trained the 9 PatchNets by 2, 000 iterations using
the Caffe framework [43], initialized the whole lsCNN model
with their learned weights and biases, and trained the whole
CNN for 2, 000 iterations on the whole training faces. For
performance comparison, we also assessed a CNN with the
same architecture of lsCNN, but traditionally trained, i.e., by
initializing all its weights with random values extracted from
a normal distribution with zero-mean and standard deviation
of 0.0001 (biases zero-initialized) and training it on the whole
faces also by 2, 000 iterations (its convergence point).
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The goal of this initial experiment was to at first verify
the improvement in performance of lsCNN compared with the
traditionally trained CNN, given the same amount of training
iterations (both 2, 000 iterations). Fig. 7 shows the ROC
(Receiver Operating Characteristics) curves of lsCNN and the
CNN traditionally trained on whole faces, learning global
features. As one can observe, the proposed approach presented
a much better ROC curve than the traditionally trained CNN.
Regarding the Equal Error Rate (EER), the lsCNN and the
traditionally trained CNN obtained, respectively, 14.10% and
23.11%. That is, our proposed approach was again much better
than the traditionally trained CNN.

B. Replay-Attack and CASIA Databases

In order to allow a more robust analysis of lsCNN, we
performed larger experiments on the Replay-Attack [8] and
CASIA [16] databases. The Replay-Attack dataset contains
360 videos for training (60 videos of real faces and 300 videos
of fake faces), 360 videos for validation in order to calibrate
the threshold of the system used to determine whether a given
facial image (extracted from a video frame) is real or fake,
and a test set of videos with 80 videos of real faces and 400
videos of fake faces. The CASIA [16] dataset presents videos
of 50 subjects, 12 videos per subject being 3 of real faces
and 9 of fake faces. The dataset is divided in training set (20
subjects, 240 videos) and test set (30 subjects, 360 videos).
There is no validation set explicitly defined for this database.

We detected and cropped the faces in the frames of the
videos in both datasets using the robust MTCNN [44] deep
neural network, for an accurate face segmentation. Based on
the eyes’ landmarks of a face, returned as output by MTCNN,
we applied a scale transformation on the respective image
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Fig. 7. ROC curves of the lsCNN and of a CNN with the same architecture,
but traditionally trained, i.e., on the whole faces of NUAA [41], without a
local pre-training step. The higher the curve, the better.

in order to normalize the distance between both eyes to 60
pixels (using the MATLAB algorithm based on interpolation
and on the values of the nearest pixels). After detecting and
normalizing the face in each frame, we cropped it based on the
eyes and capturing the whole facial region (both ears, forehead
and chin), with a fixed size of 96 × 96 pixels in RGB color
space. Some cropped faces from the Replay-Attack dataset are
shown in Fig. 3. In the experiments on both datasets, in order
to classify a video, we considered a majority of votes scheme
of the faces in its frames. Frames with no face detected by the



MTCNN architecture were discarded.
Unlike the experiment with the NUAA dataset, in the

experiments with the Replay-Attack and CASIA datasets,
we considered the original architecture of lsCNN given the
larger facial images obtained. After cropping the faces of all
frames of all training videos, an augmentation process on both
datasets was performed. In each of them, initially and for
each facial image, we generated two new versions of it by
increasing or decreasing the values of the R, G, and B channels
by 50. This was done in order to force the network to not
rely on brightness for spoofing detection (we did not apply
techniques for attenuating the shadows on the faces since they
are important to distinguish real faces from 2D fake faces).

For each of the three versions of each original training
facial image, we also applied noise or blur transformations
in three levels each (with low magnitudes to not affect the
images much), in order to make the neural network also learn
smoother features and not rely much on noise. Again we used
the MATLAB toolbox for applying blur and Gaussian noise
to the images. The blur operation was applied in three levels
(using a 2× 2 Gaussian filter with standard deviations of 0.1,
0.5 and 1.0), as well as the Gaussian noise (with standard de-
viations of 0.0005, 0.00075 and 0.001). Such transformations
were applied isolatedly, so we obtained, for each of the three
initial images from a given face, 6 representations of it. In this
sense we augmented our dataset 19 times (original images and
3× 6 = 18 transformed images).

For the Replay-Attack dataset we obtained 1, 766, 031 trai-
ning facial images, and for the CASIA dataset, 852, 568 ima-
ges. Again, we initialized all weights of the smaller PacthNets
based on random values from a zero-mean normal distribution
(standard deviation of 0.0001) and normalized each channel of
the input facial images by subtracting the mean value of it and
diving all the image values by 128 (before splitting them), in
order to ensure that most of them would belong to the interval
[−1; 1]. The biases of the neurons were all zero-initialized. As
optimizer, we also used the Adam [42] method in both cases,
with the same following parameters: 64 training images per
batch, base learning rate of 0.0001, first momentum of 0.9 and
second momentum of 0.999.

In both experiments, we trained the 9 smaller PatchNets
for 5, 000 iterations on the facial patches using the Caffe
framework [43] and initialized the whole lsCNN model. Then
we fine-tuned it over 100, 000 iterations. For the Replay-
Attack dataset, the best model was obtained (considering
results on the validation set of videos) on iteration 53, 600. For
the CNN with the same architecture, traditionally initialized
with random values extracted from a normal distribution with
zero-mean and standard deviation of 0.0001 (biases also zero-
initialized) and trained on the whole faces, the best model was
obtained only on iteration 74, 200 (much later). The results
of the proposed approach and of state-of-the-art methods
are presented in Tab. III. For simplicity, we denoted the
traditionally trained CNN with the same architecture of lsCNN
as “lsCNN Traditionally Trained”.

As one can observe, besides obtaining the best EER, lsCNN

TABLE III
RESULTS ON REPLAY-ATTACK [8] DATASET: EQUAL ERROR RATE (EER)
ON THE VALIDATION DATASET AND HALF-TOTAL ERROR RATE (HTER)

ON THE TEST SET. BEST VALUES ARE HIGHLIGHTED.

Method EER HTER
Efficient Fine-Tuned VGG-Face [33] — 16.62

Patch Based Handcrafted Approach [7] — 5.0
Whole Fine-Tuned VGG-Face [34] — 1.20

Fine-Tuned VGG Face [12] 8.40 4.30
Li et al. [12] 2.90 6.10

Random Patches Based CNN [13] 2.50 1.25
Boulkenafet et al. [45] 0.40 2.90

lsCNN Traditionally Trained 0.33 1.75
lsCNN 0.33 2.50

presented a great HTER, much better than expensive methods,
such as [34], which work with extremely complex and large
CNNs, such as VGG-Face [24]. Despite obtaining a worse
HTER result than the traditionally trained neural network,
lsCNN obtained the presented results much faster (in a much
earlier iteration of the training), as mentioned.

Regarding the CASIA experiment, the best model for
lsCNN was obtained on iteration 9, 800, while the best model
for the traditionally trained CNN was obtained on iteration
80, 900. In order to compare the performances of such methods
with state-of-the-art approaches, we measured the EER, since
this dataset presents a predefined test dataset. Tab. IV shows
the results.

TABLE IV
RESULTS IN THE CASIA [16] DATASET OF THE PROPOSED NETWORK
ARCHITECTURE (LSCNN) AND OTHER STATE-OF-THE-ART METHODS.

THE BEST VALUES ARE HIGHLIGHTED.

Method EER
Fine-tuned VGG-Face [12] 5.20

LSTM-CNN [14] 5.17
Yang et al. [15] 4.92

Patch Based Handcrafted Approach [7] 4.65
Li et al. [12] 4.50

Random Patches Based CNN [13] 4.44
lsCNN Traditionally Trained 4.44

lsCNN 4.44

As one can observe, lsCNN obtained the best EER on
the CASIA dataset, as well as the traditionally trained CNN
and the work of [13], better than approaches that require
complex and expensive architectures. Besides, when compared
with the traditionally trained CNN, lsCNN training was much
faster (lsCNN obtained its best performance on iteration 9, 800
against iteration 80, 900 for the lsCNN architecture traditio-
nally trained).

V. CONCLUSION

Face spoofing detection is a critical task nowadays, given
the widespread usage of face recognition systems and the de-
velopment by criminals of attack techniques to simulate faces
of legal users. Traditional face recognition systems can be
easily circumvented with common printed facial photographs,
available, nowadays, in social medias and networks.



Despite the fact that face detection and recognition methods
take into account the different regions of human face for such
tasks, to the best of our knowledge, no technique used deep
local spoofing cues for attack detection so far, as we propose.
Experimental results show a high increase in the performance
of the proposed CNN architecture, lsCNN, when initialized
based on a local pre-training step (on the main facial regions).
The lsCNN obtained state-of-the-art results on the evaluated
datasets with a quite compact model, also being much more
efficient than benchmark CNNs, such as VGG-Face, which is
highly used for attack detection through transfer learning.

The proposed training approach can also be applied for
training other CNN models, including larger architectures, in
order to improve their performances in spoofing detection as
well as their efficiency during learning even more.
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