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Abstract—Machine vision performs an important role in
many applications, including robotics. Combined with classical
instrumentation, welding robots can use a camera to perceive
the scene and take a decision. A camera attached to the robot
body and machine vision system work as the eyes of the robot
during the welding process. However, image-based systems are
susceptible to the interference of fumes, sparks, dust, and artifacts
generated as a side effect of the welding process. Fume can
adhere to the lenses and degrades the image, introducing a
negative impact on the processing pipeline. This paper proposes
a novel image fusion based algorithm that minimizes the effects
caused by the fume adhered to the camera lens. Results show the
proposed method is able to enhance the overall image quality,
outperforming classical alternatives for similar problems.

I. INTRODUCTION

Automated welding robots have become commonplace in
modern manufacturing since the arc welding process produces
non-ionizing radiation, sparks, and fume that makes the envi-
ronment hazardous and unhealthy. Normally, there is a camera
next to these robots which is responsible to perceive the robot’s
surrounding and enable it to take decision [1].

The camera is usually positioned near to the welding torch
[2]–[4] being susceptible to the effects of welding waste. Since
camera lenses are expensive and they can easily damage, lenses
are protected by disposable glasses. However, the welding
process can last hours to complete and the change of the
glasses cannot be done anytime because it needs to be manu-
ally done. Furthermore, welding flow needs to be interrupted
to be possible the change of the glasses. This interruption can
damage the welding quality, thus the operator is only able
to replace the disposable glass after the end of the welding
process [5].

The adhered waste in the glass causes distortion in the
captured image. Thus, an effective method to improve the
image is mandatory for this task. Fig. 1 shows an example of a
welding robot and illustrates the proximity between the camera
and the welding torch. This example shows a Bug-O Matic
Weaver - a remotely operated robotic system manufactured by
the Bug-O Systems.

Image degradation due to welding depends on factors such
as focal distance, camera aperture, environmental lightning,
and others. Welding produces bright light, spatter welding,
sparks, and fume that distort the captured light by the camera
sensor [6]. In our experimental evaluation, we found fume
is the most important degradation factor since we can deal
with the sparks using specialized hardware, as an industrial

vacuum cleaner, and the bright light can be minimized using
an appropriate camera aperture. Fig. 1) shows an industrial
vacuum cleaner system attached to the welding torch. Beside
the already expressed annotations in the image, a vacuum
cleaner is attached with the welding torch and disposable
glasses are in front of the camera lenses, inside the metallic
cylinder. In this work, we focus on welding fume adhered to
the disposable glass or to camera lenses. Adhered fume reduces
contrast, brightness and distorts the image color [7].

Although the occurrence of spatters is frequent during the
welding process, an empirical evaluation has shown spatter
has a minor impact in terms of image content and can
be significantly reduced with proper mechanical shielding.
Spatters adherents to the lenses affect just regions of the
image where they protrude in the lenses. Even though spatters
generate some distortion in the image, this problem is not as
impactful as fume. Spatters do not distort the entire image and,
comparatively with fume, produce effects almost invisible to
human eye. A comparison between the implications of each
phenomenon is shown in Fig. 2. Image affected by welding
spatter is similar to the image acquired using a clean disposable
glass. However, fume adhered to the glass corrupts the image
quality.

Bug-O Matic Weaver
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Fig. 1. An example of a welding robot and its specific parts. The proximity
between the camera and the welding torch is common in vision-based system
such as Bug-O Matic system presented in the figure.

Once images captured by the camera are distorted, image
processing algorithms can misunderstand the scene in which
the welding robot is acting in and then may take a wrong



(a) (b) (c)
Fig. 2. Example of images captured using disposable glasses affected by welding spatter and fume in front of the camera lens: (a) clean disposable glass, (b)
disposable glass affected by welding spatter, (c) disposable glass affected by fume. Captured images are presented in the top while images of each disposable
glass are presented in the bottom. The images were captured during an off-line experiment.

decision making to the welding process. Fume simultaneously
with welding spatters cause sharpness loss, loss of contrast,
color shifting and visual anomalies that insert fake elements in
the image. Previously cited effects affect directly the systems
based on computer vision. Furthermore, they represent a chal-
lenge for the effective application in the real world. Assuming
fume causes most of these effects and occurs approximately
homogeneous in the lenses, previous works [8]–[11] does not
deal properly with all of these issues.

This work is focused on restore image affected by welding
fume adhered to camera lenses (or disposable glasses). Spatter,
as seen before, is not hazardous to the computer vision
algorithms. Smoke problem is not covered in this work as
the robot system, once the camera does not look directly to
the welding torch, but a step in front of it, making possible
it’s decision making before welding. Welding fume occurs
independently of smoke occurrence. Welding fume is in the air
of the shop floor and any welding process is prone to generate
it. Thus, with or without smoke and spatter, welding fume is,
in fact, a problem in automatic robotic welding and our goal
is to recover the image as close as possible to the real scene.

Contributions: Our work aims to suppress undesired im-
age artifacts generated when welding fume adheres to the
camera lenses. The main contribution is an algorithm based
on Image Fusion that restores the original information of the
scene. This algorithm stands on the use of several image
processing methods and selects the best of these methods to
restore the image. The proposed method is compared with
other image processing methods and quantified through image
quality assessment methods such as MSSIM [12], FSIMc
[13], and PSNR [14]. Another contribution is a welding
fume dataset, which presents the ground truth for each image
affected by welding fume.

II. RELATED WORK

We did not find any work trying to solve or minimize the
fume adhered to the camera lens according to the best of our
knowledge. Therefore, we take into consideration papers which
approach similar problems. In [9], [10], [15], authors proposed
methods to remove dust particles in the camera lenses. In

all three cases, authors try to create a model to find dust
related artifacts, i.e. projections of the dirt adherent to the
camera lenses in the image plane. Dust and welding fume
present similarities, however, its shape and the way to adhere
the camera lens is distinct. The previous work assumes dust
adheres in a certain location in the lenses whereas the welding
fume presents a homogeneous behavior. This difference results
in a distinct way to recover the information: dust need to
be identified, removed and its neighborhood utilized for the
reconstruction of the image. Nonetheless, fume affects the
image in an approximately homogeneous way. Furthermore,
dust can block the light to travel through while the fume
usually is translucent.

In [8], [16]–[18], authors present methods to deal with thin
occluders, object and fence removal, which perceive patterns
and minimize the effects caused by the present occluder. The
main difference between these occluders and welding fume
is fume spreads directly in camera lenses, preventing light
from the scene propagates in the sensor. However, occluders
are generally objects which have not adhered to the lenses
but are obstructing the scene somehow. Occluders are usually
detected by changing some parameters of the camera and take
multiple images of the same or complementary scene. This
method is impossible to be adopted here since the restoration
needs to happen during to welding process. Thus, parameters
of the camera can not be changed, images are usually taken
sequentially and it is required real-time performance. These
facts limit the applicability of these works on thin occluders.

Others works propose methods to the problem of raindrops
adherent to camera lenses or a close surface [11], [19]–
[21]. They recognize raindrop by optical flow (in a video)
and its shape or intensity change in the image, for example.
After recognizing raindrops, these methods can restore the
content whether some information inside it can be used, or
use interpolation technique to fill out the missing data [22].
Raindrop approach differs from welding fume problem in
terms of behavior. Raindrops influence a region of the image
and allow the light to pass through the sensor, although
generates a blur effect. The method uses the movement of
the raindrop in several images, which in welding fume, as
previously expressed, is not viable.



Image fusion is a technique that combines various image
processing methods with the intent to return a better image
than the source one. This method shows impressive results,
mainly when the scene is being corrupted in a homogeneous
way. Furthermore, image fusion techniques have been adopted
to restore images affected by participating media. In [23],
the image fusion based method deals with the problem of
underwater images. Water interferes in the captured image
causing loss of color and contrast. Authors also adopted image
fusion to deal with haze [24] and decolorized images [25]. As
we can see, image fusion is a general tool that can be adapted
to improve the image affected by welding fume.

III. IMAGE FUSION

Once welding fume adhered to the camera lenses causes an
effect of blurring and color losing, we noticed a single classical
image processing method would not minimize all effects
caused by the fume. Therefore, image fusion is a prominent
technique for the restoration problem. This method allows
us to use several image processing methods and generates
a better output than using each method individually. Image
fusion is based on mixing image processing filters, called input
images, and their respective weight maps. Therefore, image
fusion stands on a source image affected by welding fume and
fuses the results of various image processing filters and their
respective weight maps to obtain the final result.

Weights maps select the best of each input pixel to compose
the final result, working as a filter. Besides that, weight maps
are normalized from 0 to 1 for each input image in order to
ensure that the sum of each pixel (x, y) for all weight maps is
equal to one. Thus, normalization keeps each pixel value of the
resulting image within the color representation. On the other
hand, inputs combine classical image processing techniques
that, in theory, recover the image from the effects generated
by the fume. In our case, the effects are mainly color loss
and high-frequency details. Equation (1) is a pixel to pixel
multiplication and represents the naive version of the image
fusion, using just the original scale of image [26].

RN (x, y) =

K∑
k=1

Ik(x, y)Wk(x, y), (1)

where K is the number of input images, RN represents
the result obtained by the naive fusion, Ik is the input image
with index k and Wk is the weight map associated to the
input image with the same index. However, a multi-scale
approach is assumed by obtaining a final result more realistic
and more detailed than naive approach. This approach intends
to obtain results that minimize the effects of the fume making
the image more suitable to be processed by computer vision
algorithms, e.g. [1], [27]. The scales are based in the Gaussian
Pyramid where both inputs and weight maps are downsampled.
Fusion is computed and the result is upsampled to the original
size (of the source image). Upsampling to original size is a
fundamental procedure since the model induces a sum of all
images in all calculated scales, which is only possible if all
images have the same size. Equation (2) shows the operation
performed by the fusion algorithm.

RMS(x, y) =

lmax∑
l=1

K∑
k=1

L{Ik(x, y)}G{Wk(x, y)}, (2)

where RMS corresponds to the result generated by the al-
gorithm with a multi-scale approach. G{Wk(x, y)} is the
Gaussian Pyramid of weight maps and L{Ik(x, y)} is the
Laplacian Pyramid of input images. The term l represents the
levels of the Gaussian Pyramid and lmax is the maximum level
of the Pyramid. The term Ik is the input image with index k
and Wk is its respective normalized weight map of the input
image. K represents the number of input images. We illustrate
the set of operations done by the fusion algorithm in Fig. 3. It
is important to highlight that the source image is not the same
as input image of the method [23]. Input images are estimated
based on image processing techniques as detailed in the next
section and source image is the one affected by welding fume.

A. Input images

Once it is known which degradation welding fume pro-
duces in the image, inputs of the image fusion algorithm can
be estimated to minimize these effects. We notice the most
important effects caused by welding fume in an image are lose
of color and blur. We adopted two input images to supply these
needs: white balance and contrast enhancement. White balance
intents to help in correcting the color lost by the incidence of
fume and contrast enhancement is adopted to enhance high
frequencies of the image.

The first input image is achieved using white balance.
We adopted the Grey-World algorithm [28], which tends to
equalize the three color channels in the RGB color space in
order to make a redistribution of pixel values. This equalization
restores colors, which are generally lost in the images affected
by welding fume adhered to the lens or disposable glass.

The second input image is named contrast enhancement.
The idea is to expand the general contrast of the image affected
by fume. This input image also relies on the Grey-World
assumption to correct colors as the first one. However, we
also apply a Local Adaptive Histogram Equalization (CLAHE)
[29] to obtain a uniform distribution of pixels between repre-
sentation values. Histogram Equalization generates an effect
of contrast enhancement in an effective way.

B. Weight Maps

Weight maps are grayscale images based on the source
image whose the main function is selecting the best of each
inputs to compose the final image. These maps are not based
on a learning technique. They are application-driven images
to define the importance of each pixel of the input images.
In other terms, weight maps filter and generate a value from
[0; 1] for each pixel with the intent to weight higher values to
the most important pixels, influencing the resulting image.

Weight maps select which region of the image must receive
more attention to compose the final image. Generated weight
maps are normalized among them, creating just one weight
map for each input image. The normalization of the weight
maps follows the Equation (3). The intention with normal-
ization is based on avoiding that any pixel exceeds the color



Source image
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Fig. 3. The proposed image fusion pipeline using a sample image. The first column shows the source image affected by the fume. The second column shows
the called input images, where the top image is the white-balanced image and the bottom image is the contrast enhancement. The third column shows the
corresponding normalized weight maps for each input. The fourth column shows the partial results obtained by the dot product of the inputs and normalized
weight maps. Finally, the last two columns show respectively the result of proposed fusion scheme and the ground truth of the source image (acquired with a
glass with no fume incidence in front of the camera lens).

representation maximum value in the output image, then the
sum of all weight maps must be equals one.

Wk =

N∑
n=1

On∑T
t=1At

, (3)

where Wk is the normalized weight map to the input image
with index k, N is the number of weight maps for only one
input image and T is the total number of weight maps for all
input images. A represents the sum of all weight maps for all
input images and O expresses the sum of all weight maps for
one specific input image (with the k-th index).

In this work, we use two different weight maps. The first
is called local contrast weight map. We adopt this weight
map because of its capacity of keeping contrast in small
regions of the image. This map is fundamental to the contrast
enhancement input image, once it keeps regions where the
input image filter effectively acted. Equation (4) shows the
local contrast weight estimation:

WLC = ||Ik − Ikωhc||, (4)

where Ik is the luminance of the input image with index k
and Ikωhc indicates the smoothed version of the luminance of
the same image. We adopted a Gaussian Filter with kernel size
5× 5 to obtain the smoothed image.

Second weight map is called exposition weight map [30].
This map evaluates the exposition of each pixel, indicating
which pixels present greater relevance for each input image.
This weight map intermediates the preservation of local con-
trast weight map keeping a constant appearance. Equation (5)
represents this weight map:

WE = e

(
− (Ik(x,y)−0.5)2

2σ2

)
, (5)

where Ik(x, y) is the pixel in the (x, y) position of the input
image in the k-th index, 0.5 is the most usual value to a
normalized pixel be well exposed. σ represents the standard
deviation and e is the exponential factor. Briefly, exposition
weight map provides higher values to pixels next to extreme

values, i.e. 0 and 1. Furthermore, intermediaries values are
penalized.

IV. RESULTS AND DISCUSSION

The experimental evaluation of the results obtained is
achieved using three image quality measures: Multiscale Struc-
tural Similarity index (MSSIM) [12], Feature Similarity index
(FSIM) [13] and Peak Signal-to-Noise Ratio (PSNR) [14].
MSSIM is a multi-scale version of the full-reference metric
SSIM [31] which utilizes a reference image (ground truth)
to compare the similarity with the obtained result based on
average and variance of the pixels. MSSIM provides a quan-
titative metric using a decimal value between -1 and 1. This
metric compares similarity in the structures of both images
and evaluates how close they are, once higher values in the
metric, closer the images are. The second adopted metric is
called FSIM [13]. FSIM also evaluates the method in com-
parison with the ground truth, but it uses other characteristics
from the image based on the human perception. Similarly to
MSSIM metric, higher values in FSIM indicates ground truth
is close to the evaluated method. In this work, we adopted the
FSIMc version [13] which is capable to identify the similarity
considering all three channels of color.

PSNR is a metric which measures the ratio between the
signal of an image and its respective noise. This metric is
fundamental to prove the proposed method does not generate
as much noise as the classical image processing methods.
PSNR generates a value according to the details of the image,
which higher the value, better the signal-to-noise ratio.

We compared our method against classical image process-
ing methods that can deal with the problem generated by
welding fume. Algorithms evaluated are Global Histogram
Equalization and Local Adaptive Histogram Equalization [29],
this last one using its amplitude as 5. Besides that, we created
an welding fume dataset with 42 images, of which 21
are affected by welding fume and 21 correspond to their
respectively ground truths. We used three disposable glasses
with different levels of adhered welding fume to make sure
the evaluation is fair enough, as shown in Fig. 6. Ground truth
images were captured using the glass presented in Fig. 6-(a)



Sample 1 Sample 2 Sample 3

(a)

(b)

(c)

(d)

(e)

Fig. 4. Qualitative results between three different sample images affected by welding. The first column represents Sample 1, second column represents Sample
2 and third column represents Sample 3. In each row: (a) image affected by welding fume, (b) its corresponding ground truth (i.e. new disposable glass in front
of the lens), (c) proposed method, (d) CLAHE, (e) Global Histogram Equalization. In (a), the red squared area shows the highlighted region of the image shown
in Fig. 5.

and the other three glasses were utilized to capture images
affected by welding fume. These glasses were obtained in
welding process using a real robot. No images are altered or
generated artificially in this dataset. The welding fume dataset
is publicly available at http://paulo.c3.furg.br.

Table IV shows the quantitative results on our welding
fume dataset. Table IV express the results with the mean values
and their respective standard deviation. Assuming MSSIM
metric, the proposed method obtained higher values than the
other compared methods for all images of the dataset, present-
ing a higher average value between the methods. The main
explanation for this difference between the proposed method

and classic methods is other methods are not able to correct the
chromatic of the image. However, the redistribution of pixel
values sometimes generates the visual perception sensation of
correction of the image colors. Fig. 4 visually illustrates the
results presented by the three methods in three sample images.

The proposed method was not the best method in only
two cases assuming FSIMc metric. Furthermore, the difference
between the three methods was not as high as in the MSSIM
metric in most of the cases. The preference by saturated
images is a typical behavior of the human perception that
is not reasonable for computer vision algorithms [24] and
FSIMc evaluates characteristics visually plausible to the human



(a) (b) (c) (d) (e)

Fig. 5. Zooming in a small area of the Sample 1 image shown in Fig. 4-(a) highlighted by a red square. Besides Fig. 4-(a), we zoom all other images of Sample
1 in the same region. These images aim to highlight the noise caused by the classical methods and the proposed one, and though a comparison between all
methods with the ground truth and source image. From left to right: (a) Image affected by welding fume, (b) Ground truth, (c) Proposed method, (d) CLAHE,
(e) Global Histogram Equalization.

(a) (b)

(c) (d)
Fig. 6. Disposable glasses obtained in welding tests. They are adopted to
create the welding fume dataset. Figure (a) presents the glass utilized to
generate the ground truth images. Figures (b), (c) and (d) show the three
glasses affected by welding fume utilized to create the welding fume dataset.

perception. Although the proposed method did not obtain
higher values in all images for this metric, it presents a
larger average with limited standard deviation. Fig. 4 visually
illustrates the results presented by the methods and Fig. 5
presents a zooming in a small region of the images shown
in Fig. 4. The region is highlighted by a red squared area in
Fig. 4-(a).

Results in Table IV show the proposed method obtains the
largest mean against the other methods. Histogram Equaliza-
tion obtains low intensity comparing to the other methods as
expected. Histogram Equalization due to the global approach
brings a lot of high frequencies to the image and level up
pixels which are not important. Local Histogram Equalization
achieves better results compared to its global approach. This
is justified by its own characteristic: it acts in locally, in
small areas, presenting higher frequencies to the image and
generating a lot less noise. As already introduced, the proposed
method gathers better results and this is explained by the fusion

of techniques. The combination of several image processing
filters and the application of Gaussian Pyramids induce to a
noiseless image without losing edges.

Presented results evaluate the proposed method in com-
parison to image processing techniques. Usual image process-
ing techniques do not have the capacity to improve all lost
characteristics by fume. MSSIM and FSIMc proved that, in
comparison to the ground truth, the proposed method presents
better results than others in terms of structure, color, and
human perception. PSNR shows the proposed method does not
increase noise in contrast with classical methods. This aspect is
fundamental to computer vision algorithms once noisy images
are generally difficult to recognize patterns and identify lines.
Thus, noisy images can easily trick computer vision algorithm
that misunderstand the observed scene.

TABLE I. RESULTS OF THE METRICS MSSIM, FSIMC AND PSNR.
THE RESULTS ARE EXPRESSED AS: (MEAN, STANDARD DEVIATION). THE

BEST RESULTS ARE HIGHLIGHTED USING BOLD LETTERS.

Method/metric MSSIM FSIMc PSNR
Proposed method (0.7956, 0.0714) (0.9607, 0.0171) (24.2057, 3.2572)

CLAHE (0.5103, 0.0323) (0.9234, 0.0587) (21.3854, 1,8937)
Histogram Equal. (0.2895, 0.0684) (0.7482, 0.05154) (9.4481, 0.8277)

V. CONCLUSION

This work proposes a method for the problem of images
affected by fume during an automated welding process. The
proposed method obtains higher values in the evaluated met-
rics: MSSIM, FSIMc, and PSNR. These metrics are image
quality analysis metrics that evaluate in distinct ways how
close the resulting image of a method is from the ground
truth, and the ratio between signal and noise in the images. To
the best of our knowledge, this work is the first to approach
this problem which is frequent in automated welding robots.
Once the welding process can spend more than an hour, fume
increases and the process should not stop to the camera lenses
or the disposable glasses be changed or cleaned.

Future work will be focused on the use of learning-based
approaches such as Convolutional Neural Networks to improve
the image quality. Furthermore, we also plan to expand our
dataset to cover a larger number of conditions including several
illuminations, camera resolution, and fumes level. This larger
dataset is crucial to train Convolutional Neural Networks too.



Besides welding fume, future work will apply the same method
here present to other applications and fields.
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