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Abstract—Gender recognition can be used in many applica-
tions, such as video surveillance, human-computer interaction
and customized advertisement. Current state-of-the-art gender
recognition methods are detector-dependent or region-dependent,
focusing mostly on facial features (a face detector is typically
required). These limitations do not allow an end-to-end training
pipeline, and many features used in the detection phase must be
re-learned in the classification step. Furthermore, the use of facial
features limits the application of such methods in the wild, where
the face might not be present. This paper presents a real-time
end-to-end gender detector based on deep neural networks. The
proposed method detects and recognizes the gender of persons
in the wild, meaning in images with a high variability in pose,
illumination an occlusions. To train and evaluate the results a
new annotation set of Pascal VOC 2007 and CelebA were created.
Our experimental results indicate that combining both datasets
during training can increase the mAp of our gender detector.
We also visually analyze which parts leads our network to make
mistakes and the bias introduced by the training data.

I. INTRODUCTION

Object detection methods presented a significant increment
in accuracy and velocity in recent years [1], [2]. These gains
are mostly related to: (i) the availability of larger datasets;
(ii) the parallelism allowed by the usage of GPUs; and (iii)
the use of deep architectures such as Convolutional Neural
Networks (CNNs) [3]. Object detectors are build to deal with a
set of different classes of objects. However, in many computer
vision applications (i.e., pedestrian counting, fruit selection,
car license plate localization) there is no need to detect a large
number of classes. Other applications need to deal with intra-
class fine granularity detection, for example, to detect different
car models, determine the breed of a cow or a person gender.

Gender information is a relevant feature in many com-
puter vision applications such as video surveillance, human-
computer interaction, statistics about consumer preferences,
and gender oriented advertisement. Most gender detection
methods in the literature are based exclusively in facial cues,
since the human face is a good source of discriminative
gender features. As an example, the approach presented in [4]
achieves 94% of accuracy using facial features in the LFWA
dataset [5].

Despite the high accuracy obtained by recent facial-based
gender recognition approaches, they tend to fail when the
face presents low resolution, is partially occluded or not event

Fig. 1. Example of gender detection in the wild using the proposed method.
The bounding box color indicates the gender, along with the confidence value
of the winner class (i.e the class with the highest confidence).

present in the image. Nowadays, millions of images acquired
in a wide variety of situations and scenarios are daily uploaded
into social media networks by its users, which are acquired
in a wide variation of the person pose, body/face occlusions,
deformations and illumination changes. As a motivational
example, a company that desires to crawl images from social
media to evaluate the gender of people that appear associated
with the company logo would encounter several challenges
if using a face-based method, as illustrated in Figure 1. In
this case, face-based methods will only recognize the male
on the left, failing to detect/recognize the two other people in
the scene. As in other computer vision problems, we refer to
gender detection with less constraints as gender detection in
the wild.

There are also a few methods that explore other features
present in the human body in the context of gender recognition.
This class of methods explores images of pedestrians, which
usually are in low resolution and in common poses such as
walking or standing. These limitations lead to low accuracy
(for example, Tian et al. [6] report a Log-average miss rate of
30.70% in the PETA dataset [7]).



Another limitation of most existing methods is that they
are detector-dependent [3], [6], [8], [9] or region-proposal-
dependent [4]. In other words, these methods rely on external
modules, leading to a complex training pipeline. Furthermore,
this dependency does not allow the sharing of features between
detection and recognition, turning the whole process slower
and not getting advantage of an end-to-end training process.

Although CNN-based models have presented unprecedented
results in the last years, understanding and explaining which
regions of a given image guides a CNN to its result is crucial,
mainly in cases of classification/detection mistakes [10]. Such
localized analysis can help us understand why a network
succeeds, misses or explores contextual information.

In this paper we propose a novel end-to-end real-time
gender detection/recognition method in the wild using Re-
gional Convolutional Neural Networks. As (to best of our
knowledge) there are no available annotated datasets to this
new task, an additional contribution is a new set of gender-
related annotations to the Pascal VOC 2007 [11] and CelebA
datasets [12]1. We also evaluate the effect of using different
proportions of each dataset during the training process and
compare our detector with other gender recognition methods.
Finally, we present a visual analysis of the regions that
contribute to successes/misses and the developed biases of the
proposed gender detector method.

The remainder of this paper is organized as follows. Sec-
tion II revises some related gender recognition approaches,
datasets, and activation visualization methods. Section III
describes the proposed gender detection method in detail.
Section V presents the experimental results and discussions.
Section VI provides the conclusions.

II. RELATED WORK

Before describing the proposed method, we briefly review
related methods and datasets for gender recognition, focusing
on CNN-based methods. Previous CNN methods use one or
more combination of features such as LBP, SURF, HOG or
SIFT [4], and a detailed survey of gender recognition methods
can be found in [13], [14]. We also review methods for visu-
alizing neuronal activation, which is useful for understanding
the results of a given CNN model in an image.

A. Gender Recognition

We separated the reviewed methods into two classes: (i)
methods based only in facial features; and (ii) methods based
on body features.

Face Based. This class of methods focuses only on facial
features for gender classification. Although the face indeed
presents relevant gender-related features, it is frequently oc-
cluded or not present in the context of images in the wild.
Some existing methods also extract other facial attributes such
as age and pose in conjunct with gender [3], [4].

In [3] a CNN-based method is proposed to classify gender
and age, presenting only three convolution layers and using

1The annotation data and source code are publicly available at http://www.
inf.ufrgs.br/∼crjung/gender sib2018

ReLU as the activation function. Dropout is used when training
the model to avoid overfitting, and evaluation is performed
using the Adience benchmarks dataset [15], which contains
images in extreme blur, facial occlusions, pose variations and
different facial expressions. The method relies on an external
face detector to work, not allowing end-to-end training and
sharing the features between detection and classification. In [8]
a similar detector-dependent approach is proposed. A pre-
trained CNN is fine-tuned using dropout to extract features
from face images, and the feature vector is used as input to an
SVM classifier that determines the gender class. This approach
creates a complex training pipeline because the CNN and the
SVM present distinct training pipelines. Therefore, the method
is not able to optimize the feature extraction and the classifier
together. The evaluation is done using the Adience dataset
and also the FERET [16] dataset, which is smaller and less
challenging.

Joint face detection and gender classification reduces com-
putational cost and allows jointly training/fine-tuning for both
tasks. Ranjan and colleagues [4] proposed an architecture
that performs face detection and gender classification using
CNNs, also estimating facial landmark points and pose. The
authors indicate that learning different tasks in conjunction
improve results of specific tasks. The Alexnet architecture [17]
is used as the basis, and a set of extra convolution layers are
connected into the network architecture. These convolution
layers feed an intermediary general feature fully-connected
layer, which is used as input to a set of different groups
of fully-connected layers, each one specialized to detect a
different attribute in a detected face. The detection process is
similar to R-CNN [18], where region proposals are generated
using Selective Search [19], and each region is independently
classified by the network. However, feeding each region into
the network is very expensive, turning the detection process
slow [20]. The method uses the Annotated Facial Landmarks
in the Wild (AFLW) dataset [21], which contains ∼25k faces
in real-world images with pose, expression, ethnicity, age and
gender variations.

Body Based. Recognizing gender using body features is a
more complex task, as the body can present different configu-
rations, occlusions, deformations and pose variations. Further-
more, males and females can be distinguished more easily
using facial than body information. The reviewed methods
detect features in the context of pedestrian detection. In [6], a
pedestrian detector based on CNNs is proposed. The method
jointly optimizes pedestrian detection with auxiliary semantic
tasks, including pedestrian attributes (e.g. ‘backpack’, ‘gen-
der’, and ‘views’) and scene attributes (e.g. ‘vehicle’, ‘tree’,
and ‘vertical’). The proposed network presents an architecture
similar to AlexNet, with the addition of fully-connected layers
at the end, each one specialized in one kind of attribute. The
network was trained an evaluated in Caltech [7] dataset, which
contains a total of 350,000 bounding boxes annotated with
2,300 unique pedestrians.

In [9], a Joint Recurrent Learning model is formulated
for exploring attribute context and correlation to improve at-

http://www.inf.ufrgs.br/~crjung/gender_sib2018
http://www.inf.ufrgs.br/~crjung/gender_sib2018


tribute recognition. The model uses Long-Short Term memory
(LSTM) to learn jointly pedestrian attribute correlations in a
pedestrian image, and in particular their sequential ordering
dependencies. The key idea of the method is to encode
sequentially localized person spatial contexts, and to propa-
gate inter-region contextual information. The method uses the
PETA dataset [22], which contains 19,000 images of 8,705
pedestrians annotated with different attributes.

B. Interpreting a learned CNN

With the remarkable results achieved by CNN-based meth-
ods in last years, some researchers directed attention to de-
velop techniques that help to understand and try to explain the
behavior of CNNs. Some methods aim to visualize the features
and kernels learned by CNNs, as well as which regions in the
image were “activated”.

In [23], a deconvolution approach that uses guided Back-
propagation was proposed. Zeiler and Fergus [24] proposed
modifications into gradients that lead to improvements in the
qualitative results. Even if these methods produce fine-grained
visualizations, the results are not class-discriminative and the
visualizations of different classes are nearly identical [10].

Other methods generate images that maximize the activa-
tions of a network unit [25] or invert a latent representa-
tion [26]. Although these methods synthesize high-resolution
images with class-discriminative, they visualize a model glob-
ally and not specific instances of image predictions.

In contrast, methods based on gradient-weighted class acti-
vation mapping (Grad-CAM) use the gradients of any target
concept flowing the final convolutional layer to produce a
coarse localization map that highlights the importance of re-
gions of a given image to the result. Zhou and colleagues [27]
modified the CNN architecture by replacing fully-connected
layers with convolutional layers and global average pool-
ing. In [28], a similar method using global max pooling
is investigated, while log-sum-exp pooling is explored in
[29]. Recently, Selvaraju et al. [10] combine Grad-CAM with
existing fine-grained visualizations to create a high-resolution
class-discriminative visualization.

Although Grad-CAM methods can create a class-
discriminative visualization, it takes all instances of a given
class into account. This is a deficiency in the context of
object detection, where it is important to know why a specific
instance of the class was correctly detected and another not.
In this paper we adapt Grad-CAM to work with R-CNNs,
allowing the visualization of which pixels contributed more
effectively towards a specific detection.

III. REAL-TIME GENDER DETECTION IN THE WILD

In this work we present an approach for gender detection “in
the wild”, meaning that it expected to detect a man or woman
in a variety of poses, occlusions and illumination conditions.
We set the following goals for our method: (i) detect gender
directly in images without depending on external modules
(e.g., a person detector); (ii) work in real-time (24 FPS or

more); (iii) use any information available in the image that is
related to gender.

To our knowledge our work is the first to tackle gender
detection/recognition in this way. Our first difficulty was to
find a proper dataset with the needed characteristics for this
work. Some datasets provide the images already cropped
(i.e., only the face or the pedestrian is present) [7], [16],
[21], [22]. Other datasets provide only facial bounding box
annotated with gender [12], and in the case of the IMDB/Wiki
dataset [30], the face bound box and the gender annotation
are not reliable because the dataset was automatically crawled
from the Internet. A limitation of these datasets is that they
have only one instance annotated per image. Other popular
datasets [11], [31] provide labeling of all present information
of the class person in each image and contain more than one
instance per image, but unfortunately the gender data is not
provided with these datasets. To overpass the “data problem”
with a low work cost, we adapted two existing databases to this
problem. More precisely, we adapted the Pascal VOC2007 [11]
and CelebA [12] datasets. Next, we describe what and how we
adapted in each dataset.

Pascal VOC2007 adapted for gender detection. The
Pascal VOC2007 dataset [11] contains 20 classes of objects,
including people captured at different poses and occlusions.
Many images present more than one instance of persons,
and it is common to have intersections between bounding
boxes. To adapt this dataset, we first selected only images
and annotations containing persons. As the dataset already
presents the annotated bounding boxes, we just changed the
labels from person to man, woman or undefined. The
undefined label is assigned to people for which the human
annotator cannot estimate the gender. We also maintain the
original “difficult” flag to all annotations and all undefined
bounding boxes are also marked as “difficult”. The manual
labeling work was made by a single annotator, resulting in
4,192 (2,095 to train and 2,097 to test) annotated images
with 4,381 instances of men, 3,210 instances of women and
3,083 instances of persons with undefined gender. This new
annotation set presents a very challenging dataset because the
images usually contain a high variation in pose, occlusion,
intersections and multiple instances in one image. However, it
contains too few images, and we also adapt the CelebA dataset
to alleviate this limitation.

CelebA adapted for gender detection in the wild. The
CelebA dataset [12] contains images of celebrities annotated
with 40 attributes, including gender. The dataset contains one
annotated person per image, and only the face bounding box is
provided. To adapt this dataset to our task, we first run a person
detector [1] in all CelebA images. From these detections, we
selected the new ground truth bounding box, which is the
detected bounding box with the largest intersection with the
annotated face ground truth and the largest probability of being
a person. This automatic process leads to 202,517 (182,562
to train and 19,955 to test) annotated images with 84,380
instances of men and 118,137 instances of women.

The Chosen Network Architecture Our method is inspired
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Fig. 2. Proposed Instance class discriminative Grad-CAM for R-CNN. First, the image is fed into the network to get valid detections. For each detection,
we track it back to the anchor box that generates it with the corespondent x and y positions in the final layer. Then we use [10] with the respective x and y
for the respective layers from classes ’man’ and ’woman’ to create the activation maps.

by the recent advances in object detection [1], [2]. To avoid the
dependency of an external region proposal method, we use a
region proposal network (RPN) similar to the one proposed
in [32], which predicts offsets and confidences for anchor
boxes in the final layer of the network. Since the prediction
layer is convolutional, the RPN predicts these offsets at every
location in a feature map [1]. Our model architecture is
based on the YOLO v2 [1] architecture with 31 layers, as
illustrated in Table I. The anchors layer had the size reduced
to 19×19×35 to work only with two classes, similarly to other
works that customized YOLO for a two-class problem [33],
[34]. To avoid having similar bounding boxes with different
labels, we also used non-maxima suppression (NMS) as a post-
processing step. More precisely, if two detection results with
different labels present an intersection over union (IoU) larger
than a threshold TIoU (set to 0.4 experimentally), only the
class with the highest confidence is retrieved.

Transfer Learning and Data Augmentation. A common
practice in deep learning is to use “transfer learning” to avoid
overfitting and to accelerate the training process. Basically,
this technique initializes the new network with the weights of
a pre-trained network and performs fine-tuning using the target
dataset. We initialize the weights of layers 1 to 30 in our model
with a pre-trained version of Yolo V2 based on the Imagenet
and coco datasets, and the last two layers were initialized
with random values. We then fine-tune the weights of all
layers toward gender detection/recognition using the CelebA
and Pascal VOC datasets. We also used data augmentation and
batch normalization during the training process, which leads
to significant improvements in convergence while eliminating
the need for other forms of regularization like dropout [1].

TABLE I
GENDER DETECTION NETWORK: AN ADAPTATION OF THE YOLO

NETWORK TO 2 OBJECT CLASSES (MAN/WOMAN).

# Layer Filters Size Input Output
1 conv 32 3 x 3 / 1 608 x 608 x 3 608 x 608 x 32
2 max 2 x 2 / 2 608 x 608 x 32 304 x 304 x 32
3 conv 64 3 x 3 / 1 304 x 304 x 32 304 x 304 x 64
4 max 2 x 2 / 2 304 x 304 x 64 152 x 152 x 64
5 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
6 conv 64 1 x 1 / 1 152 x 152 x 128 152 x 152 x 64
7 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
8 max 2 x 2 / 2 152 x 152 x 128 76 x 76 x 128
9 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256

10 conv 128 1 x 1 / 1 76 x 76 x 256 76 x 76 x 128
11 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256
12 max 2 x 2 / 2 76 x 76 x 256 38 x 38 x 256
13 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
14 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
15 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
16 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
17 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
18 max 2 x 2 / 2 38 x 38 x 512 19 x 19 x 512
19 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x 1024
20 conv 512 1 x 1 / 1 19 x 19 x 1024 19 x 19 x 512
21 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x 1024
22 conv 512 1 x 1 / 1 19 x 19 x 1024 19 x 19 x 512
23 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x 1024
24 conv 1024 3 x 3 / 1 19 x 19 x 1024 19 x 19 x 1024
25 conv 1024 3 x 3 / 1 19 x 19 x 1024 19 x 19 x 1024
26 route 16
27 conv 64 1 x 1 / 1 38 x 38 x 512 38 x 38 x 64
28 reorg / 2 38 x 38 x 64 19 x 19 x 256
29 route 27 24
30 conv 1024 3 x 3 / 1 19 x 19 x 1280 19 x 19 x 1024
31 conv 35 1 x 1 / 1 19 x 19 x 1024 19 x 19 x 35
32 detection



Fig. 3. First row presents visual examples of successes and the second errors of the proposed method (Using the 50%+50% model and t = 0.1).

IV. INSTANCE CLASS DISCRIMINATIVE GRAD-CAM FOR
R-CNN

A CNN learns a hierarchy of patterns and concepts to repre-
sent the visual world using convolutional filters. These filters
extract features that retain spatial information, which is lost
in fully-connected layers. Following this hierarchical concept,
the last convolution layers (neurons) have the best compromise
between high-level semantics class-specific information and
detailed spatial information [10], [24], [26]. To understand
the importance of each of these neurons, Grad-CAM methods
operate in the gradient information from the fully-connected
layer in the direction of the last convolutional layer in the
CNN.

We adapted the method proposed by Selvaraju et al. [10]
to visualize the activations of detections produced by R-CNN
networks. Their work allows to visualize activated regions
that contributed to a specific class in a given image, but
the resultant activation map of a class reacts to all instances
present in the image. For object detection, this visualization
will not help much, as it does not explain which regions
contribute to the decision process for each detected object.

Our approach uses the final anchors feature map to create
the visualization of regions that contribute to each detection.
Each detection is tracked back to the corresponding anchor
box ϕdet and the spatial locations x, y ∈ {1, ..., 19} in the
feature map, which presents a spatial resolution of 19× 19 in
the detection layer.

Finally, we backpropagate the information from the point
(x, y) in anchor ϕdet and layer corresponding to either man
or woman (the detected class) along the network to produce
a Grad-CAM localization map for this detection. We used the
same Grad-CAM framework proposed in [10] to create the
activation maps. The pipeline of the proposed visualization
method is presented in Figure 2.

V. EXPERIMENTS

We evaluated our method by training different models
that “blend” different proportions of both datasets during the
training stage. In all our experiments we fine-tuned the models
with a learning rate of 10−5, a decay of 5 × 10−4 and
momentum of 0.9, using the default anchor boxes provided
by the YOLO V2 model.

Effect of using two distinct datasets in training. As our
two datasets have distinct characteristics (number of images,
number of instances, variety of poses and occlusions, presence
of mostly the face or the body, etc.), in this experiment we
evaluate the effect of combining images from both databases
(at different proportions) when training the model. To combine
the images of both datasets, our method randomly selects an
informed proportional amount of images from each dataset
during each training epoch. In particular, our goal was to
evaluate if the use of “easier” images (in the CelebA dataset)
could improve gender detection “in the wild” for harder
images present in the Pascal VOC dataset. Although a K-folds
validation scheme would be more adequate for evaluating the
randomness in the training/test sets and data augmentation,
we trained each model only once (for each combination of
datasets) due to the relatively high training times of deep
architectures.

Table II presents the mean Average Precision (mAP) of our
model applied to each dataset separately trained with different
proportions. As can be observed, the inclusion of CelebA
images (in the proportion of 50%) boosted the mAP of Pascal
VOC from 0.69 to 0.74. Although these values might seem
low (compared to other detection/recognition problems), we
consider them reasonable based on the difficulty of the task
“in the wild”, as illustrated in Figure 3. It can also be observed
that the mAP results for the CelebA dataset did not change
much using the additional data from Pascal VOC. As expected,
the model trained only using images from CelebA performs
poorly in the Pascal VOC dataset, since the latter is a much



more challenging dataset. We consider that training the model
with a 50%-50% proportion presents the best overall values,
and we use it as our default approach in the next experiments.

Figure 3 presents examples of successful detections (top
row) and error cases (bottom row) using the proposed method.
A visual analysis of the results shows that our network makes
mistakes in bounding boxes that have features of both genders,
which can be expected as the anchor box feature map of our
network is small and two people can be on the same (x, y)
location of the feature map.

TABLE II
RESULTS IN MAP OF OUR 31 LAYER NETWORK USING DIFFERENT

PROPORTIONS OF EACH DATASET DURING TRAINING. ALL THE RESULTS
ARE AFTER 10,000 ITERATIONS OF FINE-TUNING.

Training Data Testing Results
VOC CelebA Data Man Woman mAP

0% 100% VOC 0.4809 0.4741 0.4775
CelebA 0.9917 0.9927 0.9922

5% 95% VOC 0.7114 0.6810 0.6962
CelebA 0.9922 0.9940 0.9931

10% 90% VOC 0.7490 0.6981 0.7235
CelebA 0.9914 0.9945 0.9929

25% 75% VOC 0.7622 0.7222 0.7422
CelebA 0.9903 0.9939 0.9921

50% 50% VOC 0.7600 0.7296 0.7448
CelebA 0.9780 0.9881 0.9830

75% 25% VOC 0.7372 0.7178 0.7275
CelebA 0.9695 0.9807 0.9751

100% 0% VOC 0.7136 0.6685 0.6911
CelebA 0.9044 0.9370 0.9207

Comparison with other gender recognition methods.
As other methods deal only with the recognition task,

assuming that the person is already localized, they only
compute the recognition accuracy (%) of the method using the
hits/errors instead of the mAP. To compare our method using
this metric, we first select only detections (man or woman)
with a prediction confidence larger than a threshold t (set
to 0.5 experimentally), and consider it a successful person
detection if the IoU w.r.t. the annotated person is larger than
0.5. For those remaining bounding boxes, we compare the
ground truth with the detected label, and obtain the final
accuracy (in %).

Table III presents the accuracy of our models in the CelebA
dataset trained with different strategies. It also shows the ac-
curacy of two state-of-the-art gender recognition methods [4],
[12] for the same dataset. As can be observed, our default
training protocol leads to an accuracy comparable to state-of-
the-art methods for CelebA, and results get slightly better if
the model is trained with a combination of CelebA and Pascal
VOC images.

Runtimes. We evaluated the runtime of our model using two
different GPUs: an Nvidia Titan Xp and an Nvidia Geforce
1080. Our model is able to process a video file with resolution
1056 × 704 at ~55 FPS on a Titan Xp GPU, and ~38 FPS
on a GeForce 1080. When using a camera, the FPS drops to
~26 FPS in both GPUs (the bottleneck is the frame grabber).
Training time was around 350 minutes for each model using
the Titan Xp GPU, and 10, 000 iterations were processed.

TABLE III
PERFORMANCE COMPARISON (IN %) OF GENDER RECOGNITION ON

CELEBA AND VOC DATASETS. OUR RESULTS ARE EVALUATED USING
OUR “CLEANED” VERSION OF CELEBA THAT PRESENTS 87 LESS IMAGES

THAN THE ORIGINAL CELEBA DATASET.

Method CelebA
LNets+ANet [12] 98
HyperFace [4] 97
Ours (train = 5% + 95%) 97.30
Ours (train = 50% + 50%) 96.04
Ours (train = Celeb Only) 97.13
Ours (train = VOC Only) 87.39

Visualization and analysis. Figure 4 presents additional
detection results (only one detection per image), along with the
corresponding activation maps using the approach presented
in Section IV. It is interesting to note that facial cues are
used when the person pose is mostly frontal and the face is
reasonably large. On the other hand, features along the whole
body are activated in more challenging images, in which the
face is not clearly visible. More interesting, the activation maps
show that in some cases contextual information is used to infer
the gender. More precisely, the motorcycle “votes” for the man
gender (second and third rows, right column), since there were
several images in the training set that contain male subjects
close to motorcycles. This is an indication that additional care
must be taken to avoid biasing the network.

VI. CONCLUSIONS

In this paper, we presented a real-time gender detection
scheme in the wild, validated mostly on the Pascal VOC
dataset. Our experiments indicate that by using transfer learn-
ing and adding training samples from an “easier” dataset
(CelebA) it is possible to obtain reasonable mAP values for
gender detection in the wild. In the controlled CelebA dataset,
the accuracy of the proposed method is similar to other gender
recognition methods that explore mostly facial features.

As additional contributions, we also provide gender anno-
tations for some pedestrian images in the Pascal VOC dataset,
and provide a visual analysis of the activation maps for the
chosen baseline CNN (YoloV2). The activation maps indicate
that facial cues seem to be strongly used when the face is clear
in the image, but body cues are useful for more “in the wild”
scenarios. They also show that contextual information (such
as the presence of other objects in the scene) might bias the
detection results.

As future work, we intend to explore temporal information
for gender detection in the wild when video sequences are
available. We also intend to revise our gender labels for the
Pascal VOC dataset by using more human annotators, or
by allowing feedback from the community about wrong or
dubious labels. Finally, we plan to deal with the cases where
both genders are present in the same bounding box.
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Fig. 4. Examples of visualization of the regions that contributed to the detection in the image.
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