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Abstract—On the basis of the dichromatic reflection model,
recent specular highlight removal techniques typically estimate
and cluster illumination chromaticity values to separate diffuse
and specular reflection components from a single image. While
these techniques are able to obtain visually pleasing results, their
clustering algorithms suffer from bad initialization or are too
costly to be computed in real time. In this paper, we propose a
high-quality pixel clustering approach that allows the removal of
specular highlights from a single image in real time. We follow
previous work and estimate the minimum and maximum chro-
maticity values for every pixel. Then, we analyze the distribution
pattern of those values in a minimum-maximum chromaticity
space to propose an efficient pixel clustering approach. After-
wards, we estimate an intensity ratio for each cluster in order
to separate diffuse and specular components. Finally, we present
optimization strategies to implement our approach efficiently for
both CPU and GPU architectures. Experimental results evaluated
in the available dataset show that the proposed approach is not
only more accurate, but is also two times faster than the state-of-
the-art when running solely on the CPU. Running on the GPU,
we show that our approach requires ~ 24 milliseconds to remove
specular highlights in an image with 3840 x 2160 (4k) resolution.
That makes our GPU implementation more than one order of
magnitude (20 x) faster than the state-of-the-art for 4k resolution
images, while providing the desired effect accurately.

I. INTRODUCTION

Computer vision applications, such as intrinsic image de-
composition [1], typically assume the materials present in
the scene to be purely Lambertian (i.e., without specularity)
and consider the regions with specular reflection as noise or
outliers. In this case, if a large region of specular highlight
is present in the image, the accuracy of the application may
decrease severely [2].

To improve the accuracy of those applications, specular
highlight removal may be applied as a pre-processing step
in the input image. While most of the existing techniques
(e.g., [3]-[5]) still perform this task at non-interactive frame
rates, applications such as object tracking [6] require real-time
solutions to improve the tracking accuracy through the removal
of the specular highlight frame by frame.

To ease the task of specular highlight removal, the dichro-
matic reflection model [7] is the most common assumption
used to guide the separation of diffuse and specular reflection
components from a single image. In such a model, the color

observed at a pixel can be described by the sum of diffuse and
specular reflection components or by the linear combination
of diffuse and specular chromaticities. In general, most of the
existing accurate techniques (e.g., [5], [8], [9]) convert the
color of the input pixels into a chromaticity-based space that
allows the separation of diffuse and specular components by
means of pixel clustering. While these techniques are able to
minimize the presence of specular highlights in the image,
most of them make use of clustering strategies that are prone
to bad initialization of the cluster seeds or are too expensive
in terms of processing time.

In this paper, we present an algorithm for real-time, high-
quality specular highlight removal from still images that is
more accurate and faster than related work, while provid-
ing real-time performance even for high-resolution images.
Inspired by the work of Shen and Zheng [8], we present
an efficient and accurate algorithm to cluster pixels in a
minimum-maximum chromaticity space. Then, we estimate
an intensity ratio for each cluster to separate diffuse and
specular components of the input image. We further discuss
strategies to reduce the processing time of the proposed
solution, optimizing the performance obtained for both CPU
and GPU architectures.

In this work, our main contributions are threefold:

1) An efficient pixel clustering algorithm that provides
improved initialization of the cluster seeds and achieves
results more accurate than related work;

2) An optimization strategy to make the CPU implemen-
tation of the proposed solution two times faster than
related work;

3) An implementation of the proposed solution on the GPU,
achieving results more than one order of magnitude
faster than related work for high-resolution images,
while still obtaining high accuracy rates;

II. RELATED WORK

In this section, we present a review of relevant related work
proposed in the field of specular highlight removal from a
single image. For an in-depth review of the existing specular
highlight removal techniques, we refer the reader to see the
survey of Artusi et al. [10].
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Fig. 1. An overview of the proposed real-time specular highlight removal algorithm. Given an input image with specular highlights (a), we compute minimum
(b), maximum (c) and range (d) values for each pixel. Then, we subtract the input image from the minimum one to estimate the pseudo specular-free image
(e). Afterwards, we estimate chromaticity values for each pixel of the pseudo specular-free image and store the minimum (f) and maximum (g) chromaticity
channels of relevant pixels into separate images. A minimum-maximum chromaticity space is built and efficiently clustered in only three clusters (h). Next,
for each cluster, we estimate a single intensity ratio using maximum and range values. Finally, the three intensity ratios estimated previously are used to
compute the real specular-free image (i) through the separation of the specular highlights (j).

Tan et al. [11] and Shen et al. [12] pioneered the use of a
pseudo specular-free image, an approximation of the diffuse-
only chromaticity image, to guide an optimization framework
and aid the task of specular highlight removal. Because such a
framework typically requires more than 5 seconds to remove
specular highlights of low-resolution (e.g., 480p) images, its
use is inappropriate for real-time applications.

Shen and Cai [13] and Yang et al. [14] have adapted the
use of connected components labeling and iterative bilateral
filtering for specular highlight removal, respectively. Both
approaches are almost two orders of magnitude faster than
previous work, achieve interactive frame rates, but still demand
more than 1 second to remove the specular highlight of high-
resolution (e.g., 2160p) images.

Shen and Zheng [8] clustered pixels into a minimum-
maximum chromaticity space. Then, for each cluster, the
intensity ratio between maximum and range chromaticities
was estimated for each pixel and a single intensity ratio was
assigned for the entire cluster to separate specular and diffuse
pixels accurately.

Rather than relying on the maximum chromaticity-intensity
space [11] or the minimum-maximum chromaticity space [8],
different color spaces (e.g., Ch-Cv and HSI space [15], a*-b*
space [16], hue space [4]) and pixel clustering strategies (e.g.,
region growing, mean-shift, k-means, affinity propagation)
have been used for specular highlight removal. The techniques

[15], [17] that use a color segmentation algorithm (e.g.,
region growing, mean-shift) are prone to noise artifacts and
do not work well for textured or multicolored surfaces. The
techniques [3]-[5] that use k-means or affinity propagation
as a clustering strategy typically require a lot of iterations
to converge to an accurate solution, producing frame rates far
from real time. Meanwhile, the techniques [8], [9] that are able
to achieve high accuracy rates at an interactive processing time
may suffer from the bad selection of the initial cluster seeds.

In this work, we take advantage of the specular highlight
removal algorithm described by Shen and Zheng [8] to propose
an improved and efficient pixel clustering scheme that is more
accurate and faster than the original approach. We also present
an optimized algorithm to estimate the single intensity ratio
of each cluster, which is used to separate diffuse and specular
intensities. Finally, we show how the proposed approach can
be efficiently implemented on the GPU, achieving, to the
best of our knowledge, the best accuracy and processing time
results in the literature for the task of specular highlight
removal of single images.

III. REAL-TIME SPECULAR HIGHLIGHT REMOVAL

In this section, we introduce our approach for real-time
specular highlight removal. An overview of the proposed
approach is shown in Figure 1. We first compute the minimum
(Figure 1-(b)), maximum (Figure 1-(c)) and range (Figure



1-(d)) values for every pixel. Then, we compute a pseudo
specular-free image (Figure 1-(e)) that is used to estimate
the minimum (Figure 1-(f)) and maximum (Figure 1-(g))
chromaticity values for every pixel. We analyze the distribution
pattern of those values in a minimum-maximum chromaticity
space and propose a novel clustering scheme that splits the
chromaticity space in only three clusters (Figure 1-(h)). Next,
for each cluster, we propose a new algorithm to estimate a
single intensity ratio of maximum and range values per cluster
to generate a specular-free image (Figure 1-(i)) in real time.

Let | be an image where each pixel x in I(z) = [l.(z), l5(2),
ly(x)]T stores red, green and blue color channels, respectively
(Figure 1-(a)). According to the dichromatic reflection model
[7], a pixel I(z) can be represented by the sum of its diffuse
D(z) and specular S(z) reflection components

I(z) = D(x) + S(), (1)

or, alternatively, by the linear combination of diffuse A and
specular I' chromaticity values

I(z) = wa(x)A(z) + ws(z)T, 2)

where wyq and w, are weights related to diffuse and
specular reflections over the surface geometry, A(xz) =
[Ar(z), Ag(x), Ap(x)]T, and T is typically [5], [8], [9] as-
sumed to be uniform and normalized for the input image
I' =3, %, 3|7, as done in the rest of this paper.

An image with specular highlights typically contain, for the
same color surface, pixels with only the diffuse reflection com-
ponent, and pixels with both diffuse and specular reflection
components. Therefore, to remove the specular highlights of
an image, we need to define a color space where we are able to
cluster and further separate the pure diffuse from the specular
pixels. Following related work [8], let us use the concept of
intensity ratio for diffuse and specular component separation.

Let I™" and I™™ be single-channel images that store the
minimum (Figure 1-(b))

™" () = min(l; (), ly (2), o ()

min (3)
= wq(x)A™"(x) + ws(x)T,
and the maximum (Figure 1-(c))
™ (z) = max(le(z), lg(z), Ib(2)) @

= wy(x) A" (z) + ws(z)T,

of the red, green and blue intensities per pixel, where
AM(z) = min(Ac(z), Ag(z), Ap(z)) and A™¥(z) =
max (A (z), Ag(x), Ap(2)).

On the basis of (3) and (4), let I"*"¢ be a single-channel
image that stores the subtraction between ™ and ™" (Figure

1-(d))
Irange(x) _ ImaX(x) o Imin(z)
— wa(z) A ().

(&)

To prevent 1™"¢*(x) from being 0, one can add this term by a
small value € > 0.

From (5), it is easy to see that I"™"¢° is a specular-free image,
since the image contains no longer the specular term wg(x)T"
of the dichromatic reflection model (2). This effect is also
visible in Figure 1-(d). ‘

Now, let us define the intensity ratio 1"°(z) as the ratio
between maximum and range values
Imax (./E)

IraliO(x) (6)

For a pixel with pure diffuse reflection, the intensity ratio
is clearly defined by the ratio between maximum and range
diffuse chromaticities

» Amax
|rat10 ) = wd(m) A
( ) ’U_)d(l') (Amax _ Amln) (7)
B Amax
T Amax _ Amin’

However, for a pixel with diffuse and specular reflections,
the intensity ratio is

wq () A™ + w,(x)T
wd(m) (Amax _ Amin)

From (7) and (8), we can state that, for pixels with the same
color surface, or the same diffuse chromaticity, the intensity
ratio of the specular pixels is higher than that of purely diffuse
pixels. In this sense, the intensity ratio may be used as a metric
to separate diffuse and specular pixels efficiently.

In order to use ™" to separate diffuse and specular pixels,
we need to first cluster the pixels with nearly the same diffuse
chromaticity. To estimate the diffuse chromaticity of a pixel,
let us make use of a pseudo specular-free image IP*' (Figure 1-
(e)), that can be easily obtained by subtracting the input image
| from |™min

IraliO(x) —

(®)

P (2) = I(z) — ™" ()

. 9
= wq(z) AP (z). ®

Similarly to ™%, P does not contain the specular term of

the dichromatic reflection model (2). Differently from ™",
I is a three-channel image that resembles the original input
image, allowing the estimation of the diffuse chromaticity for
red, green and blue intensities.

To further prevent IPf from being too darker than | and
increase the robustness to image noise, we add the mean [min
of I™" to each pixel of IPSf [13].

Once with IP*f, the diffuse chromaticity value for each pixel
APt(z) is estimated as

ApSf(x) _ IpSf(x) )
(@) + (@) + P (2)

As can be seen from (7) and (8), the intensity ratio of
a pixel is computed on the basis of minimum and max-
imum diffuse chromaticity values. Then, we take advan-
tage of I (9) and AP (10) to compute the minimum
AP () = min(AP (z), AR (), AP"(2)) (Figure 1-(f)) and
maximum AR () = max(AP (z), AR (z), AP'(2)) (Figure
1-(g)) pseudo diffuse chromaticity values only for relevant

(10)
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Fig. 2. Our clustering approach for the minimum (x-axis)-maximum (y-
axis) chromaticity space. In the first iteration of our algorithm (a), we select
three cluster seeds (big circles pointed by arrows) located at the highest
minimum (blue circle), highest maximum (green circle), and lowest minimum
chromaticity values (red circle). Then, we run two iterations of k-means to
associate each pixel to the nearest cluster seed in the Euclidean space, update
the position of the cluster seeds according to the centroid of their associated
pixels, and associate each pixel on the basis of the updated cluster seeds (b).

pixels that may lie in a region with specular highlights. We
determine whether a pixel is relevant to the specular highlight
removal as follows

if 1™ (g) > i

otherwise.

[Pt (@) = relevant,

(1)

non-relevant,

In this sense, background pixels and pixels with an intensity
value lower than the average minimum intensity I™" are
discarded from further computation since they probably do
not contain a specular pixel.

To cluster the pixels with the same diffuse chromaticity, we
project the relevant pixels of I into a minimum-maximum
chromaticity space, as shown in Figure 2. Any pixel in this
space is projected in the form of a triangle (the proof of this
statement can be seen in the Section I of the supplementary
document), like the one visible in Figure 2. Rather than
selecting the number and the position of the initial cluster
seeds randomly, we take advantage of the triangle-like shape
where the samples of the minimum-maximum chromaticity
space lie within to propose an efficient approach for pixel
clustering in this space.

Experimentally, we have seen that, rather than dividing the
space into one or two clusters, the separation of the minimum-
maximum chromaticity space in three clusters provides an
accurate solution to the clustering of relevant pixels. To do so,
we first select the pixels whose projections in the minimum-
maximum chromaticity space store the highest minimum,
highest maximum and lowest chromaticity values as cluster
seeds, as shown by the big circles in Figure 2-(a). These
pixels are selected as cluster seeds in our algorithm because

they can be easily detected from AP and AP while their

min
projections are vertices of the triangle-like shape formed in the
minimum-maximum chromaticity space. Then, we run only
two iterations of k-means [18] to associate each relevant pixel
of the input image to the nearest cluster seed in the minimum-
maximum chromaticity space, to update the position of each

cluster seed to be the centroid of its associated pixels projected
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Fig. 3. Given an unordered array of intensity ratios per cluster (a), we can
sort such an array (b) and select the median value (blue rectangle in (b))
as the chosen intensity ratio 7 since this value divides the array equally in
diffuse (green rectangles) and specular (red rectangles) intensity ratios (c).
An alternative approach is to iteratively select a value (blue rectangle in (d))
from the unordered array that better separates diffuse and specular intensity
ratios (e) in the cluster.

in the minimum-maximum chromaticity space (see the new
positions of the cluster seeds in Figure 2-(b)), and to associate
each pixel to the nearest updated cluster seed (Figure 2-(b)).
With this algorithm, we are able to remove the randomness
to select the initial cluster seeds, providing an improved
initialization scheme that is invariant to the orientation of the
image, can be easily computed from I and requires two
iterations of k-means to converge to an accurate solution.

After clustering the pixels with nearly the same diffuse
chromaticity, we need to select, for each cluster, the intensity
ratio r that separates the diffuse pixels from the specular pixels
on the basis of I (7) and (8) (Figure 3). A clever idea to
compute r per cluster is to sort, in an ascending order, the
intensity ratios of each pixel associated with the same cluster
seed (Figure 3-(b)), and then take the intensity ratio located in
the central position of the sorted array as the chosen value r
(1.6 in Figure 3-(b)), since it divides the cluster almost equally
into diffuse and specular pixels (Figure 3-(c)).

Knowing that, depending on the size of the input array,
the sorting step may be too inefficient in terms of processing
time, we propose an alternative approach to estimate r without
requiring any sorting per cluster. The pseudocode of our
algorithm is listed in Algorithm 1. In our proposal, we first
compute 7 as the average intensity ratio for each cluster (Line
6 of Algorithm 1, Figure 3-(d)), and then, we determine the
number of pixels in the cluster whose intensity ratio is lower or
higher than r (Lines 7, 9, and 10 of Algorithm 1). If r does
not divide almost equally the number of pixels into diffuse
and specular groups, or, in order words, if one of the groups
contain more pixels than  fraction of the total number of
pixels in that cluster (Lines 11 and 13 of Algorithm 1), we
change r by a pre-defined step size v (Lines 12 and 14 of
Algorithm 3) and reiterate the algorithm until the maximum
number of iterations o has been achieved (Line 8 of Algorithm
1) or the updated r divides diffuse and specular pixels properly
(Line 15 of Algorithm 3, Figure 3-(e)). Finally, we assign
"% (2) = r for every pixel  associated with the cluster whose
selected intensity ratio is r (Lines 18-22 of Algorithm 3).



Algorithm 1 Single intensity ratio estimation without array
sorting

Input:

Imax © an image that stores maximum intensities,
lrange : an image that stores range intensities,

« : maximum number of iterations,

[ : a threshold value,

7 : a step value

Output: |, : an image with selected intensity ratios
1: procedure ESTIMATERATIO(Imax, lrange, @, B, )
2: for each pixel z do
3 lratio (LL') <~ ||l:‘na;((?);
4 end for
5 for each cluster ¢ do
6: r < average l.o(z) for pixels x projected in c;
7 n < count the number of pixels projected in c;
8 while iteration < « do
9: I + count pixels in ¢ whose lyo(x) < 73
10: h<+n-—1
11: if % > (3 then
12: T =T,
13: else if % > (3 then
14: T T+ 7
15: else break;
16: end if
17: end while
18: if pixel x is projected in ¢ then
19: hratio () < 73
20: end if
21: end for
22: return |.,;

23: end procedure

Once the intensity ratio r has been determined per cluster,
we can compute the real specular image S (1) (Figure 1-
(j)) as follows. Let us recall from (1) and (2) that S(z) =
wg(z)I. Now, we can see from (4) and (6) that, for a
pixel with pure diffuse reflection, I™(z) = wq(z)A™(z)
and 1™%(z) = I"(2)""(z), respectively. Consequently,
wy(z) A" () = 1™°(2)I™™°(2). Then, S can be computed
in terms of the maximum intensity image (4) as

" (@) = wa(z) A™(2) + wq ()T
ws(2)F = 1" (2) — wa(2) A™ ()
S( ) ImaX( ) IrallO(x)Irange(

12)

From (6), S(x) would be zero in (12) because 1" (z) =
"1 ()" (). However, as listed in Algorithm 1, after the
computation of (6), the values of " are changed such that
a single intensity ratio r is used per cluster, making (6) an
approximated equation.

Finally, the diffuse-only image D (Figure 1-(i)) can be easily
computed by the subtraction between the input image and S

(.

IV. GPU-BASED SPECULAR HIGHLIGHT REMOVAL

In this section, we describe our GPU implementation of
the pipeline depicted in Figure 1. We assume, by default, that
each thread inside a kernel performs its computation on the
basis of its corresponding pixel in an image. Furthermore, all
images handled by our GPU algorithm are created and stored
in the pitched memory, optimizing read and write operations
by means of coalesced memory access.

First, we compute |, (Figure 1-(b)), Inax (Figure 1-(c)) and
lrange (Figure 1-(d)) in a single kernel on the GPU. Each thread
is responsible for computing minimum (3), maximum (4) and
range (5) intensities in parallel.

Next, we estimate |mi“, the mean of |, in order to classify
relevant and non-relevant pixels (11). To do so, we run the
parallel prefix sum [19] over I"™" in order to sum the minimum
intensity values of I™", and estimate its average minimum
intensity.

Afterwards, in another kernel, we compute lpst (9) (Figure
1-(e)), AP (10) and store minimum Afrfm (Figure 1-(f)) and
maximum AP (Figure 1-(g)) pseudo diffuse chromaticity
values in separate images. For this task, each thread works
with its corresponding pixel in parallel.

Before performing the clustering of pixels in the minimum-
maximum chromatlcltfy space, We locate the three initial cluster
seeds from both AP and AR, on the GPU. We use the
optimized scan structure [19] of the parallel prefix sum to
recover the pixels with the lowest and highest minimum,
and highest maximum pseudo diffuse chromaticity values. As
shown in Figure 2-(a), these are the initial cluster seeds of our
clustering algorithm. After uploading them in the constant de-
vice memory, we associate each relevant pixel with its nearest
cluster seed, an operation that is pixel-independent. Therefore,
in a separate kernel, each thread projects its corresponding
pixel in the minimum-maximum chromaticity space, measures
the distance of the projected pixel to the three existing cluster
seeds and stores the identifier of the nearest cluster seed to
the pixel. For each one of the three clusters, we make use of
the scan structure to count, in parallel, the number of pixels
associated with each cluster. Next, we run the parallel prefix
sum to sum the minimum and maximum diffuse chromaticity
values of these pixels and update the centroids of the cluster
seeds. After copying these new cluster seed positions to the
constant memory, we run another assignment step, in parallel,
to associate each relevant pixel with its updated nearest cluster
seed (Figure 2-(b)).

As we have shown in Figure 3, there are two ways to
compute the intensity ratio r that divides each cluster into
diffuse and specular pixels. In both approaches, we first use a
thread to compute |, (6) in parallel. Next, we run the scan
operator to count, in parallel, the number of pixels associated
with each cluster. For the sorting-based approach, we copy the
pixels associated with the same cluster seed into a separate,
compact array. Then, we run the parallel radix sort [19] to sort
the intensity ratios (Figure 3-(b)) and copy the chosen intensity
ratio 7 for each pixel z of |, () in parallel. The non-sorting-
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Fig. 4. A visual comparison between our approach (c) and the three best ranked specular removal methods (d-f) for the Animals image.

based approach listed in Algorithm 1 can be easily parallelized
as well. For each cluster, we run the parallel prefix sum to
estimate the average intensity ratio of the pixels associated to
the same cluster seed (Lines 6-7 of Algorithm 1). Using the
scan operator, we count the pixels whose intensity ratios are
lower than r (Line 9 of Algorithm 1). In a single-thread on the
CPU, we control the iterations and the update over r (Lines 8§,
11-16 of Algorithm 1). Next, in parallel, we copy the chosen
intensity ratio r for each pixel & of lyo(z) (Lines 18-19 of
Algorithm 1).

Finally, each GPU thread makes use of the intensity ratio r
estimated per cluster to compute, in parallel, each pixel of D
(Figure 1-(i)) and S (Figure 1-(j)) according to the equation
(12), that is pixel independent and easily parallelizable.

V. RESULTS AND DISCUSSION

In this section, we evaluate the visual quality and processing
time obtained by distinct specular highlight removal tech-
niques proposed in the literature. We restrict our evaluation
to the techniques [5], [9] that reported their results on the
standard dataset proposed by Shen and Zheng [8], or whose
source codes are open and freely available [8], [11]-[14], [20],
or were gently shared by their respective authors [4].

A. Experimental Setup

To measure the processing time of our approach as well as
the ones proposed by related work, we have used an NVIDIA
GeForce GTX Titan X graphics card and an Intel Core™ i7-
3770K CPU (3.50 GHz), 8GB RAM.

To implement our approach, we used the OpenCV 2.3.1
[21] and CUDA 8.0 [22] for image and parallel processing
tasks, respectively. Moreover, we used the optimized imple-
mentations of parallel prefix sum and radix sort in the Thrust
library!. Our final source code is open and available for free?.

In terms of accuracy, we compare the sorting-based (SB)
(Figures 3-(b, c)) and non-sorting-based (NSB) (Figures 3-
(d, e)) variants of our approach with respect to related work
measuring the peak signal-to-noise ratio (PSNR) over the four
images available in the standard specular highlight removal

Thttps://thrust.github.io/
Zhttps://github.com/MarcioCerqueira/Real TimeSpecularHighlightRemoval

TABLE I
THE ACCURACY OBTAINED BY DIFFERENT SPECULAR HIGHLIGHT
REMOVAL TECHNIQUES FOR THE FOUR IMAGES OF A STANDARD DATASET
[8]. ACCURACY IS MEASURED IN TERMS OF THE PNSR METRIC.

Method Masks | Cups | Fruit | Animals
Tan et al. [11] 25.6 30.2 29.6 29.9
Shen et al. [12] 322 37.5 38.0 34.2
Shen and Cai [13] 34.0 37.6 36.9 34.8
Q. Yang et al. [14] 322 38.0 37.6 37.2
J. Yang et al. [15] 29.8 36.4 35.6 -
Shen and Zheng [8] 34.1 39.3 38.9 37.3
Liu et al. [4] 345 37.6 35.1 33.4
Suo et al. [5] 342 - 40.4 -
Ren et al. [9] 345 38.0 37.7 -
Our SB approach 34.8 39.6 39.3 37.4
Our NSB approach 34.9 39.5 394 37.5

dataset [8]. In terms of performance, we measured the aver-
aged processing time obtained by both CPU and GPU versions
of our approach and the CPU implementations of related work
for the typical image resolutions of 480p, 720p, 1080p, and
2160p.

In relation to the parameters listed in Algorithm 1, we have
chosen empirically o = 3 to keep the real time performance of
the algorithm, 3 = 0.55 and « = 0.025 to enable the algorithm
to converge faster to an accurate solution. As we show in the
rest of this section, these parameters were sufficient to provide
accurate results for our tests.

B. Accuracy Evaluation

In this section, we evaluate the accuracy obtained by our ap-
proach and related work both quantitatively and qualitatively.

In Table I, we compare the accuracy obtained by our
approach and related work for the four images used in the
standard dataset [8]. Since we could not obtain the source
codes for the techniques of J. Yang et al. [23], Suo et al. [5]
and Ren et al. [9], we only show the accuracy results reported
in their original papers.

It is visible that the proposed approach is more accurate
than the state-of-the-art techniques for three of the four images
available in the standard dataset, showing that our clustering
scheme is able to remove the specular highlights accurately. It
is also visible from Table I that both sorting and non-sorting
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Fig. 5. A visual comparison between our approach (c) and three of the best ranked specular removal methods (d-f) for the Cups image.
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(d) Liu et al. [4] (e) Shen and Zheng [8](f) Shen and Cai [13]
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Fig. 6. A visual comparison between our approach (c) and three of the best ranked specular removal methods (d-f) for the Masks image.

TABLE II
A RANKING OF THE AVERAGED PROCESSING TIME (IN SECONDS)
OBTAINED BY DIFFERENT SPECULAR HIGLIGHT REMOVAL TECHNIQUES
FOR IMAGES WITH DIFFERENT RESOLUTIONS. SOME RESULTS FOR THE
APPROACH OF LIU et al. [4] ARE NOT LISTED BELOW BECAUSE THEY RUN
OUT OF MEMORY FOR HIGH-RESOLUTION IMAGES.

Image Resolution (s)
Method 480p 720p 1080p | 2160p
Liu et al. [4] 70.61 | 616.12 - -
Tan et al. [11] 8.72 29.68 71.31 360.79
Shen et al. [12] 7.96 26.04 70.68 267.55
Q. Yang et al. [14] 0.11 0.29 0.63 2.48
Shen and Cai [13] 0.055 0.15 0.34 1.44
Shen and Zheng [8] 0.023 0.066 0.14 0.54
Our CPU-SB approach 0.017 0.046 0.10 0.47
Our CPU-NSB approach | 0.011 0.030 0.068 0.26
Our GPU-NSB approach | 0.015 0.017 0.020 0.030
Our GPU-SB approach 0.013 0.015 0.017 0.024

variants of our approach provide nearly the same accuracy,
being able to obtain better accuracy than related work.

In Figures 4, 5, and 6, we provide a visual comparison
between our approach and three of the most accurate related
work, except for the techniques whose source codes were not
openly available [5], [9], [15]. We refer the reader to see the
Section II of the supplementary document for a more complete
visual analysis of the results. The techniques proposed by Tan
et al. [11], Shen et al. [12] and Shen and Cai [13] reduce
the specular highlights found in the original image, but they
also change the color intensity for diffuse-only regions of the

image. This artifact is mainly visible in the green closeup of
Figure 4-(f), where the red color of the duck was darkened.
That happens because the iterative framework of Tan et al.
[11] works on the basis of a specular-free image that is not
consistent in terms of both color and geometry profiles, while
the other works [12], [13] are susceptible to noise artifacts.
The works of Yang et al. [14] and Shen and Zheng [8] tend
to reduce the color intensity of bright diffuse regions located
near the border of the objects. This fact can be seen in the red
closeups of Figures 4-(d, ). Also, techniques such as Shen and
Cai [13], Yang et al. [14] and Liu et al. [4] cannot accurately
reduce the specular highlight found in textured objects, like the
ones shown in Figures 5-(e, f) and Figure 6-(d). In this sense,
our approach is able to better handle the specular highlight
removal for textured objects (Figures 5-(c) and 6-(c)) and
preserve the bright intensities found in diffuse-only regions
of the image (Figures 4-(c)).

C. Processing Time Evaluation

In Table II, we provide a processing time comparison
between our approach and related work for varying image
resolution. The work of Liu ef al. [4] is the slowest one
because their algorithm uses costly optimization steps to
remove specular highlights. The approaches of Tan et al. [11]
and Shen et al. [12] use iterative algorithms that are not
scalable for large image resolutions, providing performance
far from real time. The algorithm proposed by Q. Yang et al.
[14] provides scalability for the specular highlight removal,



but needs between two and four iterations of bilateral filtering
to converge to a good solution, demanding more than 1 second
to remove the specular highlight for images with 2160p resolu-
tion. Shen and Cai [13] make use of a connected components
labeling algorithm to detect the largest region of highlight in
the input image, dilate such a region to detect surrounding
diffuse pixels and solve a least squares problem to remove
the specular highlight. Such a simple approach achieves real-
time performance for low-resolution images, but is not scalable
for high-resolution images. As shown in Table II, the fastest
techniques for specular highlight removal are the ones based
on the clustering of the minimum-maximum chromaticity
space, namely Shen and Zheng [8] and our approach. However,
we show that, through the use of a non-sorting-based approach
to estimate the single intensity ratio that separates diffuse and
specular pixels per cluster, we are able to reduce by a half
the processing time obtained by the fastest related work [8],
obtaining the fastest and most accurate CPU-based algorithm
for specular highlight removal. However, as can be seen in
Table II, our CPU-based algorithm does not run in real-time
for 1080p and 2160p image resolutions. In this sense, we
show that our GPU-based implementation provides scalability
with respect to the image resolution, being at least 20x faster
than the work of Shen and Zheng [8] and requiring only 24
milliseconds to remove the specular highlights of a 2160p
image, achieving real-time performance for both low- and
high-resolution images.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a real-time, high-quality
algorithm for specular highlight removal of single images.
Using a simple, yet efficient pixel clustering algorithm coupled
with an optimized approach to separate diffuse from specular
pixels, we have shown that our approach is able to achieve
processing time two times faster than the state-of-the-art, while
providing the most accurate results for three of the four images
available in the existing dataset for specular highlight removal.
Moreover, with our GPU-based implementation, we are able
to provide real-time performance for the specular highlight
removal, even for 2160p image resolutions. In this sense, we
could enable the use of accurate specular highlight removal for
real-time applications such as augmented reality and real-time
image processing.

We believe that the field of specular highlight removal still
needs the development of a larger specular highlight removal
dataset, to enable a better evaluation of the generality of
the techniques already proposed in the literature, meanwhile
favoring the use of deep learning strategies to learn the
best features able to provide high-quality specular highlight
removal. Also, we intend to further investigate whether the
use of alternative luminance-chrominance color spaces may
enable us to achieve better accuracy results.
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