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Abstract—Detection of 3D salient points in medical images
has many important applications such as image registration and
mesh positioning for the purpose of segmentation of important
anatomical structures. In this study, we present preliminary re-
sults of a proposed method for the detection of 3D salient points in
Magnetic Resonance (MR) images of human brain. Our method,
which is based on the Dual-Tree Complex Wavelet Transform,
combines the oriented wavelet sub-bands (by multiplying the ones
on the same scale and upsampling the result to an upper level
scale) to create an image map in which local maxima correspond
to the salient points. Qualitative assessment was conducted using
566 brain MRI images, whose results were combined together
to create a point cloud showing the concentration of the salient
points on important brain regions. The results indicate that our
method has a great potential to detect important 3D salient points
in MR images.

I. INTRODUCTION

Magnetic resonance imaging (MRI) has become a core
resource for studying and diagnosing various diseases and
syndromes of the central nervous system. In these cases, it
is often necessary to segment and measure the volume of
important brain structures in order to aid both diagnosis and
follow up of the disease’s evolution.

Salient points are used in several image processing and
computer vision applications, such as object recognition [2],
orientation of certain transformations, and as a way to rep-
resent images in database indexing [14]. Among medical
images, 3D salient points are also used to guide the registration
of different image modalities [7] (MRI and Computerized
Tomography, for example), to construct probabilistic anatomic
atlases [1], and to facilitate the positioning of mesh models in
3D images [5].

The techniques presented in the image processing literature
for detecting 3D salient points use different approaches, going
from the use of first-order differential operators to identify
corners [6] to the adjustment of parametric models and appli-
cation of learning based methods [11], [15]. In our research
group, the technique currently used for detecting 3D salient
points in Magnetic Resonance (MR) images is based on the
Phase Congruency (PC).

In this paper, we propose to use the Dual-Tree Complex
Wavelet Transform (DT-CWT) as an alternative method to re-
place the PC-based technique, since it has better computational
efficiency (less time and space complexity) due to the dual-
tree implementation and generates complex coefficients whose
values of magnitude and phase directly relate to the quality and
localization of important attributes of an image, such as edges
and corners.

This manuscript is organized as follows: Section II describes
the methodology used for the development of the proposed
method, followed by preliminary results and discussions in
Section III and final conclusions in Section IV.

II. MATERIALS AND METHODS

Fig. 1 illustrates a block diagram of the proposed method.
Further details of each block are presented in this section as
follows.

A. Preprocessing

All images used in this study were preprocessed to reduce
noise and bias field using, respectively, the Non-Local Means
[3] and the N4-ITK [13] techniques, and for brain extraction,
using the Robust Brain Extraction (ROBEX) [8] technique. In
addition, affine image registration was applied to all images
in the database.

B. 3D Dual-Tree Complex Wavelet Transform

Since its creation in the early 1980’s, the Discrete Wavelet
Transform (DWT) [10] has been successfully explored in nu-
merous image processing applications because of its accuracy
to represent signals with singularities, such as peaks. Despite
their success on various digital signal processing applications,
the DWT has yet some limitations, such as signal translation
variance, aliasing and poor directional selectivity.

The DT-CWT was introduced by Kingsbury [9] as an
improvement over the DWT that overcomes its previously
mentioned limitations. In order to do so, the DT-CWT uses
two mother wavelets (ψh (x) and ψg (x)), one for each tree,
where one is the approximate the Hilbert transform of the other



Fig. 1: Block diagram of the proposed method.

(ψg (x) ≈ H{ψh (x)}). Thus, the analytic complex wavelet
transform is defined as

ψ (x) = ψh (x) + ψg (x) , (1)

where  =
√
−1 is the unit imaginary number. This con-

struction, which provides both local magnitude and phase
information of a signal, allows that negative frequencies be
suppressed and aliasing effects reduced, while still maintaining
an approximated invariance of the transform regarding its
signal translation.

As described in [12], the DT-CWT can be extended to three
dimensions by separating the signal filtering among the three
axes and using the same process of uni-dimensional signals
separately. Thus the 3D DT-CWT is defined as

ψ (x, y, z) = ψ (x)× ψ (y)× ψ (z) . (2)

C. Detector of 3D salient points

The proposed method for the detection of 3D salient points
in MR images, illustrated in Fig. 1, is an adaptation from [4],
where the salient points are defined as local maximal of an
energy map accumulator computed from the combination of
the 28 DT-CWT sub-bands from each scale.

In this case, for a given input image with dimensions
of w × h × d voxels, the image is decomposed into m
scales (s = 1, . . . ,m), where each sub-band s will have a

dimension of w
2s ×

h
2s ×

d
2s . As per the DT-CWT orientation

decomposition, from each point of each scale, a set Cs ={
ρ1e

θ1 , . . . , ρ28e
θ28
}

of 28 complex coefficients is obtained.
This directional information is useful for elaborating an energy
map that can be used for the detection of the salient points,
since it allows emphasizing small points, corners and junctions
and ignoring borders and uniform areas in the image.

The energy map, which gives a measure of local energy for
each voxel, is computed by the product of the 28 sub-band
magnitudes ρi resulting from the DT-CWT image decompo-
sition as

E (Cs) = αs

(
28∏
i=1

ρi

)β
, (3)

where α and β control the relative weight of the sub-bands.
By adjusting α and β, we can emphasize small-scale features
but with the drawback of increasing the algorithm’s noise
sensitivity.

The energy map accumulator, A, is created by interpolating
all resulting energy maps E (Cs) by a 2s factor and summing
all of them together:

A =

m∑
s=1

f (E (Cs)) , (4)

where f (·) represents the Gaussian interpolation operation
applied to the map E (Cs) from the scale s. The maximum



(a) 3D cube. (b) tip-like structure.

Fig. 2: Results of the proposed method for detection of
3D salient points on synthetic images. Blue and green dots
correspond, respectively, to ground-truth points and points
automatically detected.

values of the accumulator map represent the detected salient
points.

D. Image datasets

The images used in this study were obtained from the
BrainWeb1 and the IXI 2 datasets. BrainWeb provides com-
puter simulated images with different degrees of noise and
bias field. A few images from this database were used to
evaluate the algorithm’s robustness regarding noise and bias
field. The IXI dataset is composed of 566 images obtained
from three London hospitals: Hammersmith Hospital (HH),
Guy’s Hospital (GH), and the Institute of Psychiatry (IoP),
where each hospital has their own MRI scanner and acquisition
protocol. In this study, the images were preprocessed for noise
reduction and bias field correction, and affine-registered to
a template image. The IXI dataset was used to evaluate the
correctness of the algorithm throughout numerous cases.

III. PRELIMINARY RESULTS AND DISCUSSIONS

In this section we present and discuss some preliminary re-
sults obtained by the method being developed for the detection
of 3D salient points in MR images.

A. Results using synthetic images

A thoroughly study using parametric model generated im-
ages (a 3D cube and a tip-like structure) was conducted in
order to evaluate the accuracy of our method in identifying
isolated salient points. Experiments were also performed to
assess the influence of the α and β parameters on the final
results and to determine the values that provide the best
detection accuracy. The study was performed by exhaustively
varying the parameters and computing the average distance of
the points automatically detected to the ground-truth points,
which in the case of a 3D cube are its corners and the tip of the
tip-like structure. The best set of parameters was then chosen
as the one providing the smallest computed average distance.

1http://brainweb.bic.mni.mcgill.ca/brainweb/
2http://brain-development.org/ixi-dataset/

Analysis of the influence of the number of scales used in
the DT-CWT representation on the detection results was also
performed and it was found that at least three scales should
be used to avoid large amount of false-positive detections.
Fig. 2 illustrates the models used in this experiment and the
results obtained using the best set of parameters. It can be
noticed that the detected points (green) are very close to
the ground-truth points (blue). Despite the simplicity of the
synthetic images, the results have confirmed the potential of
the proposed method for the detection of 3D salient points.

B. MRI results

To test the stability of the proposed 3D salient points
detector in MR images, seven important points located at the
occipital and frontal horns, and corpus callosum’s genu (see
red circles in Fig. 3a) were selected in a noise- and bias-
free image from the BrainWeb database. The image was then
corrupted by Rician noise (3% and 5%) and two levels of
bias field (20% and 40%). The results of our detector of 3D
salient points applied to these images are shown in Figs. 3a–3e.
Upon observation of Figs. 3b and 3c, it can be noticed that our
method is still sensitive to noise, as it does not identify all the
salient points in the selected points in the images. Figs. 3d and
3e, on the other hand, illustrate that the method is significantly
robust to bias field, since it has correctly detected the same
important points regardless of the level of bias field in the
image.

In order to assess the detection consistency in large-scale
population, a total of 566 MR images was processed by
our method and the results were added together such that
salient points, detected throughout most of them, would form
point clouds. For better visualization, the resulting sum was
convolved with a 7×7×7 Gaussian kernel to make the result
resemble a probabilistic atlas, as illustrated in red in Fig. 4. In
this case, the higher the concentration of salient points is the
brighter the red color. As it can be noticed, the concentration of
the detected salient points is very high in important anatomical
regions of the MR images, such as the ventricular system and
parts of the brain stem.

IV. CONCLUSIONS

In this ongoing study, we have developed a new method for
detecting 3D salient points based on the dual-tree complex
wavelet transform. Tests using parametric modeled images
were conducted to demonstrate the potential of the proposed
method. Moreover, tests with MR images with different levels
of noise and bias field were used to study the robustness
of the method. In this case, we noticed that our method is
considerably robust to bias field but it may require a denoising
stage before its application. Finally, primarily tests using
clinical MR images showed that our method detects fairly
well most of the important salient points in the images, which
are located close to important brain structures such as the
hippocampus and corpus callosum. Further investigation is still
required to quantify the results of the proposed method and,

http://brainweb.bic.mni.mcgill.ca/brainweb/
http://brain-development.org/ixi-dataset/


(a) image without any noise or bias field.

(b) image with 3% of noise and no bias field.

(c) image with 5% of noise and no bias field.

(d) noiseless image with 20% of bias field.

(e) noiseless image with 40% of bias field.

Fig. 3: Influence of noise and bias field on the detection of
the salient points. Red circles indicate important locations in
the images and orange circles indicate that the detected salient
point was detected only closer to the target region.

more importantly, a point descriptor needs to be developed
and incorporated to the current method.
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