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Abstract—Recent literature has explored automated porno-
graphic detection — a bold move to replace humans in the tedious
task of moderating online content. Unfortunately, on scenes with
high skin exposure, such as people sunbathing and wrestling,
the state of the art can have many false alarms. This paper is
based on the premise that incorporating motion information in
the models can alleviate the problem of mapping skin exposure
to pornographic content, and advances the bar on automated
pornography detection with the use of motion information and
deep learning architectures. Deep Learning, especially in the
form of Convolutional Neural Networks, has striking results on
computer vision, but their potential for pornography detection is
yet to be fully explored through the use of motion information.
We propose novel ways for combining static (picture) and
dynamic (motion) information using optical flow and MPEG
motion vectors. We show that both methods provide equivalent
accuracies, but that MPEG motion vectors allow a more efficient
implementation. The best proposed method yields a classification
accuracy of 97.9% — an error reduction of 64.4% wrt. the state
of the art — on a dataset of 800 challenging test cases. Finally,
we also discuss results on larger and more challenging dataset.

I. INTRODUCTION

Filtering sensitive media (pornographic, violent, gory, etc.)
has growing importance, due to the booming consumption
of online media by people of all ages; and among sensitive
media types, pornography is often the most unwelcome. A
range of applications has increased societal interest on the
problem, e.g., detecting inappropriate behavior via surveillance
cameras; preventing uploading or accessing undesired con-
tent for certain demographics (e.g., minors), or environments
(e.g., schools, workplace). In addition, law enforcers may use
pornography filters as a first sieve when looking for child
pornography in the forensic examination of computers, or
internet content. The precise definition of pornography is, of
course, subjective, but here we will consider “any sexually
explicit material with the aim of sexual arousal or fantasy” [1].

A natural approach to pornography detection consists in first
trying to detect nudity [2], [3] and then defining appropriate
thresholds to further filter the content. Such solutions com-
monly use human skin features, such as color and texture, and
human geometry [4], [5]. Although the motivation for such
methods is intuitive, it reveals ultimately naı̈ve. People may
show a lot of skin in activities that have nothing to do with
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sex (e.g., sunbathing, swimming, running, wrestling), leading
to a lot of false positives. Conversely, some sexual practices
involve very little exposed skin, leading to unacceptable false
negatives. Departing from the low-level skin-based methods,
in more recent years, several authors have explored other
types of solutions for adult content filtering, specially the ones
inspired by the bag of words model from text classification
[6]–[8]. Clearly, such methods are more robust than skin-based
ones, but still suffer from ambiguous cases. Although thus far
relatively underestimated for this problem, motion information
available in videos would likely help to disambiguate the most
difficult cases in pornography classification. Only a few works
have exploited spatio-temporal features or motion information
in this problem until now.

In spite of the success of deep learning techniques in the
computer vision area, their literature on pornography detection
is very scarce. Pioneering the trend for pornography detection,
Moustafa [9] has explored majority voting classification on a
sample of frames classified with off-the-shelf CNNs. However,
the authors did not explore the most appropriate network
configurations, parameters nor any spatio-temporal or motion
information in their solution.

In this work, we design and develop deep learning-based
approaches to extract discriminative spatio-temporal charac-
teristics for filtering pornographic content in videos. As far as
we know, this is the first time convolutional neural networks
(CNNs) — along with motion information — is applied
for pornography detection in videos. Although in this work
we focus on the pornography modality, the methodology we
discuss herein is versatile and its extension to other types of
sensitive content is straightforward.

II. DEEP LEARNING AND SPATIO-TEMPORAL FEATURES

The approaches we designed were mainly inspired on
the work of Simonyan and Ziesserman [10], in which the
motion information is explicitly provided to the CNN, and
each type of information (static and motion) is independently
processed by the network. Notwithstanding, we explore the
motion information differently and incorporate novel sources
of motion information in our work. We also propose new ways
for combining static and motion for a more effective decision
making.



A. Static Information

In the static pipeline we propose (c.f., Fig. 1), we start
with a chosen sampling of the video frames and extract their
features with a convolutional network. These features are
average pooled to form a single description of the whole video.
Finally, we feed a classifier with the video description for the
final classification.

Fig. 1. Pipeline for the static information flow.

For the static CNN, we explored two methodologies. The
first one considers a network model trained with natural
images obtained with the ImageNet dataset [11] while the
second model is custom-tailored (i.e., fine-tuned and properly
adapted) to our problem, starting with the weights obtained
with the ImageNet samples during a pre-training step rather
than using random weights for initializing the network.

B. Motion Information

Initially, we analyze the motion information independently
from the static information. The pipeline (Fig. 2) for this
type of information is somewhat similar to the static pipeline,
with differences in the input and output of the convolutional
network.

Fig. 2. Pipeline for the motion information flow.

We evaluate two sources for the motion information: Optical
Flow displacement fields and MPEG Motion Vectors. The
motion sources follow the pipeline independently, therefore
there is a specific motion CNN model and classifier for each.
Each source requires an unique form for extracting the motion
information.

Our first explored source of motion information is the
optical flow displacement fields technique, computed using
Brox et al.’s method [12]. Each position of interest provides
us with the gradient’s magnitude and the direction of the
motion. Fig. 3 depicts an example of the output. For a more

useful representation, we decompose this information in its
horizontal (dx) and vertical (dy) components, generating two
motion maps with the magnitude values for each component
separately. Fig. 5(b) depicts an example of the optical flow
representation, calculated from the generated motion maps.

(a) Previous Frame (b) Next Frame (c) Displacement Field

Fig. 3. Sequential raw frames (left and middle) and the respective Optical-
Flow Displacement Field (right) computed from them.

Another explored source of the motion information is the
motion vector data encoded within the MPEG codec. In each
vector for a particular frame, it is encoded the position from a
given macroblock of pixels in the current frame and its position
at the reference frame. Fig. 4 shows an example. In this work,
we propose a novel representation for the motion informa-
tion contained in these vectors. We measure how much the
block from each motion vector has moved by computing the
distance, in pixel coordinates, from the reference position to
the current position in each direction, horizontal and vertical,
separately. These distances are analogous to the magnitude of
the movement at the region contained in that macroblock, and
generate two motion maps, one for each direction, similarly
to the optical flow motion extraction. Fig. 5(c) illustrates an
example of the generated image representation.

Fig. 4. Example of a macroblock and its respective Motion Vector

After the feature extraction, the descriptions of the compo-
nents (dx and dy) from the same motion are concatenated to
form a single feature vector. The rest of the pipeline is then
similar to the static one: the combined descriptions are pooled
and fed to a classifier for final decision making.

C. Fusion

The static and motion information can lead to more effective
results if their collected evidence (video telltales) are comple-
mentary in some sense. Therefore in this section, we explore
different forms of combining them (Fig. 6):



(a) Raw frames (b) Optical Flow (c) Motion Vectors

Fig. 5. Sequential raw frames (a) and motion image representations from op-
tical flows (b) and MPEG motion vectors (c). The horizontal (dx) component
is on top, and the vertical (dy) one is on the bottom. The regions with more
movement in raw frames (e.g., macaw’s head and body) appear highlighted
(dark or light) in the motion representations, while regions without movement
correspond to the neutral middle gray.

1) Early Fusion: The static and the motion information
are combined at the very beginning of the pipeline,
being processed together by a special CNN. This way,
the features benefit from both the static and the motion
information. This fusion has two variations: 5-channel
input, comprising a stack of the three color channels of
the frame, along with its respective motion representa-
tions, dx and dy; 3-channel input, using the raw frame
information in gray scale, instead of color.

2) Mid-level Fusion: We concatenate the features extracted
from each type of information (static or motion-based),
and from each independent CNN, into a single feature
vector before feeding a classifier.

3) Late Fusion: Each information is processed by a sep-
arate decision-making approach (e.g., SVM classifier),
generating independent classification scores that can then
be combined later on on a single score for the final
classification.

D. Architecture Specifications

The convolutional neural network architecture we adopt
for the experiments was proposed in [13], and is referred
to as GoogLeNet, winner of ImageNet 2014 Challenge [11],
achieving a striking 6.67 top-5 error rate in the object clas-
sification competition. This architecture was employed for
all types of data: Static (raw frames), Motion (optical flow
and motion vectors) and Static-Motion (early fusion). For
feature extraction, we pick the output from the last layer —
fully-connected (FC) — before the final classification. All the
network weights, except within Early Fusion, are fine-tuned to
the problem of interest herein via backpropagation, initializing
the weights with the values learned on the ImageNet 1.2
million images.

III. RESULTS

To evaluate the proposed approaches, we adopted two
datasets in our experiments: Pornography-800 [8] and

Pornography-2k [14]. Pornography-2k is a contribution of
this work, it comprise an extension of Pornography-800
(more complete and challenging). Therefore, we opted to
report all the experiments with the proposed methods on
the Pornography-2k, along with Third-party solutions and
the methods we choose as baselines. Finally, we evaluate
our best proposed approaches on Pornography-800, for direct
comparisons with existing work in the literature.

The reported accuracy is the mean value from accuracy
obtained on different splits of the data. In the case of
Pornography-2k it was applied a 5×2-fold cross-validation
protocol, what resumes to different train and tests folds with
1000 videos each and a balanced number of classes. The
protocol followed for Pornography-800 was a more simple
5-fold cross-validation (640 videos for training and 160 for
testing on each fold). For training and fine-tuning on each of
dataset, the training fold was re-partitioned into actual training
and validation, with a proportion of 85%/15% videos in each
part.

A. Proposed Approaches

In Table I, we show the obtained video classification ac-
curacy for each approach we have proposed, considering the
static and motion information as well as the fusion of different
methods. In these experiments, we adopted the Pornography-
2k dataset.

TABLE I
VIDEO CLASSIFICATION accuracy, AVERAGED OVER THE 5× 2

EXPERIMENTAL FOLDS, FOR THE PROPOSED APPROACHES ON THE
PORNOGRAPHY-2K DATASET. THE METHODS ARE SUBDIVIDED IN STATIC,

MOTION AND FUSION MODALITIES. FUSION IS PERFORMED WITH THE
FINE-TUNED MODEL FOR STATIC INFORMATION, AND WITH BOTH MOTION

SOURCES, OPTICAL FLOW (OF) AND MPEG MOTION VECTORS (MV),
EXCEPT FOR THE EARLY FUSION, WHICH, DUE TO ITS INFERIOR

PERFORMANCE WITH OF, IS NOT EMPLOYED WITH MV.

Proposed Approach ACC (%)

Static ImageNet 94.6
Fine-tuned∗ 96.0

Motion Optical Flow 94.4
MPEG Motion Vectors 91.0

Fusion

Early Fusion – Gray

O
F

95.5
Early Fusion – Color 90.5
Mid-level Fusion 96.3
Late Fusion∗ 96.4

Mid-level Fusion

M
V 96.4

Late Fusion 96.4

ACC: accuracy — ∗Fine-tuned and Late Fusion are statistically different (p-values:
ACC ≈ 0.03; F2 ≈ 0.01) — All standard deviations are smaller than 0.02.

In the static stream, we show that the model relying on
the GoogLeNet architecture trained with ImageNet data yields
an impressive performance of 94.6% ACC and 95.1% F2.
These results are further improved upon by fine-tuning the
network weights with the pornographic data, thus specializing
the network to the problem of interest, reaching 96.0% ACC
and 96.1% F2, a 1.5 percentage point improvement in ACC
(26% error reduction) and 1 percentage point in F2.



(a) Early (b) Mid-level (c) Late

Fig. 6. Main parts from each of the Fusion methods proposed.

When considering the motion information, optical flow (OF)
by itself yielded a performance close to the static model.
Meanwhile, the MPEG motion vectors (MV) led to a lower
performance, of 91.0% ACC and 92.0% F2. This difference in
performance between these two sources of motion information
may be explained by the fact that the MV represents the
motion of a macroblock of pixels, which is a much lesser fine-
grained description form than OF, which takes into account the
motion information for each pixel.

Despite the lower performance of the motion information
alone, when we combine it with the static information from
the fine-tuned network (pornography-specialized network), by
mid-level fusion and late fusion, we improve the ACC and F2

results. Both early fusion variations, Gray and Color, yielded a
lower performance than using the fine-tuned static information
by itself. Perhaps it is better to specialize the network to
a single type of information, leaving the fusion to a higher
level. Another reason might be related to the architecture
considered in this work, GoogLeNet. It may not be appropriate
for processing five channels or combining static and motion
right at the lowest level (e.g., raw data) of the network,
demanding some customization such as increasing the number
of filters or processing each information independently at the
first layers.

We believe that the better performance from the gray vari-
ation over color, comes from the fact that we could fine-tune
its model using the ImageNet model and that the 3-channel
input data is more appropriate for the GoogLeNet architecture.
However, we expect that if these issues were overcome (e.g.,
by training an appropriate architecture with a large collection
of samples), the full potential from using all color channels
could be reached, outperforming the gray-only variation of this
fusion, and perhaps the other fusion approaches, mid-level and
late.

Given the low performance of early fusion, and its costly
requirements for training, we have opted for not fusing MPEG
motion vectors this way.

Mid-level fusion and late fusion, on the other hand, ap-
parently could better combine static and motion information,
surpassing the performance of the fine-tuned network alone.
Surprisingly, this happened even while combining with MV,

showing that, although it had a worse performance when used
alone, its complementarity to the static information is still
advantageous. In addition, another advantage of using the MVs
is that they are readily available during decoding of the video.
Still, even that by a small margin, late fusion with OF obtained
the best combination of results for ACC.

In fact, our architecture was able to properly learn effective
features from the motion data, as our results with middle- and
late-fusion approaches showed, which take into account the
information provided by the Static Raw Frames and Optical
Flows simultaneously. However, it is possible that using an
innate motion-based network could equally produce good
results; however such network could be more complex (with
more weights) than the one we have extended upon.

B. Comparison using the Pornography-2k Dataset

For a better evaluation of the proposed approaches that ob-
tained the best results in each modality, we compare them with
the current state-of-the-art spatio-temporal video description
and third-party solutions. Table II shows the respective video
classification accuracy of the considered methods. Note that
the best proposed methods outperform most of the existing
solutions.

TABLE II
RESULTS ON THE PORNOGRAPHY-2K DATASET.

Solution ACC (%)

Third-party NuDetective [15] 72.6
PornSeer Pro [16] 79.1

BoVW-based Dense Trajectories [17] 95.8
TRoF [14] 95.6

Best Proposed
Static – Fine-tuned 96.0

Approaches
Motion – Optical Flow 94.4
Late Fusion (Optical Flow) 96.4
Late Fusion (Motion Vector) 96.4

The third-party solutions, which heavily depend on skin
detection and do not take advantage of the space-time infor-
mation, have shown a poor performance. PornSeer Pro [16]
obtained the best ACC among them, with 79.1%, far below



the performance using the solutions in the literature and our
proposed approaches.

The proposed methods also outperform the Dense Trajecto-
ries method [17]. For instance, the spatio-temporal approach,
Late Fusion (OF), outperforms Dense Trajectories by a margin
of 0.5 percentage point in ACC (14.3% error reduction).

Also, we can assert that motion feature plays an important
role in pornography video detection when comparing the
motion-based approaches (Dense Trajectories and proposed
approaches) with the third-party solutions. The motion-based
approaches remarkably outperform the third-party solutions.

C. Comparison using the Pornography-800 Dataset

In Table III, we compare our best proposed approaches with
the literature, using the Pornography-800 dataset.

TABLE III
RESULTS ON THE PORNOGRAPHY-800 DATASET.

Solution ACC (%)

BoVW-based

Avila et al. [18] 87.1± 2.0
Valle et al. [19] 91.9 ± NA
Souza et al. [20] 91.0 ± NA
Avila et al. [8] 89.5± 1.0
Caetano et al. [21] 90.9± 1.0
Caetano et al. [22] 92.4± 2.0
TRoF [14] 95.0± 1.3

CNN Moustafa [9] 94.1± 2.0

Best Proposed
Static – Fine-tuned 97.0± 2.0

Approaches
Motion – Optical Flow 95.8± 2.0
Mid-level Fusion (Optical Flow) 97.9 ± 0.7
Late Fusion (Optical Flow) 97.9 ± 1.5

The proposed approaches significantly outperform the ex-
isting BoVW-based methods [8], [14], [18]–[21], by 3–11
percentage points. The proposed methods also outperform,
by almost four percentage points, the results reported in
Moustafa [9], which also use Deep Learning. In this case,
the error reduction was over 64%. Even though we could not
apply Wilcoxon’s test, given the large perceptual difference in
accuracy between the related works and our best approaches,
with smaller standard deviation in some cases, we believe that
the results would probably be statistically significant.

Although Moustafa [9] employs the same architecture we
use in this work, GoogLeNet, there are critical differences,
thus leading to the important difference in performance, we
report herein: first of all, he only fine-tuned the network last
layer, while in our work we fine-tuned all layers, creating a
network model specialized to the problem of interest; second,
the network output in that work, for each frame, was used
in a majority voting scheme for classifying the video, while,
in turn, we have opted for using the network as a feature
extractor, pooling the frame descriptions, then feeding them
to an classifier for the video classification; finally, that work
only considered static information, meanwhile our methods
rely upon static and motion information, as well as on effective
methods for combining them.

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The evaluation of our techniques, shows that the association
of Deep Learning with the combined use of static and motion
information, considerably improves pornography detection.
Not only over current scientific state of the art [8], [9], [19],
[21], but also over off-the-shelf software solutions [15], [16].
Our solution also proves to be superior to general-purpose
action recognition features [17], when applied to pornography
detection.

The Deep Learning solution using only static information
is already competitive with state-of-the-art action recognition
features, Dense Trajectories [17], reaching an error rate of 4%,
which is low for such a subjective problem as pornography. For
further reducing the error rate, we believe the focus should be
on the motion information: by adjusting the CNN, adapting the
architecture, boosting the model with more training samples,
or improving static-dynamic information fusion.

Besides improving whole-video classification, we are inter-
ested in applying our techniques to the harder task of locating
in time the pornographic content within the video. To reach
that goal, the Pornography-2k video dataset – which is already
a great contribution from this work – was annotated at frame
level, becoming the first dataset for this problem with this
level of annotation. The main motivation for that harder task
is filtering pornography in real time, an important goal for
video streaming, camera-surveillance systems, or surveillance
of video chats for certain publics.

In addition to adapting our current methods for the local-
ization problem (e.g., [23]), another aspect worth exploring is
to integrate them to the so called Long Short Term Memory
(LSTM) networks. LSTMs are a model of Recurrent Neural
Network (RNN) that captures the sequential information of
the input data, a highly desirable feature for classification of
videos. The LSTM architecture could be used to process the
CNN extracted features, using the proposed methods in this
work, from a fixed number of frames, improving the real-time
classification.

A current on going extension of this work, is related to
further specializing the methods proposed here for detecting
child pornography in images. In a collaboration with the
Brazilian Federal Police, a paper has been submitted and it
is on the second round of reviews (refer to Section V). A
fact that further reinforce the importance of this work and its
contributions to real-world applications.
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on color invariant based local spatiotemporal features for action recog-
nition,” in Conference on Graphics, Patterns and Images (SIBGRAPI),
2012, pp. 31–36.

[21] C. Caetano, S. Avila, S. Guimarães, and A. Araújo, “Pornography detec-
tion using bossanova video descriptor,” in European Signal Processing
Conference (EUSIPCO), 2014, pp. 1681–1685.

[22] C. Caetano, S. Avila, W. R. Schwartz, S. J. F. Guimarães, and A. Araújo,
“A mid-level video representation based on binary descriptors: A case
study for pornography detection,” Elsevier Neurocomputing, vol. 213,
pp. 102–114, 2016.

[23] X. Chang, Y. Yang, E. P. Xing, and Y.-l. Yu, “Complex event detection
using semantic saliency and nearly-isotonic SVM,” in ACM International
Conference on Machine Learning (ICML), 2015, pp. 1348–1357.


