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Centro de Informática - Universidade Federal de Pernambuco

Recife, PE, Brasil
{rgm,cabm}@cin.ufpe.br

Abstract—In this Ph.D. research1, we have proposed three
visual search algorithms that connects visual attention and object
recognition. The first, inspired by the bottom-up mechanism
of visual attention, uses the saliency of the analysed scene to
guide the search, prioritizing locations that are more salient;
in order to do this, a saliency detector was developed. In the
second method, based on the top-down mechanism of visual
attention, the visual search is driven by characteristics of the
searched object. In the third algorithm, the bottom-up and top-
down visual searches are combined to improve the results of both
approaches. Moreover, a modified version of SURF (Speeded-
Up Robust Features) recognition algorithm was introduced so
that the recognition occurs iteratively in the scene. Quantitative
results showed that our saliency detector outperformed other
nine algorithms and that our visual search proposal reduces the
recognition time to 44% of the time achieved by SURF without
our method.

I. INTRODUCTION

Although the human brain receives, as signals, a huge
amount of visual stimuli at every moment, human beigns are
able to visually interact with the environment efficiently for
most of our daily tasks. In addition to the problem of treating
all the amount of input signals received by the brain, the
task of recognizing objects and understanding scenes becomes
even more difficult if one considers that each component of a
given visual stimuli received from the environment needs to
be compared to a large variety of known signals represented
in memory [1].

Among the characteristics of the Human Visual System
(HVS) responsible for its efficient interaction with the en-
vironment, we highlight the attentive mechanism, which is
responsible for focusing the analysis of a scene in locations
that are, somehow, selected as important. Thereby, thanks to
the visual attention, the HVS is able to focus the analysis
in a selected location, instead of processing an entire scene
at once. Then, after processing the attended region, another
location may be selected by the attentive mechanism, and this
process repeats iteratively until a stop criterion is reached.

Visual attention can be driven in a bottom-up or in a top-
down way. In the first one, the attended regions are defined
unconsciously, based only on low level characteristics of the
scene, as intensity, orientation or colour [2]. If, for a given
location, one of these characteristics distinguishes from the
rest of the scene or, at least, from its local neighbourhood, this
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region probably has a high saliency value and it tends to be
prioritized during the analysis of the scene. On the other hand,
a location that does not distinguish from its neighbourhood has
a low saliency value and receives a low prioritization in the
analysis of the scene.

Alternatively, according to the top-down mechanism of
visual attention, cognitive factors, like knowledge or the
objective of locating a specific object, have influence on the
definition of which locations of the scene are focused. For
example, car drivers are more likely to note petrol stations
than pedestrians; or if someone is looking for an object of a
specific colour, it is expected that regions with similar colour
attracts his attention more than other locations [3].

Similarly to the human brain, a computer vision algorithm
may also prioritize some regions of a scene to achieve a
more efficient visual interaction with the world. This idea
is especially important for complex scenarios, when certain
conditions can not be assumed, like the main colours of the
background or the positions of foreground elements.

The main goal of this Ph.D Thesis [4] is the development
of a visual search model inspired by the visual attention
mechanism of the human visual system. The proposal is
experimented in the task of detecting the presence of an object
in a scene, with the expectation of decreasing its recognition
time. In order to achieve its objective, this research proposed:
(i) a visual search model that can be guided by the bottom-up
or by the top-down mechanisms, or by both; (ii) a modified
version of the classic SURF recognition algorithm, that makes
possible that the recognition of an object occurs iteratively
and separately for each scene location selected by the visual
attention mechanism; (iii) an algorithm to measure the saliency
value of the pixels in an image, in order to guide the bottom-
up search mode; and (iv) an algorithm that prioritizes regions
of a scene according to how similar their characteristics are in
relation to the characteristics of the searched object, in order
to guide the top-down visual search.

The rest of this paper is organized as follows. Section 2
reviews related works. In Section 3, the scientific contributions
of our research are presented along with their experimental
results. Finally, Section 4 concludes the paper.



II. RELATED WORKS

A. Recognition of Object Instances
Our Thesis applied new visual search methods in the task of

recognizing object instances. This is a subtype of object recog-
nition in which it is aimed to recognize rigid instances of an
object. Although the generalization power of the recognition is
not explored in this kind of problem, this is an important pre-
processing step frequently used for higher level applications,
as class recognition [5], landmark recognition [6], content
based image/video retrieval [7] [8] [9], and others. Instance
recognition algorithms usually deal with challenges such as
changes in rotation, 3D viewpoint, scale and illumination.

The recognition of object instances can be decomposed into
three main steps: keypoint detection, feature description and
matching. The first one has the goal of detecting locations that
are easily identified in other images containing the same object
in different situations. In order to do this, blob-like structures
(bright regions that distinguishes from a darker background,
or the opposite) are detected in the image analysed. This step
usually considers a representation of the image into multiple
scales (scale-space function) followed by extrema point de-
tection in the scale-space function. Due to this treatment, the
recognition tends to become invariant to changes in scale; on
the other hand, this procedure makes this step computationally
very expensive, as it is needed to deal with multiple scale
representations for the same image.

In the feature description step, the characteristics of the
neighbourhood of each keypoint are extracted and a descriptor
vector is built. As an object may appear in different ori-
entations, and may be affected by changes in illumination,
a descriptor should be, at the same time, invariant to these
transformations and discriminative in relation to other objects.
This stage requires the estimation of a dominant orientation
to achieve orientation invariance, what also contributes to
increase the recognition processing time. Thus, the descriptor
is then built according to the estimated orientation using the
features extracted from the keypoint’s vicinity.

After the construction of the descriptors of all keypoints, a
matching can be made between the descriptors extracted from
the scene and the descriptors stored in a database representing
the searched object. Figure 1 illustrates the three steps of
object recognition described. After the matching step, one can
also verify if the matched keypoints from both images are
geometrically consistent (RANSAC [10] can be used for this).

B. Saliency detection
The saliency of the pixels or regions of an image is

computed by saliency detection algorithms. These methods
produce, as a result, a grayscale image, refereed as a saliency
map; this is usually done without previous information about
the analysed image, as its background or the position of its
objects. In a saliency map, light gray tones represent higher
saliency values, while darker tones indicate that a pixel has a
lower saliency. Figure 2 presents examples of saliency maps
produced by the saliency detector proposed in our Thesis and
by other different approaches.

(a) keypoint detection (b) feature description

(c) matching

Fig. 1. Object recognition main steps. In (a) and (b), red pixels highlight the
detected keypoints. In (b), the yellow grid represents the neighbourhood of a
keypoint used to build its descriptor vector. In (c), the descriptors from both
images are matched.

One can find in the literature saliency detection algorithms
based on different concepts. For example, the method proposed
by Itti, Koch and Niebur [16] aims to be biologically plausible.
Others are based on colour differences, such as the method
proposed by Achanta et al. [17], that computes the colour
distance between the main background of the scene and its
salient objects, or such as the proposal of Cheng et al. [13],
that initially segment the regions of the image and then
computes saliency based on the colour differences and on the
spatial distance between the segmented locations.

The works of Perazzi et al. [12] and Cheng et al. [18] also
segment the input image, but they combine the concepts of
unity and spatial distributions of the segmented regions. There
are also methods that compute saliency based on the Discrete
Cosine Transform (Hou, Harel and Koch [15]), and on an
image representation based on a Markov Chain (Jiang [14]
et al.). One can find a review and comparison of saliency
methods in the works of Borji et al. [19] [20].

C. Top-down visual attention methods

Unlike saliency detection, fewer algorithms based on the
top-down mechanism of visual attention have been proposed
in the literature, since top-down techniques are usually less
expansible, more complex to design and also more time
consuming [21], [22]. Other common problem of top-down
methods is that they frequently direct the search towards some
characteristics assuming that they attract human attention [23].
For example, person, car, and face detectors algorithms are
used to train top-down attention algorithms in the methods
proposed by Liu [2] and Borji [21]. This kind of approach
is limited to situations in which good performance detectors
of the searched object already exist, as it is the case of



(a) Original image (b) Mesquita [11] (c) Perazzi [12] (d) Cheng [13] (e) Jiang [14] (f) Hou [15]

Fig. 2. Example of an input scene (a), saliency maps produced by our method (b) and by algorithms proposed by other authors (c-f).

face detectors. Moreover, directing the search towards objects
assumed as attractive may increase the processing time of
the search if the object used to train the top-down attention
algorithm does not correspond to the searched object.

Lee et al. [24] proposed a unified visual attention model
(named as UVAM), that uses both top-down and bottom-
up information to speed-up object recognition. Bottom-up
attention is computed using the model proposed by Itti, Koch
and Niebur [16] and the top-down mechanism is evaluated
using partial results of the steps of keypoint detection and
description of object recognition. This algorithm contains a
preliminary recognition step, in which regions are prioritized
based on high level information. Then, the saliency map is
combined with the result of the preliminary recognition so
that a region of interest is selected as the attended region,
where a detailed recognition occurs. For the next iterations of
the search, the results of the (i) saliency map, (ii) preliminary
recognition and (iii) detailed recognition are combined to
define the new attended region where the complete recognition
occurs.

III. SCIENTIFIC CONTRIBUTIONS

The visual search proposed in this PhD Thesis differentiates
from other proposal in some aspects, which are presented in
this section. First, we propose a saliency detector algorithm
that achieved superior results than state-of-the-art methods
in the task of guiding the visual search. Very frequently,
the method proposed by Itti et al., although computationally
expensive, is used for this task. The second main difference of
our proposal is the fact that recognition occurs separately and
iteratively for each focused region of the scene, thanks to the
proposal of a patch-based version of SURF recognition algo-
rithm. The third difference to be highlighted is that our work
also presented a top-down mechanism that, differently from
other techniques: (i) does not require any specific detector
for the searched object, (ii) is efficient in terms of processing
time, since most of its computation time is executed as part of
the recognition process, and (iii) it also does not assume that
certain object, as faces or persons, are attractive.

A. Patch-based SURF

Differently from classical recognition algorithms, like
SURF [25] or SIFT [26], the patch-based SURF [11] divides
the image into N × N patches and the keypoint detection,
description and matching steps of object recognition are ap-
plied separately for each focused region. Thus, to define the

visitation order of the regions, the saliency map of the image
is computed and the patches are quicksorted in a descending
order of average saliency value for each region.

When a given patch of the scene z is focused to be processed
by patch-based SURF, keypoints are detected in z. To do
this, a scale-space function is built and the determinants of
a Hessian matrix are computed on the current patch and also
on each of its 8 neighbours whose determinants have not been
evaluated; this is important to guarantee that pixels sufficiently
near the patch border are not incorrectly detected just because
the determinants at neighbour patches were not computed yet.
After this, keypoints are finally localized by suppressing non-
maxima points in a 3 × 3 × 3 neighbourhood (considering
the current scale and adjacent scales above and below the
keypoint’s scale in the scale-space function) followed by
interpolation, but considering only locations of the focused
patch z. For more details about this process, one can see [11]
and [25].

Although patch-based SURF and SURF have similar recog-
nition accuracy, the advantage of patch-based SURF is that it is
faster if the searched object is detected in the analysed scene.
In this case, as it processes each image patch separately and
iteratively, a faster recognition is expected in case the target is
recognized before all patches are selected to be processed. It
was verified that by using patch-based SURF it was possible
to recognize objects using only 73% of the time require by
SURF. In this experiment, the visitation order of each image
patch was defined randomly, showing that just by processing
the input scene iteratively it is possible to speed-up the search
without decreasing the recognition accuracy. This and the
other experiments cited in this paper were performed using
the Object Recognition Database from PONCE research group
[27]. More information about this experiment and about the
proposed patch-based SURF can be found in [11].

B. Saliency detection: Background Laplacian Saliency

The saliency detector proposed herein, named Background
Laplacian Saliency (BLS) [11], evaluates global and local
saliency and combines them to achieve a final saliency map.
Based on our saliency method proposed in [28], BLS com-
putes saliency globally based on the estimative of the main
background colour, that is computed as follows. Firstly, to
disregard texture and noise, the image is convolved with a
5×5 Gaussian filter (σ = 1.1); by doing this, the image Igb is
generated. Then, Canny’s edge detector [29] is applied and the
Distance Transform is executed on the resulting edge image.



The distance transformed image (DT) is used to assign higher
weights to pixels far from edges; by doing this, it is expected
to bias the main background colour to the colours of large
homogeneous regions. Thus, the Distance Transform Global
Saliency (DTGS) is computed as:

DTGS(x, y) = ||Iµ − Igb(x, y)||, (1)

where Iµ = [IµL
IµA

IµB
]t is the image mean feature vector

in the Lab colour system, with each colour component of Iµ
being defined based on the weighted average of the pixels in
the DT image. Thus, each colour component in Iµ is evaluated
as

Iµc
=

∑m−1
x=0

∑n−1
y=0 Igb(x, y, c) ·DT (x, y)∑m−1
x=0

∑n−1
y=0 DT (x, y)

. (2)

where n and m are the height and the width of the image,
Igb(x, y, c) is value of the pixel of Igb at position (x, y)
and at colour channel c, while DT stands for the distance
transformed image.

Since DTGS can disregard regions that, although being
locally salient, do not stand out globally, the proposed method
also uses the image’s second derivative to detect salient regions
locally. In order to do this, the Laplacian filter is applied at
each colour channel of Igb, and the arithmetic mean between
L, a and b components is defined as the local saliency of each
pixel. This is resumed as

LS(x, y) = g(x, y) ∗ (1/3
3∑
c=1

(L(x, y) ∗ Igb(x, y, c))), (3)

with L representing the Laplacian kernel, while ∗ is the
convolution operator and c is each colour channel used (L, a
or b). The Gaussian kernel g is also used to detect saliency in
a sparse way. Finally, we combine DTGS and LS to achieve
the final saliency map (BLS), as:

BLS(x, y) = (DTGS(x, y) + LS(x, y))/2. (4)

Figure 3 shows the saliency maps produced by BLS and other
four saliency detection algorithms using images from PONCE
dataset.

Using BLS saliency maps to guide the search executed
by patch-based SURF, the recognition time was decreased,
in average, to only 53% of the processing time of classic
SURF. Besides that, the visual search guided by BLS was
faster than using other nine saliency detection algorithms. This
experimental results and more information about BLS can be
found in [11].

C. Integration Between Bottom-up and Top-Down Visual At-
tention

Differently from the bottom-up search, when a top-down
mechanism is used it is aimed to direct the search towards
regions that resembles the searched object. In our work, this is
done by first, in a training phase, constructing a neighbourhood
of the descriptors of the searched object. Then, in the test
phase, when a scene is analysed, the descriptors that are
presented in the neighbourhood are prioritized according to

Fig. 3. Saliency maps produced by BLS [11] and other state-of-the-art
saliency detection algorithms (SIG [15], GC [18], RC [13] and HC [13]).

their Hamming distance to the descriptors of the searched
object. In [23], we proposed an algorithm that generates the
neighbourhood of a descriptor using the Depth First Traversal
in a Tree representation of this same neighbourhood. Each
descriptor of the neighbourhood is then represented in a
probabilistic data structure called Bloom Filter [30].

When the bottom-up and top-down methods are integrated,
the patch-based SURF is used to allow the processing of
each image region separately and a saliency map is used
to define the visitation order of the patches of the scene.
However, once a given patch is selected to be processed,
only the detection and description phases are executed. Then,
instead of executing the matching with all descriptors of the
selected patch, the top-down attention method is applied to
prioritize the descriptors of the focused patch according to the
similarity of each descriptor to the descriptors of the searched
object. If the object is found using only prioritized descriptors,
the search ends without processing neither the rest of the
descriptors of the current patch, nor the remaining patches
of the scene. Otherwise, if the object is not found, but if
there is at least one matching between the descriptors of the
scene and the searched object, a refinement of the matching is
executed, when all remaining descriptors of the current patch



are considered in a new matching step.
In the case that no descriptor is sufficiently similar to the

descriptors of the searched object, the algorithm considers that
the target is probably not localized in the current region; then,
the search proceeds to focus on the next more salient patch,
and the descriptors are stored in memory to be used in a final
matching step. This final matching is executed in the situation
in which all patches are processed and the object is not
recognized. Storing the descriptors not used in the matching
step of a given patch to be matched after all patches are visited
is important to guarantee that the top-down attention stage
does not affect the recognition accuracy.

The advantage of integrating the bottom-up and top-down
searches is that it defines the region to be focused based on
the saliency of the scene (which is usually much faster to
compute than recognition algorithms), without the need to
execute any step of the recognition process. Moreover, the
top-down attention, which is slower, but theoretically more
accurate than bottom-up methods, makes it possible that the
focused patch may be discarded before the execution of the
matching step of the recognition if the descriptors of the
focused patch are evaluated as not being sufficiently similar
in relation to the descriptors of the searched object. Moreover,
the top-down mechanism also decreases the processing time
by prioritizing the descriptors that are more similar to the
searched object.

In our Thesis, we have verified experimentally that, by using
the integration between the bottom-up and top-down methods,
the recognition time was decreased, in average, to only 44%
of the processing time of classic SURF. In the worst case, our
proposal requires 66% of the processing time of the Unified
Visual Attention Model [24], which also integrates bottom-up
and top-down attention mechanisms.

IV. CONCLUSION

Our Thesis explored the connection between visual attention
and object recognition. The proposed bottom-up method uses
a saliency map to guide the search for an object, so that
locations that are more salient are prioritized. A major benefit
of this approach is that it requires a very low fixed cost to
define the visitation order of the scene, since the saliency map
can be computed before all steps of the recognition process.
Ten different saliency algorithms were tested in the proposed
visual search and it was experimentally shown that seven of
them outperformed a random search, showing the feasibility
of using saliency maps to guide the visual search. Moreover,
the proposed BLS outperformed the other saliency detectors in
this task. On the other hand, it was also shown that the other
three methods achieved equal or worse performance than a
simple random search, what highlights the importance of using
saliency algorithms of high accuracy and low processing time.

In the proposed top-down visual search, the visitation order
of the scene is influenced by knowledge (which represents
the set of neighbours descriptors of the searched object) and,
consequently, by the goal of finding the target in the scene.
Due to this, the search is directed towards regions of the

scene that are similar to the characteristics of the searched
object. Therefore, our top-down proposal is able to decrease
the matching step of the recognition.

On the other hand, this approach has the drawback of
requiring that keypoint detection and description steps of
recognition are computed before the application of the top-
down attention to prioritize scene descriptors in the matching
step. This is different from the bottom-up search, in which the
visitation order of the scene is defined before the recognition
process, but, on the other hand, the search is directed based
only on the saliency of the scene, without taking into account
the characteristics of the searched object. Due to this, although
the top-down method has proven to be efficient in prioritizing
descriptors to the matching step, it achieves a worse processing
time if compared to the bottom-up search.

Finally, when both methods are integrated, the recognition
is faster than when both methods are used separately. this is
explained by the fact that the definition of the visitation order
of the regions can be executed by a saliency map, before any
step of the recognition process and, in addition, if the top-down
method does not consider that the characteristics of the focused
patch are not sufficiently similar to the characteristics of the
searched object, the attended patch is not further processed
and other region is focused according to the saliency of the
scene.

A. publications

As results of the research conducted for this Thesis, one
book chapter, one journal and two conference papers were
published. These publications are directly related to this re-
search, and are listed below:

• Journal:

– R. G. Mesquita and C. A. B. Mello, “Object recog-
nition using saliency guided searching”, Integrated
Computer-Aided Engineering, vol. 23, no. 4, pp.
385–400, 2016. (Qualis A1, Impact Factor: 5.264)

• Conferences:

– R. G. Mesquita and C. A. B. Mello, “Segmentation
of natural scenes based on visual attention and gestalt
grouping laws”, in IEEE International Conference on
Systems, Man, and Cybernetics, Manchester, SMC
2013, United Kingdom, October 13-16, 2013, 2013,
pp. 4237–4242. (Qualis A2)

– R. G. Mesquita, C. A. B. Mello, and P. L. Castilho,
“Visual search guided by an efficient top-down atten-
tion approach” in IEEE International Conference on
Image Processing, 2016, pp. 679–683. (Qualis A1,
H5-index: 35)

• Book Chapter:

– R. G. Mesquita and C. A. B. Mello, “New de-
velopments in visual attention research”, in Object
Recognition Guided by Visual Attention Algorithms,



1st ed. Nova Science Publishers, 2017, vol. 1, ch. 2,
ISBN: 978-1-53612-374-6 2.

In addition, the following works involving visual attention
or visual perception were published during the course of this
doctorate:

• Journals:
– R. G. Mesquita, C. A. B. Mello and L. H. E. V.

Almeida, “ A New Thresholding Algorithm for Doc-
ument Images Based on the Perception of Objects by
Distance”, Integrated Computer-Aided Engineering,
vol. 21, no. 2, pp. 133-146, 2014. (Qualis A1,
Impact Factor: 5.264)

– R. G. Mesquita, R. M. A. Silva, C. A. B. Mello
and P. B. C. Miranda, “Parameter tuning for docu-
ment image binarization using a racing algorithm”,
Expert Systems with Applications, vol. 42, no. 5,
pp. 2593–2603, 2015. (Qualis A1, Impact Factor:
3.928)
∗ In this paper an improvement of our threshold

algorithm based on visual perception was pre-
sented. It achieved the first place in the H-DIBCO
(Handwritten Document Image Binarization Con-
test) [31].

• Conference:
– R. G. Mesquita and C. A. B. Mello, “Finding Text

in Natural Scenes by Visual Attention”, in IEEE
International Conference on Systems, Man, and Cy-
bernetics, Manchester, SMC 2013, United Kingdom,
October 13-16, 2013, 2013, pp. 4243–4247. (Qualis
A2)
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