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Abstract—In this thesis, we designed and developed approaches
for solving Image and Video Phylogeny problem, in which we aim
at finding the ancestral relationship between the near duplicates
and the original source of images and videos. For images,
we proposed approaches to deal with the phylogeny problem
considering two main points: (i) the forest reconstruction, an
important task when we consider scenarios in which there is a set
of semantically similar images, but generated by different sources
or at different times; and (ii) new measures for dissimilarity
calculation between near-duplicates, given that it directly impacts
the quality of the phylogeny reconstruction. For video phylogeny,
we developed a new approach to temporally align two video
sequences before calculating the dissimilarity between them as,
in real-world conditions, a pair of videos can be temporally
misaligned, one video can have some frames added or removed
and compression can also take place, for instance.

I. INTRODUCTION

Multimedia documents (e.g., images and videos) are
powerful communication tools living up to the classical
adage comparing them to a thousand words when conveying
any information. This communication power was multiplied
significantly with the advent of social networks. Within this
new reality, multimedia documents are published, shared,
modified, and often republished effortlessly and, depending
on their contents, they can easily go viral, being republished
by many other users in different channels trough the Web.
This scenario easily leads to copyright infringement, sharing
of illegal or abusive contents (e.g., child pornography) and, in
some cases, negatively affect or impersonate the public image
of people or corporations.

When small changes are applied during the redistribution,
usually without interfering with their semantic meaning,
they are called near-duplicate objects [1]. A far more
challenging task, however, has been overlooked thus far
in which we also want to find the ancestral relationship
between the near duplicates and the original source (root or
patient zero), estimating the transformations (e.g., geometric
transformations, cropping, color changing, compression, etc.)
that originally created the near duplicates in a set and
reconstruct the order of them. This new research field is
called Multimedia Phylogeny [2] and has several applications.
For instance, the relationship structure of a set of documents
provides information of suspects’ behavior, and points out
the directions of content distribution; traitor tracing can
be performed without the requirement of source control
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techniques such as watermarking or fingerprinting; we could
use phylogeny to point out group’s reuse of illegal material
online.

The multimedia phylogeny problem can be separated into
two basic steps: the dissimilarity calculation between the
duplicates, in which a dissimilarity function is used to
compare each pair of images, returning small values for
similar images and large values for more distinct images, and
the phylogeny reconstruction, considering one dissimilarity
matrix that represents the dissimilarity between each pair of
documents [2]. The definition of reliable dissimilarity measure
is paramount for document phylogeny research, given that the
dissimilarity calculation directly affects the result of the final
phylogeny reconstruction.

In this thesis, we designed and developed some solutions
that aim at solving the multimedia phylogeny problem for
images and videos. More specifically, for images, we present
solutions that aim at reconstructing phylogeny trees and
forests for representing the relationship between the duplicates.
Moreover, we also develop new dissimilarity measures based
on gradient and mutual information that significantly improve
the quality of the phylogeny reconstruction process. Finally,
for video phylogeny, we introduce new methods considering
the temporal misalignment of the videos and different
parameters of coding used for creating the near duplicates.

This paper is structured as follow. Section II presents
a background for Multimedia Phylogeny. Section III
describes the proposed solutions for image phylogeny forest
reconstruction. In Section IV, we present new dissimilarity
measures for image phylogeny. Proposed solutions for video
phylogeny are described on Section V. Finally, we present the
conclusions and the obtained publications on Section VI.

II. BACKGROUND

The main hypothesis of Multimedia Phylogeny assumes
that the transformations (e.g., color changing, compression,
geometric transformation, cropping, etc.) used for creating
near duplicates of a document (image or video) often leave
irreversible artifacts in the data that allow us to point out
the direction of the transformations that the documents have
undergone and, ultimately, create a phylogeny map coding the
evolutionary structure of such a set of documents.

Dias et al. [2], [3] formally defined the problem of
Image Phylogeny following two steps: the calculation of the
dissimilarity between each pair of near-duplicate images and
the reconstruction of the phylogeny tree. Considering T a
family of image transformations, T a transformation such that
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Fig. 1. Dissimilarity calculation process. The mapping of image Isrc onto
Itgt’s domain involves a three-step process: geometric, color and compression
matching. Afterwards, it is possible to directly compare the images using any
point-wise comparison algorithm.

T−→
β
∈ T parameterized by

−→
β , and two near-duplicate images

Isrc (source) and Itgt (target), the dissimilarity function d(., .)
between them is defined as the lowest value of d(Isrc, Itgt),
such that

d(Isrc, Itgt) = min
T−→

β
∈T
|Itgt − T−→β (Isrc)| point-wise comparison L.

(1)
Equation 1 calculates the dissimilarity between the best

transformation mapping Isrc onto Itgt parameterized by
−→
β ,

according to the family of transformations T . The comparison
between the images can be performed by any point-wise
comparison method L.

Given a set of near duplicates, the estimation of the
transformation T , parameterized by

−→
β used to map an image

Isrc onto an image Itgt’s domain follows a three-step method
generating I ′src = T−→

β
(Isrc):

1) Geometric matching: also known as Image
Registration. The image registration is calculated
by finding interest points in each pair of images, using
SURF (Speeded-Up Robust Features) [4], which will
be used to estimate warping and cropping parameters
robustly using RANSAC [5];

2) Color matching: it is performed for adjusting the color
of the source image Isrc to the target image Itgt by
normalizing each channel of Isrc by the mean and
standard deviation of the respective channel in Itgt [6];

3) Compression matching: the image Isrc is compressed
with Itgt’s JPEG compression parameters.

Then, a comparison between the estimated I ′src =
T−→
β
(Isrc) and Itgt is performed point-wise. The authors

estimated it using the Mean Squared Error (MSE) technique.
Figure 1 depicts this dissimilarity calculation process.

Note that the dissimilarity is not a metric. Once the
transformation T used for mapping Isrc to Itgt can insert
irreversible artifacts in Isrc for mapping it to Itgt (e.g.,
remove pixels after spatial cropping, JPEG compression, etc.)
the inverse transformation T−1 will not recover the lost
information when performing the mapping in the opposite
way. Thus, d(Isrc, Itgt) 6= d(Itgt, Isrc). Low values of
d(Isrc, Itgt) denote a good transformation and the resultant

image I ′src is a close approximation of Itgt, which is a strong
evidence that Isrc is the father of Itgt in the phylogeny tree.

After calculating the dissimilarity for each pair of images,
we have a dissimilarity matrix Mn×n, where n is the number
of near duplicates and each position of the matrix represents
the dissimilarity between one pair of images.

For reconstructing the Image Phylogeny Tree (IPT)
associated with the dissimilarity matrix, the authors first
proposed the Oriented Kruskal algorithm (OK), an extension
of the classic Kruskal Minimal Spanning Tree algorithm [7],
adapted for oriented graphs.

Since the first work in image phylogeny [3], several
branches to this research field have been developed for image
phylogeny [8]–[10], videos (Video Phylogeny) [11] and audio
phylogeny [12]. In addition to our pioneer work in this field,
there are other important works in the literature following a
similar trend in the literature, aiming at finding the structure
of the evolution of images on the Internet [13]–[15].

III. IMAGE PHYLOGENY FOREST RECONSTRUCTION

In some cases in multimedia phylogeny, instead of one tree,
we may find m trees representing the ancestry relationship
in a set of near-duplicate images. This happens when we
have multiple images with the same semantic content, but
that are not directly related to each other (e.g., images from
the same scene taken with different cameras or in slightly
different positions). In this case, each tree in the forest
represents the structure of transformations and the evolution
of one subset of near-duplicate images, while the forest
comprises distinct subsets of near-duplicate images which are
semantically similar.

To enable automatic IPF reconstructions, Dias et al [16]
presented a modified version of the Oriented Kruskal
algorithm originally used to reconstruct IPTs. To create the
new approach, named Automatic Oriented Kruskal (AOK),
three parameters are required as input: the number of
semantically similar images n, an n × n dissimilarity matrix
M built upon these images and a parameter γAOK, calculated
beforehand and defined as the number of standard deviations
used to limit the number of edges to be included in the forest.

The AOK algorithm keeps track of the variance of processed
edges and only adds a new one to the forest if the weight
of the current edge is lower than γAOK times the standard
deviation of the processed edges up to that point. This
parameter γAOK is related to a threshold point τAOK that
selects only edges that belong to valid trees. To define its
value, a study about the behavior of the dissimilarity values
of valid trees and forests was performed. It was observed
that a Log-Normal distribution can reasonably describe the
data regardless of the number of trees in the forest and the
type of image capture (single/multiple cameras). The threshold
τAOK = µAOK+γAOK×σAOK was used, where µAOK represents
the average and σAOK, the standard deviation of the weight of
the edges already selected. After testing for different values,
it was defined that γAOK = 2.



Following this idea, we apply a similar process to the
Optimum Branching (OB) algorithm [17], proposing the
Automatic Optimum Branching algorithm (AOB), with the
necessary modifications to deal with its particularities. In a
few words, we create an optimum tree considering the OB
algorithm and select the edges of the forest as is done for the
AOK algorithm, but considering the edges of the optimum tree
instead all the edges of the graph.

After some experiments, we noticed that the IPF
reconstruction could be further improved by also executing the
OB algorithm on each tree belonging to this forest recursively.
The AOB algorithm considers all edges to construct the
minimum branching. Once we remove some edges to build
the forest, we create several partitions that are independent
of each other. If these partitions are analyzed separately,
the OB algorithm will choose edge connections that are
optimal considering only the edges that belong to the
current partition. This re-execution characterizes our Extended
Automatic Optimum Branching (E-AOB) algorithm.

Considering a dissimilarity matrix M , AOK algorithm
follows a greedy heuristic, while AOB and E-AOB searches
for the best global solution for the phylogeny reconstruction.
However, all these algorithms assume a perfect dissimilarity
calculation, which is not always true, since the dissimilarity
calculation involves the estimation of the transformations that
map a source image onto a target image, which is not exact.
Thus, in some cases, a greedy heuristic may present better
results than a global solution. Aiming at exploring these
different properties and their complementarity, we propose a
combination among the results given by each approach, in
such a way that errors introduced by one method can be fixed
by other method(s).

First, we apply different amounts of perturbations through
noise addition to the dissimilarity matrix M relating a set of
images, generating 100 different variations of M and using
them to reconstruct the IPFs. Once the number of roots and
edges for all forests have been found, we calculate the final
number of roots r by choosing the median of the number of
votes received by all methods in each of the 100 executions.1

Then, to decide which nodes are the roots, we select the r
nodes having the highest number of votes. In case there is a
tie among the votes, we randomly choose one or some of them,
depending on how many roots are yet to be decided. For the
edges selection, we sum up the number of times each edge
connecting two nodes in each forest appears, constructing a
matrix of votes for edges. Once the roots are chosen, we fix
these roots and give the matrix of votes for edges as input
to a maximum branching algorithm, resulting in the sought
combined forest.

A. Experiments and results

For evaluating the proposed methods, we proposed a dataset
that comprises images randomly selected from a set of

1There are several alternative strategies to calculate r, such as the average
and the most frequent values. In our experiments, the median presented better
results during training, but there is still room for further exploration.

20 different scenes, 10 different cameras, 10 images per
camera, 10 different tree topologies, 10 random variations
of parameters for creating the near duplicate images. We
consider images taken with a single camera (OC) and with
multiple cameras (MC) having similar scene semantics (the
main content of the image is the same, but with small
variations in the camera parameters, such as viewpoint, zoom,
etc.). For generating the near duplicates, we considered the
following transformations: resampling, rotation, scaling, off-
diagonal correction, cropping, brightness, contrast and gamma
correction and re-compression.

For evaluating the reconstructed IPFs, we consider the
scenarios where the ground truth is available. We use the
following evaluation metrics: roots, which measures if the
reconstructed forest contains exactly the same roots as the
ground-truth forest; edges, which measure how well the
algorithm finds the kinship relationships between two near
duplicates; leaves, which compares the leaves (most modified
images in a given branch of the tree) found by an algorithm
with the original ones in the ground-truth; and ancestry, which
measure how well the algorithm finds the kinship relationships
along the whole tree.

Table I shows the results of the phylogeny reconstruction,
considering 10 trees for each forest (other results can be found
in the thesis). Using the AOK method as baseline, these results
show that AOB is only able to improve the results of AOK
regarding the metrics edges and leaves. On the other hand,
the results confirm the E-AOB method has better performance
than the AOK method. Furthermore, Table I shows that we
can improve the results when combining different approaches
for the phylogeny reconstruction.

IV. NEW DISSIMILARITY MEASURES FOR IMAGE
PHYLOGENY RECONSTRUCTION

Given that the dissimilarity calculation directly impacts the
phylogeny reconstruction, we propose new approaches to the
standard formulation of the dissimilarity measure employed in
image phylogeny, aiming at improving the reconstruction of
the tree structure that represents the generational relationships
between semantically similar images.

a) Gradient Comparison: As contrast enhancement and
color transformations are often used when creating near
duplicates, directly affecting the gradients of the image, this
becomes an important information to add to the dissimilarity
calculation. Here we filter an image by using a convolution
with a 3× 3 Sobel kernel [18] for gradient estimation, while
the image comparison metric L stays the same (i.e., Minimum
Square Error) 2. We considered each color channel separately
and the final phylogeny is the average of MSE for each
channel.

b) Mutual Information Comparison: in Information
Theory, mutual information (MI) is a measure of statistical
dependency of two random variables, which represents the

2We performed exploratory experiments with different sizes o Kernel and
also with Histogram of Oriented Gradient [19], but these approaches reported
lower effectiveness comparing to Sobel’s filtering.



TABLE I
COMPARISON AMONG AOK [16], THE VARIATIONS OF AOB ALGORITHM AND THE FUSION APPROACH

AOK AOB E-AOB Fusion approach
Roots Edges Leaves Ancestry Roots Edges Leaves Ancestry Roots Edges Leaves Ancestry Roots Edges Leaves Ancestry

OC 0.755 0.883 0.854 0.784 0.682 0.898 0.877 0.793 0.802 0.908 0.890 0.823 0.796 0.909 0.890 0.820

MC 0.885 0.888 0.862 0.859 0.768 0.896 0.875 0.852 0.909 0.908 0.889 0.886 0.917 0.910 0.891 0.890

amount of information that one random variable contains about
the other [20]. Calculating the mutual information of two
duplicates instead MSE let us avoiding effects caused by slight
misalignment during the mapping.

c) Gradient Estimation and Mutual Information
Combined: first, we calculate the gradient of the images
I ′src and Itgt as we described before. Afterwards, we
compare the gradient of both images with mutual information,
instead of using the image comparison metric L based on
the standard Minimum Square Error. With this approach,
we aim at better capturing the information about variation
in certain directions of the image (gradient information),
as well as at seeking to avoid effects caused by slight
misalignments during the mapping (mutual information
estimation). This method also takes into consideration the
amount of texture information preserved between two near
duplicates for calculating the dissimilarity. Unfortunately,
the combined method slightly increases the computational
cost of the dissimilarity calculation, given that we need to
estimate the mutual information after the gradient calculation
for each color channel. However, this method yields better
reconstruction results.

A. Experiments and results

Table II presents the results for the different approaches
considered herein for calculating the dissimilarities for OC
and MC scenarios. In all cases, the geometrical mapping of
one source image onto a target image is performed following
the procedure discussed in the beginning of Section II. The
phylogeny reconstruction part uses the E-AOB algorithm for
all methods. For this experiment, we considered the dataset
described on Section III-A. Here, we considered phylogeny
forests with 10 trees (additional results are described in the
thesis).

The baseline dissimilarity calculation considered is the
MSE, the state of the art, which compares two images point-
wise using the pixel intensities. The proposed modifications
are:

1) Gradient estimation (GRAD), which still compares the
images point-wise but using image gradients instead of
pixel intensities;

2) Mutual information (MINF), which replaces the point-
wise comparison using pixel intensities with the mutual
information calculation of pixel intensities;

3) Gradient estimation plus comparison with mutual
information (GRMI), incorporating the calculus of
dissimilarities using mutual information of image
gradients.

TABLE II
COMPARISON BETWEEN DIFFERENT DISSIMILARITY MEASURES,

CONSIDERING FORESTS WITH 10 TREES AND E-AOB PHYLOGENY
RECONSTRUCTION ALGORITHM.

One Camera Multiple Cameras
Roots Edges Leaves Ancestry Roots Edges Leaves Ancestry

MSE 0.802 0.908 0.890 0.823 0.909 0.908 0.889 0.886

GRAD 0.630 0.805 0.803 0.638 0.645 0.808 0.806 0.653

MINF 0.664 0.940 0.927 0.761 0.890 0.949 0.937 0.889

GRMI 0.906 0.962 0.954 0.922 0.958 0.965 0.956 0.949

The GRAD approach only captures directional variations
and small misalignment when comparing two gradient images
affect the results more than when comparing the images
through pixel intensities. With MINF, small misalignment
are not as important as for the GRAD case. The results
improve when combining the gradient calculation with mutual
information (GRMI). The first reason is that, by not comparing
the pixel intensities directly, the color information artifacts are
not as strong. Second, the comparison is not done in a point-
wise fashion but rather, in a probability distribution-like form,
better capturing the different variations of the gradient images
as well as accounting for possible small misalignment.

V. VIDEO PHYLOGENY

Considering videos, Dias et al. [11] proposed an initial
approach to deal with the video phylogeny tree reconstruction
problem. However, only temporally coherent videos (i.e.,
temporally aligned videos with the same number of frames)
were considered thus far. Furthermore, the authors considered
only videos compressed with the same standard and
parameters without explicitly taking into account any other
compression scheme in their reconstruction pipeline.

To deal with these more challenging setups, we propose
a modification to the pipeline used in [11] for solving the
problem of VPT reconstruction. To compute dissimilarity, it
is necessary to achieve temporal synchronization and estimate
T−→
β

.
We proposed the using of two different methods for

temporal alignment for videos. For the first method, we
resort to a 1-dimensional description of a video over time,
obtained through computing the difference between the
average of luminance values of adjacent frames of a video and
estimating the phase-correlation between them. The index of
the highest value of the phase-correlation indicates the number
of misaligned frames. With this, temporally align the videos
becomes straightforward. Unfortunately, this method works



only in cases we have temporal clipping only in the beginning
or the end of the video sequence.

The second alignment method addresses this problem as
follows: first, we extract 64 Discrete Cosine Transform (DCT)
coefficients and compute a binary hash for each group of
frames of the video sequence, binarizing the DCT coefficients
according to their median value. By calculating the Hamming
distance for every pair of clusters of two sequences, we obtain
a distance matrix in which it is stored the Hamming distances
of all pairs of clusters, respecting their temporal order. Figure 2
shows examples of such distance matrices. The axes represent
two video sequences, and darker colors mean lower values for
Hamming distance between them. Note that low values in the
matrices are found to be aligned along a segment. The higher
the number of matching frames, the longer the “dark blue”
segment.
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Fig. 2. Example of distance matrices, in which (a) both video sequences
do not have temporal clipping and (b) Sequence 2 has temporal clipping in
the end; and (c) Sequence 2 has temporal clipping in the middle. The axes
represents the index of the groups of 64 frames for each video.

Finally, given a distance matrix, we extracted the matching
blocks of near-duplicates and, for each matching block and we
execute, for each correspondent block of frames, the temporal
alignment based on phase correlation.

After synchronize the videos, we estimate T−→
β

as is
done for images, but considering only the selected frames
after alignment. The geometric and color matching steps
are performed for each correspondent frame separatelly. We
proposed a coding/compression matching for videos, in which
a video Vsrc is encoded using the same coding scheme and
parameters used to encode the video Vtgt. This transformation
is denoted as Tcod. We consider that the bitstream of Vtgt is
available, thus the used codec, quantization parameter (QP),
group of pictures (GOP) size (i.e., the distance between
consecutive intra-coded frames) can be extracted from header
information. Nonetheless, if this is not possible (e.g., the
bitstream is not available, the video is distributed in the
decoded domain, etc.) these parameters can be estimated
according, for instance, to [21], [22].

After the aforementioned transformations are estimated,
they are stacked up to obtain T−→

β
. Dissimilarity is finally

computed according to Eq. (1), by averaging the frame-wise
MSE computed only on ND frame pairs selected during the
video temporal alignment step 3. Then, a phylogeny tree is

3Due to the computational cost of GRMI dissimilarity for images, we decide
to use MSE dissimilarity measure for videos.

reconstructed using the optimum branching algorithm [17].

A. Experiments and results

The validation of the proposed video phylogeny tree
reconstruction algorithm was carried out on a set with
300 phylogeny trees comprising a total number of 3,000
near-duplicate videos. More specifically, we started from
eight well known uncompressed sequences at CIF resolution
(i.e., 352 × 288 pixels) of 300 frames each4. Then, for
creating the duplicates, we considered the following possible
transformations: contrast enhancement, brightness adjustment,
spatial cropping and spatial resizing in any combination. As
video codecs, we selected MPEG-2, MPEG-4 Part 4, and
H.264/AVC.

We separated the into three subsets: near duplicates without
any temporal clipping (Dno clip), near duplicates with possible
temporal clipping but only at the beginning or at the end of the
stream (Dno clip) and near duplicates with temporal clipping in
the middle of the stream (Dclip middle). We consider 100 trees for
each one of five different scenarios and probability of temporal
clipping and frame rate changing of 50%.

To estimate the effectiveness of the estimated phylogeny
trees, we used the following metrics: root, edges,leaves,
ancestry. We also consider a new metric depth, which indicates
the depth of the ground truth root in the reconstructed tree.

Aiming at evaluating the importance of temporal alignment
and compression matching, Table III clearly shows the need of
explicitly considering coding, temporal clipping and temporal
alignment in the reconstruction process. As a matter of
fact, when these operations are not taken into account, the
reconstruction accuracy drops significantly.

TABLE III
RESULTS OBTAINED WITH AND WITHOUT TEMPORAL ALIGNMENT AND

CODING MATCHING.

Alignment Coding matching Dataset Root Depth Edges Leaves Ancestry

None No Dno clip 0.63 0.50 0.77 0.83 0.67

Phase-correlation No Dno clip 0.63 0.50 0.77 0.83 0.67

Phase-correlation Yes Dno clip 0.87 0.14 0.84 0.86 0.81

Hash-based No Dno clip 0.65 0.44 0.78 0.83 0.70

Hash-based Yes Dno clip 0.69 0.40 0.78 0.83 0.71

None No Dclip border 0.60 0.72 0.66 0.74 0.56

Phase-correlation No Dclip border 0.71 0.35 0.79 0.83 0.72

Phase-correlation Yes Dclip border 0.84 0.17 0.86 0.90 0.83

Hash-based No Dclip border 0.71 0.33 0.81 0.85 0.74

Hash-based Yes Dclip border 0.66 0.40 0.78 0.82 0.72

Phase-correlation No Dclip middle 0.62 0.56 0.72 0.76 0.63

Phase-correlation Yes Dclip middle 0.72 0.39 0.80 0.83 0.70

Hash-based No Dclip middle 0.67 0.45 0.76 0.79 0.69

Hash-based Yes Dclip middle 0.66 0.47 0.77 0.81 0.70

Hash-based alignment has lower performance when
considering the coding matching, compared to the alignment
based on difference of luminance. One justification for these
results is the nature of video compression. Considering that

4Available at https://media.xiph.org/video/derf/



some frames can be discarded, the inter-frame compression
may not be assigned correctly. Updated results shows that
using only intra-frame protocol for compression matching
increases the results.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this thesis, we introduced four techniques for solving
the image and video phylogeny reconstruction problems.
For image phylogeny, our contributions focus on solving
two main problems: the phylogeny forest reconstruction and
dissimilarity calculation for each pair of compared images.
In video phylogeny, we introduced two approaches to video
phylogeny tree reconstruction starting from the analysis of
a pool of near-duplicate video sequences, accommodating
the cases of time clipped, misaligned and compressed video
sequences.

Each one of the proposed methods has its scientific
contributions, as well as its own limitations. Therefore, it is
important to develop and combine complementary solutions
in order to better reconstruct image and video phylogenies.
For future research, we suggest the analysis of the behavior
of the phylogeny algorithms using other statistical measures,
to consider other types of image and video transformations,
consider spatio-temporal features for dissimilarity calculation
and investigate different phylogeny reconstruction strategies.

Scientific production

Finally, this research has results in the following
publications:
• Costa et al. (2014). Image Phylogeny Forest

Reconstruction. IEEE Transactions on Information
Forensics and Security (T-IFS), vol. 9, n.10, pp.1533–
1546. (Impact Factor: 4.332)

• Costa et al. (2015). Phylogeny reconstruction for
misaligned and compressed video sequences. IEEE
International Conference on Image Processing (ICIP). pp.
301 – 305.

• Costa et al. (2016). Hash-Based Frame Selection
for Video Phylogeny. IEEE Workshop on Information
Forensics and Security (WIFS), pp. 1–5.

• Costa et al. (2017). New dissimilarity measures for image
phylogeny reconstruction. Accepted on Springer Pattern
Analysis and Applications (PAA). DOI: 10.1007/s10044-
017-0616-9 (Impact Factor: 1.352).
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