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Abstract—Researchers in the fields of Computer Vision and
Pattern Recognition have been trying to tackle the problem of
scene recognition for many years. Several approaches rely on the
assumption that object-level information can be highly discrimi-
natory, which has been extensively validated in the literature. We
propose an approach that merges sparse semantic segmentation
features with object features, composing a sparse representation
of feature segments, as an attempt to represent the composition
of objects of a given scene. Our premise is that by adding sparsity
constraints to a semantic segmentation feature, we represent a
small amount of well chosen objects or parts of objects. We
expect this will add robustness to the final feature, since it
will recognize a given scene by its most distinctive segments,
thus increasing the generalization power of the representation.
According to our results, the methodology seems promising, but
it is strongly affected by the poor performance of segmentation
features on classes containing small objects.

I. INTRODUCTION

Scene recognition is one of the main challenges in both
fields of Computer Vision and Pattern Recognition, and it is
considered one of the most difficult classification tasks. As
defined by [1], a scene consists in places where humans can
act within or navigate. Therefore the capacity to distinguish
between the vast amount of existing classes is highly relevant
for most applications that intend to operate in the real world.
And although there are approaches that surpass human level
accuracy [2], it is still regarded as an open challenge.

Several approaches to solve the problem of scene recogni-
tion propose the use of Convolutional Neural Network (CNN)
features, since they have shown an outstanding performance
for a myriad of problems, such as face detection and recogni-
tion [3], image super resolution [4], semantic image segmen-
tation [5], to name a few. However, due to the large diversity
of scene images, the process of automatic feature learning is
much more challenging, requiring large-scale datasets in order
to achieve reasonable accuracy [6]. Throughout the years,
researchers have found that object-level information can be
highly beneficial in the context of scene understanding, being a
valuable addition to CNN features, specially for indoor scenes
[2], [7]. The rationale is that besides the constituent objects,
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the image of a room (i.e., an indoor scene) is similar to every
scene and it is hard to distinguish among them.

Our approach is based on the assumption that characterizing
a small amount of well chosen objects produces a robust
representation, since it will rely only on the most distinctive
objects of a given scene. To achieve the desired effect, we are
leveraging sparse segmentation features along with object fea-
tures to compose a sparse representation of feature segments.
In other words, instead of modeling a dense representation of
the entire scene, we add sparsity constraints to the semantic
segmentation latent representation, thus selecting only a small
amount of segments or parts of segments. Afterwards, we
merge this output with object features, in order to charac-
terize only the selected segments. We expect this proposal
to produce a sparse composition of objects, in a way that is
both discriminatory between scene classes, and robust to either
perturbations in the input image or high intra-class variability.

In this work we assess the quality of both features that
compose our model (i.e., semantic segmentation and object
characterization), and propose a naive approach that merges
both features, in order to evaluate how promising this proposal
is. To do so, we chose the dataset entitled MIT67 [8], a known
benchmark for indoor scene recognition. After performing
a per-class assessment on the accuracy of our method, its
strengths and weaknesses were highlighted, allowing us to
better plan the next steps of our work, in order to propose
a more sophisticated methodology.

II. RELATED WORK

Since CNNs started to become a trend, it was expected
that researchers would attempt to apply this type of approach
to the problem of scene recognition. However, it was only
regarded as a promising approach once a large-scale dataset
was proposed [9]. The dataset, entitled Places, was used to feed
a CNN based approach, which was already very successful for
other categorization problems (e.g., objects). However, authors
noticed that scenes can vary a lot more, thus the automatic
feature learning becomes much more challenging.

The exploitation of object-level information to recognize
scenes has been vastly researched for many years. For instance,
the work of [10] proposes to represent a scene by combining
information from several pre-trained object detectors. A very
straightforward approach to represent a scene as a composition



of objects, which showed good performance at the time. A
more recent approach is the work of [11], which uses a
technique for object proposals to select regions of the image
that most likely contain objects, along with Long Short-Term
Memory (LSTM) units [12] to model a context-aware repre-
sentation. By incorporating LSTM units to their architecture,
the authors were able to model relationships among objects in
an end-to-end manner. They also tested the benefits of using
object proposals instead of random boxes, in order to validate
their premise of capturing knowledge about objects.

Recently, a previous work of ours [7] also showed that
local information can be highly beneficial to represent a scene.
We showed that by combining scene-centric and object-centric
features from different scales, they could outperform previous
methods on most benchmark datasets.

Another way to convey object-level information is to use se-
mantic segmentation features. The work of [13] tries to tackle
both problems of scene classification and semantic segmenta-
tion, showing that they can contribute to the improvement of
each other. In other words, segmentation features helped the
classification model to achieve state-of-the-art results, while
class labels allowed to refine the output of the semantic
segmentation.

Compared to the aforementioned approaches, our method
not only aims at finding a robust representation for scenes, it
also allows for a better understanding of what are the most
distinctive parts of a scene. Since we encode information
derived from segmentation features with sparsity constraints,
it relates to the original image as a selection of best suitable
segments for the task of recognition. This information is
highly valuable not only to add transparency to the model,
but also to guide future approaches that intend to leverage
local information.

III. METHODOLOGY

Our methodology leverages two types of features: semantic
segmentation, and object features. We propose to combine
them in order to build a sparse composition of object features
characterizing the most distinctive segments of a scene.

Semantic Segmentation Feature

Firstly, we chose to use the pre-trained model proposed in
the work of [5], entitled SegNet, illustrated by figure 1. The
authors trained it separately in two datasets, CamVid [14] for
road scene segmentation and SUN RGB-D [15] for indoor
scene segmentation, releasing both models to the public.
According to the authors, the problem of indoor scene seg-
mentation is a lot harder, since they vary a lot more than
road scenes in shape, size and pose. Additionally, there are
frequent partial occlusions, and scenes may contain several
small objects which is more challenging to most semantic
segmentation approaches. It is important to highlight that even
the current state of the art methodology for indoor scene
segmentation claims to be a long way from what is expected
from such models, which means that any approach relying on
those features will be affected by its flaws in performance.
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Fig. 1: SegNet architecture [5]. The architecture of the encoder
is identical to the VGG16 network.

The rationale behind using segmentation features, comes
from the idea of context it conveys. Since it is capable
of roughly reproducing the ground truth of semantic
segmentation, its latent features must follow a certain
structure that separates objects belonging to different classes,
and at the same time aggregates regions that belong to the
same object. This is very rich information, considering we
intend to build a composition of objects as a final feature.
In our approach, the semantic segmentation portion of our
pipeline is the feature output by the encoder of SegNet.

Object Characterization Feature

Object characterization is a problem vastly studied in the
literature in the form of image classification, achieving
remarkable results using deep models. Specifically,
VGG16 [16] trained on the large-scale object dataset
ImageNet [17], became a base model for several methods,
including SegNet itself, which uses an identical architecture
as its encoder. Therefore, for the object characterization part
of our proposal, the output of the first fully connected layer
of VGGI16 trained on ImageNet was chosen, since it conveys
high level semantic information of objects.

Proposed Architecture

We propose a naive approach of putting those two features
together, in order to evaluate how promising our premise is.
The proposal is illustrated in figure 2. We refer to this archi-
tecture as two-stream, one stream of semantic segmentation,
and the other for object characterization. Notice that all layers
before the merge layer are identical, resembling a siamese
network [18]. However, different from a siamese, they do not
share weights, acting instead as complementary features. The
weights of both streams are frozen until the last convolutional
layer, which means only the fully connected layers at the end
will adjust its weights for our purpose. The previous layers
will function solely as feature extractors.

The pipeline of the proposed architecture functions as
follows: firstly, each stream of feature extraction receives the
same input: a RGB image of an indoor scene. The only
preprocessing step required is resizing the input, in order to fit
the needs of the pretrained model, which is [224, 224, 3] for
both extractors. Then, during training we adjust the weights
of both fully connected layers at the top. Notice that the
fully connected layer at the top of the semantic segmentation
stream has a sparsity constraint, in the form of a L1 activity
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Fig. 2: Proposed architecture. Both SegNet (encoding) and
VGGI16 share the same architecture, and the final feature
merges both of them.

regularizer, which will limit the amount of nonzero values in
its output. The goal of the sparsity constraint is to achieve the
desired effect of selecting a very small amount of segments or
parts of segments. Since we are optimizing the whole model
for classification, the constraint will try to find the best choice
of segments that increases classification accuracy. The final
loss function, optimizing for both categorical cross-entropy
and L1 regularizer can be represented as follows:

[~y log(yy ) — (1= ) log (1= (4 D))+ A FC6,|1, (1)

with |F'C6,|; representing the L1 activity regularizer over
the semantic segmentation dense feature, with A\ = le — 5,
empirically set. y,(;) and y;c(i) are respectively the ground truth
class of the scene, and the predicted class.

The second last layer is responsible for merging both
features. We chose an element-wise product of both vectors,
such that the sparse segmentation feature will function as a
mask to the object features. In other words, all segments that
were assigned zero values, will cancel the respective object
feature. This means that the final feature will only attempt to
characterize the selected segments, leading to what we call a
sparse composition of feature segments.

IV. EXPERIMENTS

To test our proposed methodology we chose the dataset
MIT67 [8], a known benchmark for scene recognition con-
taining 67 classes of indoor scenes. We split this dataset
for training and testing, selecting a total of 5360 images to
train our model, uniformly distributed throughout classes, and
1340 for testing. To test for robustness we also created two
corrupted test sets, following the protocol of [7], which adds
noise and occlusion to the test images. An illustration of such
perturbations is showed in figure 3. A region of the image
was randomly selected to be corrupted, with a fixed window

of size [7, %], with w and h as the width and height of the

Fig. 3: Examples of corrupted images. Occlusion (left) and
Noise (right)

TABLE I: Average accuracy of each feature on MIT67, a
benchmark dataset for scene recognition.

\ Segneten, ~ VGG16-ImageNet Ours Nascimento et al.
MIT67 42.00% 59.38% 52.33% 87.22%
MIT67 Noise 33.40% 55.82% 48.19% 82.74%
MIT67 Occlusion 32.28% 51.27% 48.27% 84.76%

original image. Black squares were added for occlusion, while
salt and pepper was used to produce the noise.

We tested both features that compose our methodology, in
order to assess their individual quality and compare to the
performance of our proposed feature. The first feature was the
latent variables of SegNet. A feature of dimensions [7,7,512]
from its last layer was extracted for all training and test images,
which fed a linear SVM model for classification. The penalty
value C' of the SVM was set to 1le — 2 after performing a grid
search for parameter optimization. We also tested the feature
output by VGG16 trained on ImageNet. Similarly, features
from its last layer, F'C'7 were extracted for training and testing
and fed a linear SVM for classification. Coincidentally, the
optimization of the penalty value C' led to the same result
le — 2. Finally, we tested our merged feature, proposed on
this paper, using a Softmax layer as a classifier, since our
model was already trained end-to-end on the target dataset.

Preliminary Results. Table I shows the results for all three
features we evaluated, plus the methodology of Nascimento et
al. [7], representing the current state of the art. As noticeable,
none of the features are competitive with the state of the art. It
is worth highlighting that neither the segmentation feature nor
VGG16 trained on ImageNet were built for scene understand-
ing, however we intended to evaluate their individual quality
relative to our proposed method. Our method did not show
a satisfying performance, reaching only 52.33% of average
accuracy. On the other hand, our feature shows a higher level
of robustness when perturbations are added to the input image,
an inherent characteristic of sparse representations.

In order to understand the poor performance of our method,
and plan our future work, we evaluated its performance on
each class of MIT67. The results are shown in figure 4.
Even though our training set was balanced for all classes,
this analysis shows the model performs very differently for
each class, reaching a maximum of 94% accuracy on the
class greenhouse, and a minimum of 25% for the class bakery.
Judging by this result, our model performs poorly on classes
that contain a large amount of small objects (e.g. bakery, deli,
toystore), while showing remarkable performance for classes
such as greenhouse, cloister and bowling, which is composed
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Fig. 4: Detailed performance assessment on per-class average accuracy.

mostly of large segments. Our guess is that the segmentation
feature performs poorly for small objects, thus compromising
the performance of our final feature. Figure 5 is an evidence
that supports our guess, comparing the segmentation output
for a sample of class greenhouse, and a sample of bakery.
Nevertheless any definite conclusions requires further testing.

Fig. 5: Performance of SegNet segmentation on different
classes of MIT67. Left: bakery, Right: greenhouse.

V. CONCLUSIONS

We proposed a two-stream architecture that leverages se-
mantic segmentation features and object characterization fea-
tures, combining them in order to build a sparse composi-
tion of feature segments. We added sparsity constraints to
the segmentation feature as an attempt to select the most
distinctive segments of a scene, thus building a robust feature.
The average accuracy of our model performs poorly compared
to the state of the art. However, a detailed assessment of per
class accuracy showed that the performance of our method
might be correlated to the size of the objects present in the
scene. This indicates that poor quality on the segmentation
feature can compromise our model. When testing for robust-
ness, the performance of our model showed little decrease in
accuracy, an inherent characteristic of sparse representations.
We strongly believe that characterizing distinctive segments of
a scene can provide a robust feature, thus we intend to propose
a more sophisticated methodology to exploit this proposition.
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