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Abstract—In this paper we discuss the application of specific
constraints to quasi-interpolators, which are a special class of
functions used for the continuous reconstruction of an input
image when sampled at a given spacing rate. In addition, this
research intends to explore some mathematical concepts related
to image processing, which are necessary for the comprehension
of all the processes along the stages of the traditional sampling
framework. This article also focuses on minimizing the residual
error of linear schemes, obtained from the optimized quasi-
interpolators.

Index Terms - image processing, optimized quasi-interpolators,
linear schemes.

I. INTRODUCTION

In computer graphics and applied mathematics, image pro-
cessing is one of the most important study and research
topics, and it usually involves several steps based on some
specific mathematical concepts, such as Fourier transform
and convolution. For this reason, when performing arbitrary
operations on an image (such as rotation, translation, among
others), a quick and efficient reconstruction of the input data -
in such a way that the error during the process is minimal
- is highly desirable. This, in turn, depends on the input
information (described by any function), as well as the steps
taken throughout the image processing.

In this article the focus is on the so-called optimized quasi-
interpolators, which is also a family of reconstruction schemes,
recently proposed by Sacht and Nehab [1]. Therefore, there
are a few theoretical concepts about image sampling and
reconstruction, as well as approximation theory, that will
be presented in the next section, so that it is possible to
understand the working of the image processing schemes and,
consequently, the optimized quasi-interpolators.

A crucial issue in image processing is the conditions under
which it becomes possible to reconstruct an image when
there is no information about the input function other than
just a discrete set of sampled values. In specific cases, it is
possible to restore it using the Shannon-Whittaker sampling
theorem [2] (a.k.a sinc interpolation). Basically, this theorem is
a method to construct a continuous bandlimited function using
a special function known as ideal low-pass filter (normalized
sinc function): sinc(x) = sin(πx)

πx . It states that, when a sample
spacing T is known, the initial function f can be transformed
to another function g, which is bandlimited to the Nyquist

interval: (− 0.5
T ,

0.5
T ). This process is called pre-filtering:

g(x) =

∫ ∞
−∞

f(t) sinc((t− x)/T ) dt. (1)

This new function g(x) can be restored using spaced samples
g(kT ) of itself, ∀k ∈ Z:

g(x) =
∑
k∈Z

g(kT ) sinc(x/T − k). (2)

However, this theorem only provides perfect reconstruction
when the input function is band-limited, which is not the gen-
eral case. Also, the sinc function has slow decay, which raises
the computational cost of the reconstruction. For this reason,
the modern sampling framework, illustrated by Figure 1, is
constituted by three generalized steps:
• Prefilter ψ stage (a.k.a antialiasing filter): It extends the

idea of low-pass filter by using general sampling;
• Digital filter q: A discrete filter which gives more freedom

for the choice of the analysis filter ψ;
• Generating function ϕ, also called reconstruction kernel:

All the steps mentioned in these three items can be described
by the equations below:

g(x) =

∫ ∞
−∞

f(t)ψ((t− x)/T ) dt, (3)

gk = g(kT ), ci =
∑
k∈Z

gk qi−k, (4)

f̃(x) =
∑
i∈Z

ci ϕ(x/T − i). (5)

The quasi-interpolators assume that the prefilter ψ is unknown
(leading to the simplifying assumption ψ = δ, where δ is the
Dirac’s delta), so all these considerations must be such that
all the degrees of freedom (obtained on the steps related to
q and ϕ) are used to minimize the final error and optimize
the quasi-interpolators, with emphasis on the usage of linear
generators.

II. NOTATION

Equations (3)-(5) can be shortened using a convenient nota-
tion: let f : R→ C be an input function and q : Z→ C, be a
digital filter. Function scaling and reflection can be described,
respectively, as:

fT (x) = f(x/T ) and f∨(x) = f(−x). (6)



Fig. 1. Modern sampling and reconstruction framework.

Let continuous, discrete and mixed convolutions be denoted
by:

(f ∗ g)(x) =

∫ ∞
−∞

f(t) g(x− t) dt, (7)

(c ∗ q)n =
∑
k∈Z

ck qn−k, and (8)

(c ∗T f)(x) =
∑
i∈Z

ci f(x− iT ). (9)

Denote also the discrete convolution inverse as q−1 (when
it is well defined) to be such as:

q ∗ q−1 = [. . . , 0, 0, 1, 0, 0, . . .] = δ. (10)

Uniform sampling of the input function at a sample spacing
T (we consider T = 1, when there is no information about it)
is given by:

[f ]T = [. . . , f(−T ), f(0), f(T ), . . .] . (11)

All the definitions developed in (6)-(11) can be used now
to describe the reconstructed function f̃ by:

f̃ = [f ∗ ψ∨T ]T ∗ q ∗T ϕT . (12)

III. RELATED WORK

To obtain efficient reconstruction some authors use concepts
related to the digital filtering stage and to the so-called approx-
imation order, which are explored in the next subsection.

A. Previous results

The main problem faced by several authors is related to
the idea that the degrees of freedom of ϕ and q vanish as the
application impose specific requirements. In fact, when consid-
ering the generating function (5), ϕ is generally considered as
piecewise polynomial with maximum degree N and compact
support, stated as W . These choices leads W×(N+1) degrees
of freedom to ϕ. Another important fact concerns the so-called
regularity, a concept which tells that a function f̃ is R times
differentiable (R ∈ N), i.e., f̃ ∈ CR. It is directly related to
the degrees of freedom in ϕ.

Digital filtering, in turn, was introduced in the modern sam-
pling framework by Hou and Andrews [3], who used functions
called B-splines (basically piece-wise polynomials). However,
it is important to note that the set of functions which satisfies
(5) is a linear subspace of L2: Vϕ,T = {c ∗T ϕT | ∀c ∈ `2}.

When looking to a function in Vϕ,T that is as close as possible
to the input f , Kajiya and Ullner [4] found the solution
ψ = ϕ and q = [aϕ]

−1, where aϕ = ϕ ∗ ϕ∨ is the
auto-correlation of the generator ϕ. Their linear optimization
problem is such that the orthogonal projection Pϕ,T f satisfies:

Pϕ,T f = c∗ ∗T ϕT , where (13)
c∗ = arg min

c
‖c ∗T ϕT − f‖L2

. (14)

Lastly, the notion of an approximation order L ∈ Z+ is
related to the measure of the rate TL when T → 0, i.e., when
f̃ → f . Thus, ϕ has approximation order L when it is the
largest integer for which ∃C > 0 such that

‖f − Pϕ,T f‖L2 6 C · TL · ‖f (L)‖L2 (15)

∀ f ∈WL
2 (the Sobolev space1). The orthogonal projection, in

turn, can be redefined as:

Pϕ,T f = [f ∗ ϕ̊∨T ]T ∗T ∗ϕT , (16)

where ϕ̊ = ϕ ∗ [aϕ]
−1 is the dual of ϕ.

Strang and Fix [5], in their work, concluded that ϕ has
approximation order L ⇔ Vϕ,T contains all polynomials up
to degree L − 1. This consideration about L implies that
these polynomials are preserved through the reconstruction,
i.e., f̃T = f, ∀f ∈ PL−1.

It is also possible to quantify the residual as

‖f − f̃‖2L2
≈
∫ ∞
−∞
|f̂(ω)|2E(Tω) dω, (17)

where E(Tω) is quantified by Blu and Unser [6], as shown
in the next subsection.

An important result derived by Blu et al [7] shows that,
given N , W , R, and L, it is possible to describe com-
pletely piecewise-polynomial generating functions. Their re-
sults use the subset with maximal order and minimum support
(MOMS), originated by the minimization of the asymptotic
constant C in (15).

A recent article written by Sacht and Nehab [1], however,
focused more directly on the reconstruction quality, although
most of the previous work have focused on the decay of the
asymptotic constant and approximation order.

B. Optimized quasi-interpolators

Based on the previous considerations, specially on Blu and
Unser [6] (which obtained the residual to arbitrary ψ, q, and
ϕ), Sacht and Nehab [1] managed to quantify the error between
f and f̃T (considering L2 metric), by using:
Theorem 1: ∀f ∈ Wr

2 with r > 1
2 , the approximation error

can be defined by

‖f − f̃T ‖L2
=

(∫ ∞
−∞
|f̂(ω)|2E(Tω) dω

) 1
2

+ e(f, T ), (18)

1f ∈ Wr
2 ⇒

∫ ∞
−∞

(1 + ω2)r |f̃(ω)|2 dω < ∞.



where e(f, T ) = o(T r) and

E(ω) = 1− |ϕ̂(ω)|2

âϕ(ω)
+ âϕ(ω)

∣∣∣∣q̂(ω)ψ̂(ω)− ϕ̂(ω)

âϕ(ω)

∣∣∣∣2 . (19)

Proof: See appendix in [6].
In Blu and Unser [6], also, it is showed that the residual

has approximation order L ⇔ all derivatives of E up to order
2L− 1 vanishes at 0, ∀L > 0.

Considering only the Nyquist interval, Sacht and Nehab [1]
rewrote the equation (17) as

‖f − f̃T ‖2L2
≈
∫ 0.5

T

− 0.5
T

|f̂(ω)|2E(Tω) dω, (20)

which leads to the following minimization problem:

min

∫ 0.5

−0.5
|f̂(ω)|2E(Tω) dω. (21)

Sacht and Nehab [1] also used the following result:
Theorem 2: Given W > N , ϕ ∈ {N,W,L,R} if and only
if there exists a unique set of coefficients ak,`, bk,`, and ck,`
such that

ϕ(x− W
2 ) =

M∑
`=1

N−L−`∑
k=0

ak,`
(
βL+k−1nc ∗ γN−L−k`

)
(x)

+

M∑
`=0

W−N+`−1∑
k=0

bk,`β
N−`
nc (x− k)

+

W−L∑
k=0

L−R−2∑
`=0

ck,`∆
∗`βL−`−1nc (x− k),

(22)

where M = N −max (R+ 1, L).
Proof: See Blu et al [7].

In the formulas above, ∆∗` and γn` are defined in [7], and

βnnc(x) = βn
(
x− n+1

2

)
, (23)

is the non-centered B-spline.
Given these conditions, the constraints defined by Sacht

and Nehab [1] consider the minimization problem in (20),
which results in the quasi-interpolators. The optimization
problem is defined as follows: given a degree N, solve:

arg min
q,A,B,C

F (d) :=

∫ d

0

1

ω2
E(ω) dω (24)

subject to ϕ ∈ {N,N + 1,−1, 1},
ϕ∨ = ϕ, q∨ = q,∫ ∞
−∞

ϕ(x) dx = 1,
∑
k∈Z

qk = 1.

E(0) = 0.

Arrays of coefficients A,B and C encapsulate the degrees
of freedom ak,`, bk,` and ck,` in Theorem 2. In this case it
is required first-order approximation L = 1, the support of ϕ
to be W = N + 1, the regularity of ϕ to be R = 1 and the

integration limit to be d = 0.5. Also, the input function is
assumed to have the following relation with ω:∣∣∣f̃(ω)

∣∣∣2 ≈ 1

ω2
. (25)

IV. CONSTRAINT AND MINIMIZATION ANALYSIS

In this section, the numerical results achieved by Sacht
and Nehab [1] are justified by some theoretical analysis. In
fact, given the conditions defined on (24) and, consequently,
the minimization of the error kernel formulated in (19), it
just remains to calculate and analyze the numerical results
obtained. Also, we are interested in the case of optimizing a
piecewise linear quasi-interpolator (N = 1).

We first analyze the condition that imposes the integral of
ϕ to be 1. In this case, we also consider symmetry ϕ∨ = ϕ, as
well as the equation below, which is obtained from Theorem 2,
when setting L = 1, W = 2 and R = −1 and N = 1:

ϕ(x) = b0,0β
1 (x) + c0,0β

0
(
x+ 1

2

)
+ c1,0β

0
(
x+ 1

2

)
. (26)

Applying this constraint to the first equation, we have:∫ ∞
−∞

ϕ(x) dx = 1⇒ b0,0 + 2c0,0 = 1, (27)

Thus:
∴ c0,0 =

1

2
− b0,0

2
. (28)

Now, regarding the digital filter, we have that q∨ = q and:∑
k∈Z

qk = 1⇒ q1,0 + 2q1,1 + 2q1,2 = 1, (29)

In this case:

∴ q1,2 =
1

2
− q1,0

2
− q1,1. (30)

Finally, the third requirement is concerned with the error
kernel:

E(0) = 0⇒ (−b0,0 − 2c0,0 + q1,0 + 2q1,1 + 2q1,2)2

[q1,0 + 2 [q1,1 + q1,2)]
2 = 0,

(31)
So, the equation given by (31) leads to:

∴ q1,2 =
b0,0
2

+ c0,0 −
q1,0
2
− q1,1. (32)

An interesting fact about these considerations can be seen
when we substitute (28) into (32), which leads us to the
equation (30). Thus all the five equations given in (24) can
be combined into two independent equations.

Now, as seen in Theorem 1, the approximation error basi-
cally depends on ϕ and q, which were constructed according to
the optimization constraints. So, with the equations (27)-(31),
we can now rewrite the error kernel as:
E(ω) = 1+

3 + b20,0 + (3− b20,0) cos(2ωπ)

6 [q1,0 + 2q1,1 cos(2ωπ) + (1− q1,0 − 2q1,1) cos(4ωπ)]
2−

2 sinωπ [(1− b0,0)ωπ cos(ωπ) + b0,0 sin(ωπ)]

(ωπ)2 [q1,0 + 2q1,1 cos(2ωπ) + (1− q1,0 − 2q1,1) cos(4ωπ)]
(33)



Once the error kernel (33) is known, the objective now is to
minimize F (d) = F (0.5) in (24). Unfortunately, the integrand
1
ω2E(ω) could not be integrated algebraically, even using
the software Wolfram Mathematica. However, a numerical
optimization framework is an alternative for this issue. In
fact, approximating the integrand by an interpolating poly-
nomial and integrating it leads to values of b0,0, q1,0 and
q1,1 that minimize F (0.5). The same results were found
by Sacht and Nehab [1], when considering a linear quasi-
interpolator (b0,0 = 0.79076352, q1,0 = 0.77412669 and
q1,1 = 0.11566267). We now show that this result obtained
numerically indeed corresponds to a local minimum of (24).
Remind that we have already substituted all constraints into
the objective function, which turns this problem into a ultra-
constrained minimization one.

As we mentioned in this section, F (0.5) and the error
kernel now depends only on b0,0, q1,0 and q1,1, so we can
redefine then as F (0.5) = F (b0,0, q1,0, q1,1) and E(ω) =
E(b0,0, q1,0, q1,1, ω), i.e.:

F (b0,0, q1,0, q1,1) :=

∫ 0.5

0

1

ω2
E(b0,0, q1,0, q1,1, ω) dω. (34)

To show that (0.79076352, 0.77412669, 0.11566267) is a local
minimum, we must first prove that it is a critical point (by
analyzing the gradient of F , which must be 0), as we can see
below:

∇F (b0,0, q0,0, q1,1) :=

(
∂F

∂b0,0
,
∂F

∂q1,0
,
∂F

∂q1,1

)
, (35)

∇F (0.79076352, 0.77412669, 0.11566267) =(
−2.65722× 10−8,−4.57467× 10−9, 1.14989× 10−8

)
.

(36)

Since all the three entries in (36) are almost 0, we can assume
that ∇F ≈ 0 at this point, which leads us to conclude that
the considered point is really close to a critical point. Now,
for it to be in fact a local minimum, the Hessian matrix must
be a positive-definite matrix, which can be confirmed when
its leading main minors are all positive. The Hessian matrix
is defined as:

H [F (b0,0, q0,0, q1,1)] :=

∂2F

∂b20,0

∂2F

∂b0,0∂q1,0

∂2F

∂b0,0∂q1,1
∂2F

∂q1,0∂b0,0

∂2F

∂q21,0

∂2F

∂q1,0∂q1,1
∂2F

∂q1,1∂b0,0

∂2F

∂q1,1∂q1,0

∂2F

∂q21,1


(37)

Thus, the determinant of H in (37) and the principal minors
in the considered point are:

H [F (0.79076352, 0.77412669, 0.11566267)] = 4.38047 −4.75701 −4.75701
−4.75701 48.5568 46.7768
−4.75701 46.7768 95.6997

 (38)

⇒ det(H) = 9623.35 > 0, (39)

det
[

4.38047 −4.75701
−4.75701 48.5568

]
= 190.07 > 0, (40)

and, obviously, det(4.38047) > 0, which proves that the
analyzed point is a local minimum.

V. CONCLUSION AND FUTURE WORK

In this work, we have presented a theoretical analysis of
linear optimized quasi-interpolators, which show better results
in the residual error minimization when compared to other
reconstruction schemes.

Due to the algebraic complexity found in the kernel error
analysis we will consider in the future other alternatives to
prove that the parameters studied in this article also gener-
ate a global minimum for F (0.5). Regarding reconstruction
schemes with higher degrees (quadratic, cubic, ...), we will
also use the methods explored in this work to optimize
reconstruction quality.
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