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Abstract—Gesture recognition is an important research area in
video analysis and computer vision. Gesture recognition systems
include several advantages, such as the interaction with machines
without needing additional external devices. Moreover, gesture
recognition involves many challenges, as the distribution of
a specific gesture largely varies depending on viewpoints due
to its multiple joint structures. In this paper, We present a
novel framework for gesture recognition. The novelty of the
proposed framework lies in three aspects: first, we propose
a new gesture representation based on a compact trajectory
matrix, which preserves spatial and temporal information. We
understand that not all images of a gesture video are useful for
the recognition task, therefore it is necessary to create a method
where it is possible to detect the images that do not contribute
to the recognition task, decreasing the computational cost of the
overall framework. Second, we represent this compact trajectory
matrix as a subspace, achieving discriminative information, as
the trajectory matrices obtained from different gestures generate
dissimilar clusters in a low dimension space. Finally, we introduce
an automatic procedure to infer the optimal dimension of each
gesture subspace. We show that our compact representation
presents practical and theoretical advantages, such as compact
representation and low computational requirements. We demon-
strate the advantages of the proposed method by experimentation
employing Cambridge gesture and Human-Computer Interaction
datasets.

I. INTRODUCTION

Gesture recognition is a very attractive research area in
the computer vision field, because it provides the means
to interact with machines without the need of additional
devices. Gesture recognition is widely employed in human-
computer interaction applications by using a predefined set
of human joint motions. In order to develop such systems,
in which the recognition gestures can be used to transmit
significant information or controlling virtual environments,
a high efficient gesture recognition framework is required.
Accordingly, gesture recognition exploits high sophisticated
machine learning techniques in order to work accurately in
various domains.

Controlling machines employing gesture recognition is use-
ful. However, it includes many difficulties, for instance the dis-
tribution of a gesture largely varies depending on viewpoints
due to its multiple joint structures. Further, recognition and
estimation of the gesture are very difficult because masked or
occluded regions are often produced, requiring a robust frame-
work. In addition, camera position, illumination conditions and

pose may also increase the application overall complexity. In
order to solve these problems, several methods have been
introduced for gesture recognition including discriminative
canonical correlation analysis (DCC) [1], [2], hidden Markov
models (HMM) [3], orientation histograms [4], color based-
models [5], dynamic time Warping (DTW) [6], and silhouette
geometry-based models [7].

Moreover, there are applications that use external hardware
to improve the recognition performance. In [8], KinectTM

sensor measures depth information in order to decrease the
complexity of segmenting the gesture joints, improving signifi-
cantly the overall application performance. Another possibility
is to employ more sophisticated devices; such as gloves
with accelerometers [9] or Leap Motion ControllerTM [10].
Although these methods have shown high performance, in
our proposed method, we are interested in employing only
machine learning techniques on raw images, without making
use of external hardware nor pre-processing techniques, as
we understand that such devices may increase the cost of the
system both computationally and economically.

In general, gesture recognition frameworks make use of pre-
processing techniques in order to extract relevant information
for classification. A variety of methods that employ pre-
processing techniques has been proposed for gesture recog-
nition. For instance, HOG [11], SIFT [12], SURF [13] and
LBP [14] can perform efficient feature extraction. However,
this pre-processing may increase the framework complexity,
preventing its application on environments where there is
restricted hardware. On the other side, some solutions do
not require pre-processing techniques. For instance, subspace-
based methods have the advantage of working directly on the
raw images, as they do not require feature extraction in order
to represent the image set distributions.

Instead of employing feature extraction, subspace-based
methods work directly on the pixel level of the images, creat-
ing a very light hence efficient representation. In [15], it has
been argued that this representation is very powerful, since the
subspace of an image-set generates distinctive clusters in a low
dimensional space. Based on this observation, our assumption
is that we can also represent gesture images as subspaces
by employing Hankel matrix in order to efficiently create
the covariance matrix. Subspace-based methods have been
employed in several computer vision applications, including



face recognition [16], [17], object recognition [18], [19] and
hand shape recognition [20], [21].

Despite the fact that subspace-based methods can achieve
high performance when applied to image set recognition,
subspace-based methods are not able to cope with temporal
information, as required for an efficient gesture representation.
To solve this problem, we propose a new method based
on clustering and sample selection in order to reduce its
computational complexity and simultaneously preserving the
temporal information. This new representation is mainly based
on Hankel matrix formulation, where the image patterns can
be stored in a manner where the ordering of the images is
preserved. In this approach, we select representative samples
from each image gesture set to compound its corresponding
Hankel matrix. By exploiting this strategy, we obtain a smaller
covariance matrix, compared to traditional methods, where we
can easily extract its basis vectors.

In general, subspace-based methods ignore the intrinsic
dimension of each class distribution, treating all of them as
the same dimension. This leads to several problems, such as
vanishing of discriminative and representative features. For
instance, we can infer that different distributions have different
accumulated energy in each eigenvector. Some classes may
have a high compactness ratio in only the first 4 eigenvectors,
for instance, achieving a very efficient representation. How-
ever, some classes may have a high spread ratio energy over
its eigenvalues, where only 4 eigenvectors are not sufficient
to represent such classes. Therefore, we also propose an
automatic method to weight the basis vectors of each image
class, in order to better preserve its intrinsic dimension.

The contributions of this study to the literature are: (1)
A novel framework for gesture recognition, with no pre-
processing techniques, requiring low computational resources.
(2) A new representation for gesture recognition, where the
samples are dynamically selected, creating a very compact
representation. In addition, by employing the Hankel matrix,
this new representation is able to preserve temporal informa-
tion. (3) An automatic approach for basis vector weighting
based on the accumulated energy strategy. In this solution,
we employ all the basis vectors available for classification,
without parameter tuning.

This paper is organized as follows. Section 2 describes re-
lated work on gesture recognition and image-set classification
by subspace-based methods. Section 3 introduces Orthogonal
Hankel Hankel Subspace Method (OHSM) by using a compact
Hankel matrix representation for gesture recognition and the
automatic soft weight process for subspaces. Section 4 shows
the experimental results. Finally, Section 5 presents conclu-
sions.

II. RELATED WORK

In this section, we briefly describe the main variants of
subspace-based methods, as well as the differences among
these methods. Then, we also present relevant work on Hankel
matrices for image-set based pattern recognition. Finally, we
enumerate the main techniques employed to measure the

similarity between subspaces. This description is fundamental
in order to clarify the differences and improvements when
comparing the proposed gesture recognition framework to
current methods.

As mentioned before, most of the subspace-based meth-
ods employ discrete Karhunen-Loève transform (KLT), also
known as principal component analysis (PCA), in order to
generate the subspaces. These techniques are preferred because
they are optimal to achieve a subspace that minimizes the mean
square error.

The main advantage of using KLT subspace to represent
image sets lies in its compact representation, hence, decreasing
the overall classification system. This classification is usually
achieved by using multiple canonical angles [22]. Recently, a
variant of subspace method was introduced [21]. In this vari-
ant, called generalized difference subspace (GDS), the image
set patterns are also represented as subspaces, however, the
relationship between the patterns are taken into consideration
by employing the concept of generalized difference between
the subspaces. This algebraic formulation provides a novel
discriminative transformation, where the projected subspaces
produce higher recognition results compared to conventional
subspace-based methods.

In despite of its high recognition results [23], [24], GDS
formulation is not adequate for more advanced systems,
wherein temporal structures should be classified. For instance,
when the order of the patterns plays an important role in the
classification system, GDS tends to decrease its performance,
as will be demonstrated by experimental results in Section IV.

Hankel matrices employed to preserve temporal information
is not novel. Several approaches have been introduced in
order to retain temporal information to represent activity [25],
emotions [26] and group activity recognition [27].

For activity recognition, the concept of Hankelets [25] has
been proposed. In Hankelets, features are extracted by using a
bag of features (BoF) approach to recognize activities across
different viewpoints. In this method, Hankelets produce a
novel representation for activities where viewpoint invariance
is taken into account, keeping the activities dynamic, instead
of spatial gradient information. The advantages of this method
include that Hankelets are straightforward to obtain and do
not require prior 3D models, camera calibration, persistent
tracking or spatial feature matching.

Hankel matrices have been employed to efficiently represent
spatial and temporal information in group activity recog-
nition [27]. In this work, the problem of recognizing the
interactions and the group activity from wearable cameras,
such as Google Glass, is investigated. The solution arises
from the combination of the temporally synchronized videos
from different wearers, where Hankel matrices and movement
pattern histograms are employed for feature representation.

The main concern about employing Hankel matrices to rep-
resent image sequences is that its computational cost required
to efficiently extract the basis vectors is very high. In order
to solve this issue, we use a strategy to decrease the number
of employed images from the images sequences. We achieve



this subset by using a clustering approach and, therefore, we
can construct a more compact Hankel matrix. We show by
experiments that this compact representation achieves higher
recognition rate when compared to the usual approach and it
is computational more efficient.

The topic of selecting and weighting the basis vectors of a
subspace have been investigated in the literature. For instance,
in [28], the criteria of accumulated energy is employed to se-
lect the basis vectors that will represent an image-set. It is well
known that the eigenvectors associated with the higher eigen-
values preserves most of the energy contained in an image-
set. Therefore, selecting the first eigenvectors corresponding to
90% of the accumulated energy is a straightforward strategy
that may achieve good results, without delving in a brute force
parameter search.

Weighting the basis vectors of the subspace is another
alternative to optimize the use of the eigenvectors. For in-
stance, in [29], a weighed strategy is adopted to accomplish an
efficient framework for face reconstruction and classification.
In this work, it is observed that not all combinations of
the basis vectors form a meaningful face, therefore, certain
restrictions should be adopted. The weighting strategy ensures
that the similarity between two subspaces is obtained at points
that actually correspond to faces of the respective classes.

Generalized mutual subspace method (gMSM) [18] employs
all the basis vectors in order to represent its subspace. Tra-
ditionally, the importance of the eigenvalues is taken in a
binary decision, where most of the eigenvectors are discarded
according to its eigenvalues. On the other hand, in gMSM,
all the eigenvectors are used according to its eigenvalues in
a weighed scheme, therefore, even the smaller eigenvalues
contribute to the subspace, but in a lower proportion.

III. PROPOSED METHOD

In this section, first we describe the problem of gesture
recognition from image sets. Next, we explain the applications
of Hankel matrix ordered image set representation. After that,
we introduce the procedure of creating Hankel subspaces.
Then we show the procedure to select the samples in order
to improve the processing time to extract the basis vectors of
a given Hankel matrix. We introduce the dynamic soft weights
and its advantages over the conventional method. Finally, we
describe the procedure to match two Hankel subspaces to
compute its similarity. Figure 1 shows the conceptual diagram
of the proposed method.

A. Problem Formulation

Given a set of gesture images, which are given by A =
{Ai}Mi=1, where Ai is an image. Then, we define that A is
ordered, so A1 � A2 � A3 � . . . � AM . Then, we assume
that there is a linear mapping that represents A set in terms of
its variance, preserving its spatial and temporal information.
This linear transformation is in such way that the M gesture
images are converted into k−dimensional orthonormal vectors
ordered by its accumulated energy. This new representation,
ΦA = {φi}ki=1, provides a more compact manner to represent

set A and its computational classification cost is therefore,
greatly reduced. The ΦA set spans a reference subspace PA.
In literature, k � M , where discriminative information may
be lost. In our proposed method, k = M , as all the obtained
basis vectors will be employed to create a subspace and a
weight will be assigned to each basis vectors φi regarding its
variance. Finally, for a given gesture image set Y = {Yi}Ni=1,
where Y1 � Y2 � Y3 � . . . � YN , the task is to compute
a subspace QY that represents Y in terms of its variance,
preserving its spatial and temporal information and calculate
how similar QY and PA are.

B. Hankel Matrix-based Gesture Representation

Let A = {Ai}Mi=1 representing a gesture that is handled as
a time series of vectors, where A1 � A2 � A3 � . . . � AM .
This temporal series can be regarded as the output of a Linear
Time Invariant (LTI) system of unknown parameters [30].

It is well known [31] that, given a sequence of output
measurements A = {Ai}Mi=1, its associated truncated block-
Hankel matrix is:

H̃A =


A1, A2, A3, . . . , Am+1

A2, A3, A4, . . . , Am+2

. . . . . . . . . . . . . . .
An−1, An, An+1, . . . , AM

 , (1)

where n is the maximal order of the system, M is the temporal
length of the sequence, and it holds that M = n + m − 1.
Finally, the Hankel matrix can be normalized as follows:

HA =
H̃A√

||H̃A H̃T
A||F

. (2)

C. Creating Hankel Subspaces

In order to represent an ordered image set A = {Ai}Mi=1 in
terms of subspace and preserve spatial and temporal informa-
tion, we introduce the concept of Hankel subspace for gesture
recognition.

Subspace-based methods exploit the fact that a set of images
lies in a cluster, which can be efficiently represented by a set
of orthonormal basis vectors [15]. Our assumption is that the
same formulation can be regarded for Hankel subspaces and,
therefore we can achieve a novel representation for gesture-
based image recognition.

Therefore, given a normalized Hankel matrix HA from
the ordered image set A = {Ai}Mi=1, we can compute an
autocorrelation Hankel matrix as:

CA = HAHT
A (3)

when CA ∈ Rk×k, its eigendecomposition generates a set of
eigenvectors ΦA = {φi}ki=1 that spans a subspace PA.

D. Selecting Samples

When creating a Hankel matrix, the number of images
contained in a set and its dimension are crucial factors in terms
of computational resources. In order to alleviate this issue, we
introduce two approaches based on sample selection.
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Fig. 1. Conceptual figure of our method. (a) An ordered subset of images representing a gesture A is handled, where a selection criterion is employed to
reduce the number of images. (b) Then, the Hankel matrix HA is created from the set of the selected images. (c) After that, we extract the basis vectors
from the Hankel matrix HA to produce the subspace P and its soft weights. Then, we orthogonalize the subspace to achieve a subspace P′. (d) Finally, the
soft weights are employed to achieve the structural similarity between P′ and a reference subspace Q′.

Random sample selection: In this approach, we randomly
select images from the set, preserving its original order. We
adopt this temporal sampling scheme in the image sequence
since close images in time hardly change their appearance,
containing high level of redundant information to identify the
gesture that is being performed. This strategy also allows us
to deal with sample reduction with a straightforward imple-
mentation.

Clustering selection: The second approach employs a
clustering strategy, where the centroids obtained by k−means
clustering are employed to represent the set, decreasing its
number of images. The use of k−means clustering was pre-
viously employed for kernel dimensionality reduction in [32].
The advantage of using clustering is that the k centroids of the
clusters will represent most of the relevant gesture information
for discrimination, eliminating redundant images, achieving a
good accuracy with low computational cost.

E. Computing the Soft Weights

In gMSM, all the eigenvectors are employed to represent
a subspace. However, each eigenvector has its own weight,
which is computed as follows; let Λm = diag(λ) be the
eigenvalues of CA in descending order, the design of the
soft weights is performed according to these eigenvalues. Let
ΩA = diag(w) be a diagonal matrix of soft weights:

ω = wm(λ) = min

[
λ

λm
, 1

]
, (4)

where wm is the m−th eigenvalue in λ. This soft weighting
evaluates the importance of each eigenvector as a basis in the
subspace by the variance relative to λm. The m first values of
the diagonal matrix ΩA will be unity and the remainder will
be proportionally decreasing with the m−th eigenvalue.

In gMSM, each class subspace Pi uses the same parameter
m. In general, this value is set from 1 to 4 in order to evaluate
the importance of the eigenvectors in each subspace.

In contrast to gMSM, in HMS we employ an automatic
approach to set the value of m. We adopt a heuristic based

on the interpretation that eigenvectors corresponding to the
eigenvalues larger than the average eigenvalues have high
representative information. Let us denote λi as the i−th
eigenvalue corresponding to the i−th eigenvector. The average
eigenvalue µA is:

µA =
1

k

k∑
i=1

λi. (5)

Next, let us consider that λj is the smallest eigenvalue corre-
sponding to the j−th eigenvector that satisfies λj ≤ µA. Then,
we set m = j. As in gMSM, these weights are unitary and
the remainder eigenvectors will be proportionally decreased.
This approach has several advantages. First, the computational
cost required to set the m parameter is largely reduced, as
we do not have to set m by parameter tuning. Second, each
class subspace Pi will achieve a different set of weights Ωi,
regarding the spread of energy over the eigenvectors.

F. Orthogonalizing Hankel Subspaces

We will now explain the procedure to determine the or-
thogonalization matrix W in order to orthogonalize the c
m−dimensional class subspaces with the orthogonal basis
vectors {ei}Mi=1 in the n−dimensional input space I . This
ortogonalization procedure enhances the difference between
the Hankel subspaces, increasing the recognition rate of the
framework.

Let the projection matrix corresponding to the projection
onto the class i subspace Pi,

Pi =

M∑
i=1

eje
T
j , (6)

where ej is the j−th orthogonal basis vector of Pi. Next, the
total projection matrix is defined as:

G =

r∑
i=1

Pi. (7)



By applying singular value decomposition on the total
projection matrix G, we obtain the v × n whitening matrix
W, defined by the following equation:

W = Λ−1/2 DT , (8)

where v has dimension r × m, (restricted to v = n, if
v > n), D is the n × v matrix whose i−th column vector
is the eigenvector of the matrix G corresponding to the i−th
highest eigenvalue, and Λ is the v×v diagonal matrix with the
i−th highest eigenvalue of the matrix G as the i−th diagonal
component.

G. Hankel Subspaces Matching

After obtaining the Hankel subspaces and its weights, we
can compute the similarity between the subspaces. This pro-
cedure is achieved by applying canonical angles or principal
angles [33]. In subspace-based methods, we consider that if the
distance between two subspaces is small enough, then we con-
sider these subspaces similar to each other. Mathematically, let
ΦA = {φi}ki=1 and ΨY = {ψi}ki=1 span two k−dimensional
subspaces PA and QY. Then, let s(PA,QY) = {0 ≤ θ1 ≤
θ2 ≤ . . . ≤ θn ≤ π/2} represents the set of angles between
PA and QY.

A practical approach to determine s(PA,QY) is by com-
puting the Λ = {λ1, λ2, . . . , λk} eigenvalues of:

R = ΩA ΦT
AΨBΩB. (9)

Then, the canonical angles:

θi = {cos−1(λ1), cos−1(λ2), . . . , cos−1(λk)}, (10)

are employed to compute the structural similarity between soft
weighted ΦA and ΨB Hankel subspaces as follows:

s(ΦA,ΨB)M =
1

M

M∑
i=1

cos2(θi), (11)

the structural similarities between Hankel subspaces are more
robust to noise, such as illumination variations and point-of-
view in sets of gesture images.

IV. EXPERIMENTAL EVALUATION

In this section we show the experimental results of our pro-
posed method. We employed Cambridge gesture dataset [34]
for general gestures classification and Human-Computer In-
teraction (HCI) dataset [14], which contains computer inter-
face gestures. In our experiments, we employed leave-one-
out cross-validation. We report results for OHSM-I (random
sample selection), OHSM-II (k−means sample selection) and
gOHSM (generalized version of OHSM-II). We compare
OHSM and variants with several state-of-the-art subspace-
based methods: mutual subspace method (MSM) [15], discrim-
inative canonical correlation analysis (DCC) [1], generalized
mutual subspace method (gMSM) [18] and generalized differ-
ence subspace (GDS) [21]. As OHSM-I depends on a random
selection and OHSM-II depends on the initial conditions of

TABLE I
EVALUATED METHODS AND ITS AVERAGE ACCURACY.

Methods Cambridge [34] HCI [14]

MSM [15] 61.5% 56.7%
DCC [1] 82.0% 77.3%
gMSM [18] 75.5% 66.1%
GDS [21] 76.0% 71.4%
OHSM-I (random) 78.0% 74.8%
OHSM-II (k−means) 82.0% 77.5%
gOHSM 85.5% 79.7%

k−means clustering, for these methods, we performed each
experiment 20 times. We report the average of these results.

The Cambridge gesture dataset: consists of 9 classes of
gestures. In total, there are 900 video sequences which are
partitioned into 5 different illumination subsets. We reduce
the size of the video frame to 20 × 20 pixels and then
converted the images to grayscale. Each class contains 100
image sequences with 5 different illuminations and 10 arbitrary
motions performed by 2 subjects.

Human-Computer Interaction (HCI) dataset: consists of
both static and dynamic hand gestures according to mouse
functionalities: cursor, left click, right click, mouse activation,
and mouse deactivation. The dataset is divided into 2 sets, the
first one has no information regarding the temporal segmen-
tation of the frames and the second is properly segmented. In
our experiments, we employed the second image set, where
region of interest and label information are available. This set
contains 30 labeled video sequences, which are performed by 6
different individuals, each video sequence contains in average
75 images. We reduce the size of the video frame to 20× 20
pixels and then converted the images to grayscale.

Table I shows the results of the different evaluated meth-
ods for gesture recognition. Among the methods that do
not employ Hankel matrices, DCC and GDS exhibit high
discriminative power comparing to MSM and gMSM. This is a
result that both DCC and GDS employ discriminative spaces,
where more informative features may be extracted. On the
other hand, MSM and gMSM rely only on affine subspaces,
where no discriminative scheme is adopted.

In both datasets, we select k = M/2 images from each
image set, achieving k = 50 images in Cambridge gesture
dataset. In Human-Computer Interaction (HCI) dataset, the
number of selected samples varies, as the image sets do not
have the same number of images. In average, k = 37 images.
For the random selection schema, we use the same number of
images as employed for the clustering sample selection.

OHSM-I achieved competitive accuracy, similar to DCC.
This indicates that the temporal information extracted by the
Hankel representation is very powerful, even when random
samples are selected, the main concern here is that the
selected samples should preserve its temporal order. OHSM-
II achieved a higher accuracy than OHSM-I, demonstrating
that k−means clustering is more efficient than random sample
selection. This is an expected result, as selecting the centroids
obtained by k−means is more likely to preserve the structural



Fig. 2. On the left: ample images from the Cambridge Hand Gesture dataset. On the right: Sample images from the Human-Computer Interaction dataset.

information of the gesture manifold than random selection.
gOHSM achieved the highest accuracy among the evaluated
methods, indicating that the weighted structural similarity
between subspaces extracted from Hankel matrices is very
efficient for gesture recognition from image sets.

From the Table I we observe that all the methods presented
a sharp drop in accuracy when comparing the results from the
Cambridge dataset and HCI dataset. This is a consequence
of the different background from each dataset. In Cambridge
dataset, the gesture images where collected in a controlled
background, different from the HCI dataset, where the images
were recorded in an unconstrained background.

As final remark, we would like to emphasize that OHSM
and variants do not employ any learning scheme, different
from DCC and GDS, where a discriminant space is em-
ployed in order enhance the discriminability among the gesture
classes. This demonstrates the effectiveness of employing
Hankel subspace for gesture representation.

V. CONCLUSIONS

We presented a novel framework for gesture recognition
from sets of images. In our work, we introduced a compact
representation based on sample selection, Hankel matrix and
automatic soft weighting. In order to reduce the number
of samples per image set class, we evaluate two strategies.
In the first one, we randomly select the image samples. In
the second one, we select the most representative samples
by using k-means clustering. The selected patterns are then
adopted to construct a Hankel matrix in order to preserve the
temporal relation between the image patterns. By extracting
the eigenvectors from the Hankel matrix, we achieved a
high compact representation. In order to efficiently use all
of the basis vectors from the Hankel matrix, we proposed
a modified version of the soft weighs. Instead of manually
select the number of eigenvalues, where its weights are set
to 1, we show by experiments that using the average of the
eigenvalues as a soft threshold we accomplish high recognition
rates, without searching for all the basis vector combinations.
This novel approach shows higher recognition rate compared
to the conventional method. Finally, comparing the sample
selection strategies, the random selection demonstrated high
efficient time and competitive recognition rate. By selecting

the samples using k−means clustering, we achieved superior
recognition rate compared to all of the investigated methods.

For future directions, we will extend our work to deal with
nonlinear patterns, as the subspaces employed in this work are
mainly based on linear transformations. One can achieve this
objective by using a nonlinear variant of PCA, as kernel PCA.
Another research avenue would use a discriminative approach
in order to optimally select the samples from each class. In
our method, we select the samples essentially by its represen-
tative importance in terms of class distribution, without taking
into consideration the discriminative power in relation to the
other classes. We understand that by using a discriminative
selection criterion one can improve the recognition rate of the
framework.
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S. Escalera, X. Baró, O. Pujol, and C. Angulo, “Probability-based
dynamic time warping and bag-of-visual-and-depth-words for human
gesture recognition in rgb-d,” Pattern Recognition Letters, vol. 50, pp.
112–121, 2014.

[7] A. Birdal and R. Hassanpour, “Region based hand gesture recognition,”
2008.

[8] M. R. Malgireddy, I. Inwogu, and V. Govindaraju, “A temporal bayesian
model for classifying, detecting and localizing activities in video se-
quences,” in Proc. Int. Conf. on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2012, pp. 43–48.
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