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Abstract—Text segmentation is an important problem in doc-
ument analysis related applications. We address the problem
of classifying connected components of a document image as
text or non-text. Inspired from previous works in the literature,
besides common size and shape related features extracted from
the components, we also consider component images, without
and with context information, as inputs of the classifiers. Multi-
layer perceptrons and convolutional neural networks are used to
classify the components. High precision and recall is obtained
with respect to both text and non-text components.

I. INTRODUCTION

One important process in document image understanding is
geometric layout analysis (or page segmentation). It consists in
partitioning the image into a set of page components (regions
with homogeneous content). Common page components are,
for instance, text regions, figures and tables [1]. Another
important process is the logical layout analysis which consists
in assigning logical labels to the page components based on
their contents and relation with other page components [2].
These two processes are often interrelated and there is no clear
cutting point between the two in actual solutions [3].

Though correct logical layout analysis is fundamental for
a full understanding of document content, detection of only
certain types of components is valuable for different purposes.
For instance, to build digital catalogs, documents usually do
not need to be at a very high resolution, but it is desirable to
keep pictures at a higher resolution to preserve their details.
This would reduce the amount of data, while preserving the
quality of the pictures. Another example is digital document
indexing. Since most index entries are based on words found
in the documents, text detection and recognition is mandatory
while identification of other types of components is not
necessarily required. Moreover, once algorithms specialized
on detecting particular types of components are available, they
can be combined to determine the logical layout of a page.

In this work we address the problem of text region detection
in document images. Figure 1 shows a magazine page (binary
image) on the left side and the text regions highlighted in blue
on the right side. Other non-text page components are shown
in yellow.

To approach this problem, one could rely on geometric
information such as shapes, sizes, spacing and proximities

Fig. 1. A document image and text components (blue colored regions
including the text). Original image from the ICDAR-2009 dataset [4].

between image components, to generate an initial partition of
the image. Then, each segment could be classified as text or
non-text [1], [3]. It is also possible to start from an over-
segmentation of the image (such as from the set of super-
pixels or from the connected components) and then perform
classification and grouping of these individual segments. Due
to variations in page characteristics from document domain
to domain, machine learning based approaches constitute a
powerful approach to tackle this problem. For segmenting text,
classifying connected components is a natural choice in most
cases since individual text characters naturally correspond to
connected components.

Connected component classification as text or non-text has
been recently explored, using machine learning techniques,
in [5]–[7]. Shape related information, component images, or a
combination of both, are used as features for the classification,
using traditional classifier models such as multilayer neural
networks and SVM. Component images [5] are image crops
centered on a connected component in the image. Hence, they
correspond to natural inputs to classifiers of the convolutional
neural network (CNN) family. Therefore, in this work we are
interested on using CNNs to classify connected components
as text or non-text.



Since surrounding information of a connected component
may be important to disambiguate identification of objects
that resemble text character shapes, we also consider context
images, which are component images with surrounding infor-
mation. Incorporating such information on the feature set in
the conventional classification pipeline will require adequate
encoding of the surrounding information and it may also imply
a non-desired growth in the number of features. On the other
hand, for training CNNs, context information can be captured
in an image patch with the component at the center. We would
like to examine how much classification efficacy is affected by
context information.

Most existing ground-truth information on text segmentation
is provided in terms of delimiters of the page component
regions (usually bounding boxes or enclosing polygons) [4].
Since we are not concerned with delimiting text regions,
our analysis is based on connected component classification
measures. Conventional learning based classification (the usual
method that consists in extracting features and then using
them as input in classifier training) serves as a baseline for
comparison purposes. We have separated the dataset into
training and test sets and used part of the training data to
compute validation performance and then choose the best
performing model. The chosen model is evaluated on the test
set to verify generalization.

Following this, in Section II we review the main related
works, and specifically those that use machine learning tech-
niques to classify connected components as text or non-text.
Then, in Section III we present an overview of the proposed
approach and detail the features and classifiers used in our
study. Features are inspired from works described in Section II.
We propose some variations on the features and the use of
CNNs to classify individual connected component images as
well as the context images that include not only the connected
component but also the surrounding information. Experiments
are performed on the ICDAR-2009 dataset [4]. The proposed
method achieves high precision and recall, around 98%, with
respect to connected components. At the end, in Section V we
present the conclusions of this work.

II. RELATED WORKS

As stated previously, the aim of this work is to detect text
region in document images by means of connected component
classification as text or non-text. This work is inspired by the
works of Bukhari et al. [5] and Le et al. [6].

Bukhari et al. [5] propose a discriminative learning ap-
proach to segment text from document images. They observe
that existing methods can be grouped into block classification
or pixel classification methods. Block classification methods
are those that partition the image into a certain number of
blocks and then perform the classification of each of them.
They argue that in block classification methods wrong blocks
will lead to ill-classification and, on the other hand, although
pixel classification methods do not present the same drawback,
they are slow. Thus, they propose a method based on connected
component classification. To classify a connected component,

simple features are extracted from it and fed to a previously
trained multi-layer perceptron. Specifically, the features con-
sidered are the vectorized forms of the connected component
image and surrounding context image, both rescaled to a
40 × 40 image, plus four size related features, totaling 3204
features.

Le et al. [6] follow a similar approach to the one by Bukhari
et al. [5], but consider a different set of features and classifier
model. They do not consider image rescaling, but consider
a larger number of features related to size, shape, stroke
width and position of the connected components. Their method
include a pre-processing and post-processing steps. In the pre-
processing step some components are filtered out; in the post-
processing step, individual component labels are compared to
the labels of the nearest neighbor components and reclassified
if they meet a given criterion. A total of seventeen features is
used. For classification, a two-class Discrete Adaboost model
is used.

While the two works above perform explicit feature extrac-
tion, some works rely on convolutional neural networks (CNN)
to implicitly extract relevant features. For instance, Rashid et
al. [8] use CNN to identify Greek and Latin scripts in ancient
documents, also by performing connected component classifi-
cation. They use the same approach of rescaling the component
image to 40×40 size images. We observe that CNNs are being
increasingly used to process document images. Many of these
works are related to document classification and retrieval [9],
[10].

III. PROPOSED APPROACH

In this section we describe the method used to train the
classifiers and to select the best model. Application of the
method is described in the next section. The method follows
the pipeline presented in Fig. 2, which is composed of three
main steps: (i) data extraction, (ii) training, and (iii) model
selection.

Prior to the first step, all images were binarized using the
Otsu’s method and then connected components were computed
in each image. Data extraction is the process of reshaping
the individual connected components of an image to a format
suitable to be used by the classifier. For each connected
component we extracted a set of features, which we call
geometric features, and we also built two images of size
40×40, called as component and context images, respectively,
as described below.

A. Training data

The 19 geometric features we extracted are related to size,
shape and position information. Most of them have been used
by Bonakdar [11] and Le [6]. We add a few others, and thus
considered the following features:

• Height: Component bounding box height.
• Width: Component bounding box width.
• Aspect Ratio: Length divided by height.



Fig. 2. Training pipeline for connected component classification as text or non-text.

• Elongation: Ratio of component height
and component width. Computed as
min(height, width)/max(height, width).

• Solidity: Ratio of component pixels to pixels of the
convex hull component image.

• HU moments [12]: Scale, rotation and reflection invariant
features that describe the shape of connected components.
We use only the first four of seven HU moments.

• X-Y coordinates: Center of the connected component
coordinates.

• Area: Number of component pixels.
• Convex area: Number of pixels of convex hull component

image.
• Eccentricity: Ratio of the focal distance (distance be-

tween focal points) over the major axis length. The value
is in the interval [0, 1).

• Euler number: Number of objects (= 1) subtracted by
number of holes (8-connectivity).

• Extent: Ratio of component pixels to pixels in the total
bounding box. Computed as area / (rows * cols)

• Orientation: Angle between the X-axis and the major axis
of the ellipse that has the same second-moments as the
region.

• Perimeter: Perimeter of object which approximates the
contour as a line through the centers of border pixels
using a 4-connectivity.

• Filled area: Number of pixels of component image with
filled holes.

Component images and context images of connected com-
ponents were built in a similar way as done in Bukhari et
al. [5]. There, to build the component images, components
whose size was no larger than 40 were placed at the center of
a 40 × 40 image, and those larger than 40 were rescaled so
that the largest side were reduced to 40, without changing the
aspect ratio, and the rescaled component were placed at the
center of the 40× 40 image. As for the context images, they
also included other components present in the neighborhood
of the target component. The size of the neighborhood was
computed as a function of the height (h) and the length (l)
of the component. Specifically, the region of size 5l by 2h,

centered at the component center, is cropped from the image
and then rescaled to a 40× 40 size image.

We build the component images in the same way as Bukhari
et al., obtaining a 40× 40 image for each component. As for
the context images, we consider a rescaling in such a way
as to have all components at a fixed size. A neighborhood
large enough to result in a 40 × 40 image after rescaling the
component to the fixed size is cropped around the component.
We consider four different fixed sizes for the component (8×8,
12 × 12, 16 × 16 and 20 × 20). Figure 3 shows examples
of a component image and the context images for the four
sizes. Note that the smaller the rescaled component, more
context information is captured. In addition, in the context
image we set the component pixels as positive and the pixels
in the remaining components as negative. In the figure, white
represents the positive pixels, gray represents the negative
pixels and black represents the background.

(a) (b) (c) (d) (e)

Fig. 3. Example of component and context images. (a) Component image.
Context image with the component within a (b) 8×8, (c) 12×12, (d) 16×16,
and (e) 20× 20 squares at the center of a 40× 40 image.

B. Training and model selection

The data extraction step generates three categories of train-
ing data: (a) geometric features, (b) component images, and (c)
context images. In the second step of the pipeline, two classi-
fier models are considered. Multilayer Perceptrons (MLP) are
trained using the geometric features and Convolutional Neural
Networks (CNN) are trained using either component images
or context images. All features were normalized.

It is well known that CNN training involves optimizing a
large number of parameters. To find an adequate CNN for each
input category, rather than varying parameters exhaustively,
we first defined a basic architecture (based on a preliminary
evaluation) and then we varied a subset of the parameters on



the chosen architecture. The chosen architecture is composed
of two sequences of convolution–ReLU–max-pooling layers,
followed by two fully connected layers, and an output layer
with softmax function. In all training sessions we applied
dropout regularization in the penultimate layer, and for cost
optimization, we used the Adam algorithm [13]. A grid search
of the following parameters have been performed:

• learning rates in {1−5, 3−5, 1−4, 3−4};
• convolutional layers in
{((5, 5, 1, 32), (5, 5, 32, 64)), ((3, 3, 1, 32), (3, 3, 32, 64))},
where a convolutional layer is defined as a tuple
(filter-height, filter-width, #channels, #filters). In all
convolutional layers, we used the same padding;

• convolution strides in {(1, 1, 1, 1), (1, 2, 2, 1)}, where one
convolution stride is defined as a tuple (batch-stride,
height-stride, width-stride, channel-stride).

From the combination of the subset of parameters, the
total number of CNN configurations per input category is
16. For each configuration, we trained a CNN with up to 50
epochs, stopping the process when there were no accuracy
improvement in the validation set in 5 consecutive epochs
(early stopping).

For the Multilayer Perceptron Networks, we defined an ar-
chitecture with 19 input units (number of geometric features),
one output layer with two units with sigmoid function (one
for each class), and evaluated architectures with one and two
hidden layers with varying number of units. We also tested
different values for the learning rate.

The model selection step consists of the following. The
trained classifiers were evaluated individually on the validation
set. Then, the best one for each input category were selected.
The selected CNN and MLP classifiers were combined through
a Bayes ensemble and also evaluated. The one with best
accuracy on the validation set was chosen.

IV. EXPERIMENTATION

A. Experimental setup

We used the ICDAR-2009 dataset [4], which contains 55
images. After binarization, two resulted in poor binary images
due to the presence of colored text that were not satisfactorily
handled by the Otsu algorithm. Instead trying to fix the
binarization result, we opted to remove those images from
our experiments. Considering the remaining 53 images, we
randomly selected 28 images (almost half of the data) for
training and 25 images for testing. The 137, 862 components
of the training images were randomly divided into validation
part (20%) and training part (80%).

Note that during the training and model selection process,
evaluation of the classifiers is performed on the components in
the validation set and these components may have come from
any of the images in the training set. Although this choice
may lead to an overestimated validation accuracy, it helps
to avoid overestimation or underestimation of the validation
accuracy that may result due to the presence of particularly
favorable or unfavorable images in the validation set. This

concern is also relevant due to the training-test (rather than
a cross-validation) scenario we have adopted. Testing was
performed on the components that belong to images not-seen
during training. We did not apply any pre-processing on the set
of extracted components nor any post-processing (for instance,
reclassification).

B. Best classifier

Training for each of the parameter variations described in
the previous section were executed and individual performance
on the validation set were recorded. We also evaluated the
performance of the combination of the best classifiers in each
category based on Bayes ensemble. However, we did not find
improvements over the individual classifiers and therefore they
are not reported here.

Table I shows the validation accuracy, recall and precision
in terms of text and non-text components, of the best model
for each input category. The first row refers to the MLP using
the geometric features, the second to CNN using component
images, and the last four to CNN using context images, for
components rescaled respectively to 20×20, 16×16, 12×12,
and 8× 8.

TABLE I
PERFORMANCE COMPARISON OF THE METHODS (OVER THE VALIDATION

SET)

Method Accuracy Non-text Text
recall prec. recall prec.

geom. feat. + MLP 95.91 93.57 91.33 96.76 97.63
20×20 + CNN 98.30 96.66 97.11 98.92 98.74
20×20 + cont. + CNN 98.56 97.68 97.07 98.89 99.12
16×16 + cont. + CNN 98.53 97.54 97.10 98.90 99.07
12×12 + cont. + CNN 98.45 97.55 96.81 98.79 99.07
8×8 + cont. + CNN 98.68 98.15 97.06 98.88 99.30

Comparing the best classifiers of each category, there is
a difference of about 3% between the MLP trained with
geometric features and the CNNs using images. Also, we see
a consistent improvement, in terms of accuracy, when using
context images in comparison to using component images
(without context). Among the CNNs, the one trained with
context images with 8×8 components presented a slight better
accuracy. Thus, we selected that model for the evaluation over
the test set.

The selected model presented an accuracy of 97.96% on the
test set. With respect to non-text components, the recall was
96.46% and the precision was 96.04%, while with respect to
text components, the recall was 98.52% and the precision was
98.68%. These results, very similar to the validation results,
indicate that the selected model generalizes well.

Both [5] and [6] also use the ICDAR-2009 in their ex-
perimental part. However, the first uses only 8 images and
the second reports a five-fold cross-validation result, using for
training a subset of the components in the training fold. Since
we decided to separate model selection from performance
evaluation, we did not perform cross-validation. Although



Fig. 4. Accuracy, text recall and precision of the selected model per image in the test set.

we could have done our model selection based on cross-
validation over the training set, CNN training is a time
consuming process and thus we opted to apply the simple
training-validation scheme. Comparing our test results with the
cross-validation results reported in [6], w.r.t text component
classification our results are similar to theirs but w.r.t. non-
text components our results are significantly superior (they
report precision of 98.89% and recall of 99.09% w.r.t. text
components and precision of 66.72% and recall of 63.35%
w.r.t. non-text components).

Figure 4 shows our best model’s accuracy, precision and
recall with respect to text components per test image. We can
see a stable accuracy over the majority of the images. The
lowest accuracy was 90.54% w.r.t. image 15 in the figure. This
same image presented low text precision (80.0%), meaning
that many non-text components were classified as text. As
shown in Figure 5, many non-text components around the
picture in the center of this image are classified as text (white
pixels). Another common error of the CNN classifier are texts
located in non-text areas, such as within diagrams, as shown in
Figure 6. Although those components are non-text according
to ground-truth annotation, it can not be denied that they are
texts within a diagram.

V. CONCLUSION

We have evaluated performance of CNNs to perform
text/non-text classification of connected components of doc-
ument images. We proposed a new context image in which
the connected components are rescaled to a given fixed size
and the amount of surrounding context is just large enough to
fit the rescaled component at the center of a 40× 40 image.

We used the results of conventional explicit feature ex-
traction + classification approach as a baseline to evaluate
CNN performance. Our conclusion is that CNNs do seem
to be able to extract relevant features for the classification,
since CNN trained with component images alone presented
better results than the MLP trained with the manually extracted

features. Moreover, context information, i.e., other components
surrounding the component to be classified, seem to have some
role in improving performance.

As a future work, we plan to perform a detailed analysis
of the types of components that are not correctly classified
in order to find ways to improve the results. We also plan
to repeat the experiments with CNNs using color images
instead of binary images. Additionally, a challenge is to
extend this method to documents where text characters are
not necessarily isolated components and appear touching other
types of objects in the image.
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