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Abstract—The advances of the graphics programing unit
(GPU) architecture and its rapidly evolving towards general
purpose GPU make a series of applications adopt a general
purpose (GPGPU) and a graphics computing interoperability
approach in which the first is used for heavy calculations and
the second for 3D graphics rendering. Because GPGPU exposes
several hardware features, such as shared memory and thread
synchronization mechanism, it allows a developer to write more
efficient code. Nevertheless, we conjecture that such hardware
features are also available in the graphics computing interface
OpenGL 4.5 or later through the graphics concepts: blending,
transform feedback, tessellation and instancing. In this paper
we assess our conjecture by implementing an N-body simulation
with both approaches. We indeed devise a novel non-graphics
application to the tessellation hardware and the instanced ren-
dering circuit. Instead of refining a mesh, we use the abstract
patch for gaining direct accesses to shared memory. In the place
of drawing multiple objects, we apply the instanced rendering
technology for improving sequential data accesses. Comparative
timing analysis is provided. We believe that these results provide
better understanding of the graphics features that are useful for
closing the performance gap between OpenGL and a GPGPU
architecture, and open a new perspective on implementing solely
with the OpenGL graphics applications that require both intense,
but pre-specified, memory accesses and 3D graphics rendering.

I. INTRODUCTION

Since their introduction to the consumer digital graphics
market in the 1990s [1] the GPUs (Graphics Processing
Units) have evolved from specialized graphics processors to
general purpose computing ones. On one hand, these devices
are widespread in the scientific community for their number
crunching capabilities. On the other hand, programming them
becomes a tricky task if the performance is at stake. With
this in mind researches have been studying ways to better
explore memory hierarchy and parallel execution units in
GPU devices when they port known algorithms from CPU
to GPU. In general, for graphics rendering applications it
is recommended to access 3D graphics specialized hardware
through the open standard OpenGL API [2], and for general
purpose programming the NVIDIA vendor locked CUDA [3]
and the open standard OpenCL [4] APIs have been the
preferred ones. This is because CUDA and OpenCL give
direct access to the resources of the Compute Unified Device
Architecture (CUDA)-enabled GPUs. Since the introduction of
OpenGL compute shaders as part of core OpenGL version 4.3,

those general purpose resources are also accessible through the
OpenGL API to some extent.

Fratarcangeli [5] and Vassilev [6] compared the performance
of these APIs in the implementation of a mass-spring model
for cloth simulation. They observed that the OpenGL rendering
pipeline outperformed CUDA and OpenCL. Their explanation
was that the inter-operation between CUDA/OpenCL and
OpenGL is the main performance bottleneck and mapping all
numerical programming to the OpenGL state machine avoids
this inter-operation.

Hunz conducted in [7] an analysis of the performance
of OpenGL compute shaders in three applications: N-body
simulation, fabric simulations and line detection. He showed
that the concepts of compute work group and compute shared
memory allow a developer to dispatch programs in a way
similar to CUDA and OpenCL. Moreover, they pointed out
the impact of the use of shared memory and of CUDA cores
in the execution performance. Sans and Carmona [8] assessed
the performance of a direct volume ray casting algorithm im-
plemented in CUDA, OpenCL and OpenGL compute shaders.
They found that the third programming model constantly
delivered the best results while OpenCL usually lagged behind
CUDA. These two works reinforce the fact that, when general
purpose calculations are required in a rendering, computing
them through the OpenGL API may be more efficient.

With the introduction of performance-striving graphics con-
cepts throughout the OpenGL evolution and available in ver-
sion 4.5, such as blending, transform feedback, tessellation
and instancing, we ask ourselves whether we can efficiently
access hardware resources through these graphics features. We
conducted a case study of the implementation of a heavy,
but highly parallelizable, and memory-intense N-body sim-
ulation entirely within the OpenGL rendering pipeline. Dif-
ferent graphics features were explored and their performance
compared with a well-known efficient CUDA implementation
available in the NVIDIA CUDA SDK [9].

Although Fang et al. did in [10] a thorough comparison of
the OpenCL and CUDA APIs using 16 benchmarks ranging
from real world applications to synthetic ones, and showed
that in a fair comparison environment both have very similar
performance, we took in this work the CUDA programming
model as the time performance reference for non-graphics



computing. This choice was based on two reasons. The first
one is that CUDA, being directly under control of NVIDIA and
not a committee, is usually quicker than OpenCL in exposing
the latest hardware changes to the developers. And the second
is that the CUDA programming model exposes more details
about the CUDA architecture and is not strictly tied to the
GLSL graphics language as OpenGL compute shaders are.

To be self-contained we present in Section II a brief descrip-
tion of CUDA programming model and OpenGL API through
which a program interacts with the underlying GPU. In Sec-
tion III an N-body simulation and its classical implementation
with CUDA programming model on the GPU are provided.
Section V shows three ways of implementing this simulation
problem with the OpenGL API. Timing results with NVIDIA’s
four GPU architectures, Fermi, Kepler, Maxwell and Pascal,
are reported in Section VI. From the results we infer that if
we appropriately use the GPU-accelerated features we may
achieve a computing performance comparable to that we get
with CUDA, as discussed in Section VII. Some concluding
remarks are drawn in Section VIII.

Contribution: The main contribution of this work is to
present a series of new graphics features available in OpenGL
4.5 from a perspective of non-graphics applications and show
their potential in closing the performance gaps between an
OpenGL-based rendering pipeline and an optimized CUDA-
based implementation through an N-body simulation – a
well-known classical highly parallelizable application with
intense memory accesses. The results of our study are directly
applicable to the performance optimization of shaders for any
application.

II. GPU ARCHITECTURES

In this section we will provide an overview of the CUDA
architecture [11] and the graphics pipeline from OpenGL
4.5 [2] focusing on the features we have applied in our work.

CUDA Architecture

The GPU chip consists of a few hundreds to a few thousands
of smaller and simple processors, the CUDA cores, that each
executes a single thread. The CUDA architecture is built from
a scalable array of multithreaded Streaming Multiprocessors
(SM) and each SM comprises several CUDA cores. Logically,
the threads are organized in blocks of 32, called warps, that are
executed simultaneously in SIMD (Single Instruction, Multiple
Data) fashion under the control of a warp scheduler. The
number of warps that a SM can execute at a given time
depends on the number of CUDA cores it has.

The memory architecture of the GPUs is similar to that of
a modern multi-core CPU. It comprises the main memory,
also called global memory, an off-chip DRAM that has a
wide bus but high latency, and two cache levels, L1 and
L2. The L1 cache is associated to each SM, while the L2
cache is shared by all SMs. Aside from these two caches
that are filled according to the memory access pattern of the
programs being executed, the GPUs also offer other kinds of
memory to be managed by a developer: the shared memory,

the read-only texture cache and the constant cache. The shared
memory has an access time compatible to the L1 cache and is
shared by all the cores in a SM. To keep the access as quick
as possible, there is no special synchronization hardware.
Instead, a developer has to take care of synchronization when
performing concurrent access to this memory.

Graphics Pipeline

The first versions of the graphics pipeline consisting of non-
programmable stages were optimized for vertex transformation
and lighting, geometry rasterization, and blending, masking
or logic operations over the output pixels [12]. As the GPU
evolved, the graphics pipeline has become more flexible pro-
viding more programmable stages, also known as shaders.
Fig. 1 shows the shaders and transform feedback flow in
the rendering pipeline for the OpenGL version 4.5 [2]. The
solid blocks represent the required shader stages, while the
dotted ones are optional. The vertex and fragment shaders
were the first programmable stages. In the vertex shader, per-
vertex operations, such as geometric transformations and color
assignment, are performed, and in the fragment shader per-
pixel modifications are carried out.

Fig. 1. OpenGL 4.5 rendering pipeline comprising fixed functions in dark gray
boxes, programmable functions in light gray boxes and transform feedback
for recording intermediary data. Vertex and fragment shaders are mandatory.

The geometry shader has been included in version 3.0 and
it is responsible for changing the geometry of the primitive
being rendered. The tessellation shader, added in version 4.0,
is responsible for tessellating abstract patches. It consists
of three sub-stages, two of which are programmable. The
tessellation control and evaluation shaders are programmable,
being the first one optional, and the primitive generator is
fixed. In this work only the tessellation evaluation shader
(TES) has been programmed. Finally, the compute shaders
allow a developer to dispatch non-graphics programs while
still maintaining accesses to OpenGL specific features like
texture fetches, uniforms and image load/store. Besides, very
useful features that reduce costly CPU–GPU transfers have
been added: transform feedback and geometry instancing.
Transform feedback outputs directly the results from vertex,
tessellation evaluation or geometry shaders to a bound buffer
object and resubmits it multiple times to the rendering pipeline
without going back to CPU. Geometry instancing, in its turn,
provides a way to render multiple copies of the same object
with a single draw call.

III. N-BODY SIMULATION

An N-body simulation consists in simulating the gravita-
tional interactions of N bodies with mass m and calculating



their resulting positions and velocities at each iteration.
As shown in Alg. 1 [9] the simulation is highly paralleliz-

able as the calculation of the position (line 11) and the velocity
(line 10) for each body Bi is independent from the others,
but it requires the positions of all the other bodies Bj , to
get the relative displacement rij (line 2) at each iteration. For
the squared displacement, ||rij ||2, the gravitational interactions
between bodies are pairwise computed (lines 1 to 4). Note that
a softening factor s is added to the squared euclidean distance
in order to avoid zero division in Alg. 1 as the second for-loop
does not avoid interaction computation between the same body
(Bi = Bj). When this gravitational interaction is multiplied by
the mass of the other body Bj .m, we get a partial acceleration
of the body Bi due to its interaction with Bj . This acceleration
is accumulated in the variable a, so that after looping all
adjacent Bj of Bi, we have in a the total acceleration of
the body Bi (line 8). From a the new velocity Bi.new vel
(line 10) and the new position Bi.new pos (line 11) of the
body Bi at instant t+ ∆ t are estimated. The factor d is used
to lessen the effects of the velocity exponential growth.

Algorithm 1 N-Body simulation
1: interaction(posi, posj){
2: rij = posj − posi
3: return

rij

(||rij ||2+s)
3
2

4: }
5: for body Bi in bodies do
6: a = 0
7: for body Bj in bodies do
8: a = a + interaction(Bi.pos,Bj .pos) ∗Bj .m
9: end for

10: Bi.new vel = (Bi.vel + a ∗∆t) ∗ d
11: Bi.new pos = Bi.pos + Bi.vel ∗∆t
12: end for

IV. AN EFFICIENT IMPLEMENTATION WITH CUDA
A highly optimized implementation of an N-Body simu-

lation in CUDA is described in Alg. 2 [9]. The key feature
of this implementation is to make the best use of the CUDA
memory and cache hierarchy. The positions of N bodies are
transferred to GPU as a global memory buffer. The algorithm
runs in blocks of p threads, launching N

p blocks in total as
illustrated in Fig. 2. Each thread threadIdx in every block
blockIdx is responsible for calculating the new velocity and
the new position of a single body Bi (line 2).

To avoid the bottleneck created by the random memory
accesses, the calculation occurs in two passes. First, each
thread loads the data of a single new body from the global
memory to a shared memory array (line 5) and waits for
synchronization at a barrier. This assures that the total of
p bodies Bj are transferred to the shared memory. Then,
each thread iterates these p bodies Bj and accumulates their
contributions to the acceleration variable a (line 9). This is
repeated for N

p times so that at the end we have in a the total
acceleration of the body Bi at the instant t. With a, the velocity

and position of Bi at the instant t+ ∆t are updated (line 12).
The number of threads, p, is one of the tuning parameters for
the algorithm and we use p = 256 in our experiments as it is
suggested to be the best option for N ≥ 4096 in [9].

For reducing data transfer overhead between the CPU and
the GPU in the rendering stage, new generated position and
velocity of the bodies to be rendered are directly written into
the existing OpenGL buffers, to which CUDA is bound, in a
dual-buffering scheme.

Fig. 2. Blocks and threads execution pattern in CUDA [9].

Algorithm 2 CUDA worker thread algorithm
1: a = 0
2: Bi = fetch(blockIdx ∗ p + threadIdx)
3: for k = 0 to N

p do
4: synchronize thread group
5: shared[threadIdx] = fetch(k ∗ p + threadIdx)
6: synchronize thread group
7: for j = 0 to p do
8: Bj = shared[j]
9: a = a + interaction(Bi, Bj .pos) ∗Bj .m

10: end for
11: end for
12: update body(threadIdx, a)

V. IMPLEMENTATIONS WITH OPENGL API

To fit into the GPU rendering pipeline and to avoid stall
at any shader stage, we devise a two-pass implementation of
Alg. 1: the acceleration computation stage (line 8), and the
velocity (line 10) and the position (line 11) updates stage. In
Fig. 3 we show how these two stages are coupled with a (third)
rendering stage for visualizing the simulation results.

In the first pass the numerical simulation is actually pro-
cessed. Pairwise interactions between all bodies from the input
vertex buffer object V BO are calculated and the results are
output to a texture memory. Inspired by the work of Olano
et al. [13] we propose to enable the blending hardware for
accumulating the interactions of each body with all others in
its own position in the texture memory.



Fig. 3. Three-pass OpenGL-based implementation of an N-body simulation.

The texture position is calculated during the Data Fetch
step in the vertex shader with the function idx2tc as shown
in Alg. 3 (lines 1 to 4). Because we are using the render-to-
texture technique to sum the individual accelerations, we must
also convert each body’s position in the range of [−1, 1] to the
texture coordinates in the range of [0, 1] in the Write Output
step. This conversion is carried out in the tc2pos function
(lines 5 to 9 in Alg. 3). In the fragment shader the computed
acceleration between a pair of bodies is passed through.
Once the blending mechanism is enabled with the blending
factor GL ONE and the blending mode GL FUNC ADD
(O = Src + Dst), the new value Src to be written in the
texture memory is added to the existing one, Dst, and this
old value is updated with the addition result O.

Algorithm 3 Auxiliary functions
1: vec2 idx2tc(uint index, ivec2 size){
2: vec2 pos = vec2(index%size.x, index/size.x);
3: return vec2(pos.x/size.x, pos.y/size.y);
4: }
5: vec4 tc2pos(vec2 texCoord){
6: float x = −1 + 2 ∗ texCoord.x;
7: float y = −1 + 2 ∗ texCoord.y;
8: return vec4(x, y, 0, 1);
9: }

10: vec3 interaction(vec4 a, vec4 b){
11: vec3 r ij = b.xyz − a.xyz;
12: float dist = dot(r ij, r ij) + s;
13: float tmp = inversesqrt(dist);
14: float invSqrtDist3 = tmp ∗ tmp ∗ tmp;
15: return r ij ∗ invSqrtDist3;
16: }

In the second pass the velocity and the position of each body
at the instant t+∆t are updated as shown in Alg. 4. The draw
calls of the bodies must be issued again to trigger this second
stage. The accelerations computed in the first pass are passed
to the second pass through a global texture memory accelTex
(line 11). As this second stage only involves vertex processing,
we propose to enable the transform feedback buffers, TFB,
for capturing the computed new positions newPos (line 17)

and new velocities newV el (line 18), and to resubmit them
directly to the third pass, the rendering stage, without CPU–
GPU transfers.

Algorithm 4 Vertex shader in the 2nd. stage of Fig. 3
1: layout(location = 0) in vec4 oldPos;
2: layout(location = 1) in vec4 oldV el;
3: out vec4 newPos;
4: out vec4 newV el;
5: uniform ivec2 size;
6: uniform float dt;
7: uniform float d;
8: uniform sampler2D accelTex;
9: vec3 getAccel(uint idx){

10: ivec2 texelC = ivec2(idx%size.x, idx/size.x);
11: return texelFetch(accelTex, texelC, 0).xyz;
12: }
13: main(){
14: vec3 a = getAccel(gl V ertexID);
15: vec3 vel = (oldV el.xyz + a ∗ dt) ∗ d;
16: vec3 pos = oldPos.xyz + vel ∗ dt;
17: newPos = vec4(pos, oldPos.w);
18: newV el = vec4(vel, oldV el.w);
19: }

For the purpose of showing the impact of GPU-accelerated
graphics features on the performance of an N-body simulation,
we implemented the Interaction Calculation step of the first
pass in three different ways: with a geometry shader, with a
tessellation evaluation shader and with instancing primitives.

A. Programing Geometry Shader

The first feature we explored in the implementation of the
Interaction Calculation step is the capacity of the geometry
shader to access the data from all vertices of the primitive
being rendered, as shown in Alg. 5. We render all the N
bodies as a set of N2 line segments, so that we can process
each pair of bodies i and j in a geometry shader by reading
the positions of the vertices, B[0].pos and B[1].pos, of the
input line segment (line 1) and output the accelerations of
each body due to their gravitational interactions (line 2). The
shader calculates the interaction between the two vertices of
the line segment (line 13) and emits the two vertices with the
acceleration due to this pairwise interaction (line 16 and 19).
Note that the element B[i].pos.w corresponds to the mass of
the body i.

B. Programming Tessellation Evaluation Shader

Using the geometry shader we can achieve higher paral-
lelism for an N-body simulation but the sheer number of
interactions with its quadratic growth makes it poorly scalable
even for the latest GPUs. Looking at the optimized CUDA-
based implementation, we observed that its distinguishing
feature is the way that the shared memory is exposed to
a programmer which facilitates the implementation of 1:m
interactions in a single thread.



Algorithm 5 Geometry shader for pairwise interaction
1: layout(lines) in;
2: layout(points,maxvertices = 2) out;
3: in V ertexData{
4: vec4 pos;
5: vec2 texCoord;
6: } B[];
7: out GeomData{
8: vec3 accel;
9: } gOut;

10: uniform float dt;
11: uniform float s;
12: main(){
13: vec3 inter = interaction(B[0].pos,B[1].pos);
14: gl Position = tc2pos(B[0].texCoord);
15: gOut.accel = inter ∗B[1].pos.w;
16: EmitV ertex();
17: gl Position = tc2pos(B[1].texCoord);
18: gOut.accel = −(inter ∗B[0].pos.w);
19: EmitV ertex();
20: }

Our inspiration for an optimized thread execution comes
from the work presented by Nießner et al. which tells us that
the tessellation shader optimizes the memory accesses through
the intense use of shared memory [14]. We grouped the N2

interaction pairs in patches of 32 mutually excluding bodies,
expecting that we may maximize the underlying thread-level
parallelism without getting an unyielding amount of threads.

Our proposal is to render N bodies as N
32 quad patches

with {3,7,3,7} as their outer tessellation levels and {7,3} as
their inner tessellation levels. Fig. 4 shows that this kind of
tessellation results in 32 tessellation points per patch. Once
each tessellation point is associated to a body, this per patch
organization is similar to the per block organization in the
CUDA implementation described in Section III. Knowing that
the acceleration between two identical bodies is zero, we can
compute with a tessellation evaluation shader the gravitational
acceleration per patch of each body by iterating all the 32
bodies in the patch.

Fig. 4. Quad tessellation for comprising 32 bodies.

Alg. 6 details our proposal. The loop in lines 13 to 16

implements the access to the 32 bodies and the sum of their
contributions weighted by their mass B[j].pos.w to the total
acceleration a of the current tessellation point. The location
of this current point in the patch is given by gl TessCoord
in the range of [0,1]. To obtain the index i of the current
tessellation point in the vector B, where the data of the 32
bodies are organized in a row-major order, we must transform
(x, y) ∈ [0, 1] into a i ∈ [0, 32) array position. Looking
at the tessellation points obtained by the quad patch with
tessellation levels as described in Fig. 4, we can see that
the y axis has 4 equally separated points with distance of 1

3
while the x axis has 8 equally separated points with distance
of 1

7 . Hence, i = 24y + 7x (line 11). It is worth noting
that the proposed memory access pattern is similar to the
shared memory access pattern described in Alg. 2. The output
accumulated acceleration (line 17) passes through the fragment
shader and is written in the corresponding position in the
accelTex texture.

Algorithm 6 TES for pairwise interaction
1: layout(quads, equal spacing, cw, point mode) in;
2: uniform float s;
3: in V ertexData{
4: vec4 pos;
5: vec2 texCoord;
6: } B[];
7: out TEData{
8: vec3 accel;
9: } tOut;

10: main(){
11: int i = 24 ∗ gl TessCoord.y + 7 ∗ gl TessCoord.x;
12: vec3 a = vec3(0);
13: for (j = 0; j < 32; j + +){
14: vec3 inter = interaction(B[i].pos,B[j].pos);
15: a = a + inter ∗B[j].pos.w;
16: }
17: tOut.accel = a;
18: gl Position = tc2pos(B[i].texCoord);
19: }

C. Programming Tessellation Shader with Instancing

Even with the use of the shared memory via tessellating
primitives, we observed that the performance of an OpenGL-
based implementation is still not competitive with the opti-
mized CUDA-based implementation. Further careful compar-
ative analysis led us to detect a subtle difference between
the CUDA-based implementation and our tessellation-based
implementation. Instead of (N

p ×
N
p )(p × p) memory access

pattern described in Section V-B, the pattern adopted in the
CUDA-based implementation is N

p (p× (N
p × p)) as sketched

in Fig. 2. Although the quantities of processed bodies are the
same, the number of memory accesses varies largely between
the two approaches.

By observing the way that instanced rendering renders
multiple instances in a single draw call, we came to the idea



of applying this rendering mode to iterate all the quad patches
described in Section V-B. The key to our proposal is to scan all
the N

32 instanced patches by an instanced rendering of a single
patch. To cover all N

32 patches we should issue N
32 instanced

draw calls as illustrates Fig. 5. This scheme makes our memory
access pattern become N

32 (32 × ( N
32 × 32)), approaching the

CUDA-based implementation depicted in Fig. 2.

Fig. 5. Patches and instanced patches pattern.

For computing the gravitational interactions between every
body i of the currently rendered patch and every body j of an
instanced patch in a tessellation evaluation shader (lines 14–17
in Alg. 8), we need to have access to the data of both patches.
We propose to fetch these data from the vertex buffer object
V BO in the vertex shader with use of the index of the current
vertex gl V ertexID and the index of the current instanced
patch gl InstancedID (line 15 in Alg. 7). In this way each
vertex of a patch will be responsible for fetching a single body
data of the instanced patch and saving it on B.pos2.

Note that, similar to Alg. 6, the output of the tessellation
shader is the accumulated accelerations of the body i with
32 bodies (line 18 in Alg. 8), and, differently from Alg. 6,
these 32 bodies belong to the instanced patch and not to the
rendered patch where the current tessellating point lies.

VI. RESULTS

We propose in Section V a way that we can gradually en-
hance the graphics features in the OpenGL-based implementa-
tion of an N-body simulation such that memory access patterns
become as close as possible to those of the CUDA (Alg. 1).
We only modify the Interaction Calculation step of the code
for each implementation case presented in Section V. In this
section we assess how effective is our proposal in making the
two programming models rival in time performance.

TABLE I
SPECIFICATION OF THE EVALUATED ARCHITECTURES

GPU/CPU RAM NVIDIA GeForce # of cores
Fermi/core i5 8 GB 540M 1 GB VRAM 96
Kepler/core i7 16 GB GTX Titan 6 GB VRAM 2688
Maxwell/Xeon 16 GB GTX Titan X 12 GB VRAM 3072
Pascal/core i7 16 GB GTX 1080 8 GB VRAM 2560

Algorithm 7 Vertex shader for looping patches
1: layout(location = 0) in vec4 pos;
2: layout(location = 1) in vec4 vel;
3: layout(std140, binding = 0) buffer PosBuffer{
4: vec4 positions[];
5: };
6: out V ertexData{
7: vec4 pos;
8: vec4 pos2;
9: vec2 texCoord;

10: } B;
11: uniform ivec2 size;
12: main(){
13: B.pos = pos;
14: extraIdx = 32 ∗ gl InstanceID+ gl V ertexID%32;
15: B.pos2 = positions[extraIdx];
16: B.texCoord = idx2tc(gl V ertexID);
17: }

Algorithm 8 TES for per-patch pairwise interactions
1: layout(quads, equal spacing, cw, point mode) in;
2: uniform float s;
3: in V ertexData{
4: vec4 pos;
5: vec4 pos2;
6: vec2 texCoord;
7: } B[];
8: out TEData{
9: vec3 accel;

10: } tOut;
11: main(){
12: int i = 24 ∗ gl TessCoord.y + 7 ∗ gl TessCoord.x;
13: vec3 a = vec3(0);
14: for (j = 0; j < 32; j + +){
15: vec3 inter = interaction(B[i].pos,B[j].pos2);
16: a = a + inter ∗B[j].pos2.w;
17: }
18: tOut.accel = a;
19: gl Position = tc2pos(B[i].texCoord);
20: }

We devised two tests, one for evaluating the performance
improvement as graphics features are integrated and the other
for evaluating the scalability of our proposal in NVIDIA’s four
GPU architectures presenting distinct number of cores and
memory size: Fermi, Kepler, Maxwell and Pascal (Table I).
The sample code of an N-body simulation that comes with the
NVIDIA CUDA SDK [9] can run either on the GPU or on the
CPU and can display the amount of FPS (frames per second)
with an update rate of one second. Because the machines
where we conducted our experiments have distinguishing soft-
ware configuration, the function queryperformancecounter()
on the Windows platform and the function gettimeofday() on
Linux have been used to get the elapsed times. For enhancing



(a) Graphics features (b) Graphics architectures (c) Same architecture and blocksize

Fig. 6. Performance comparisons of OpenGL and CUDA in Interaction Calculation: (a) 4 implementations on the NVIDIA Kepler GPU: CUDA with
blocksize=256 (Section IV), Geometry Shader (Section V-A), Tessellation Evaluation Shader (Section V-B), and Tessellation Evaluation Shader with instancing
with blocksize=32 (Section V-C); (b) CUDA with blocksize=256 and Tessellation with instancing implementation with blocksize=32 on four NVIDIA GPU
architectures: Fermi, Kepler, Maxwell and Pascal; and (c) CUDA and Tessellation with instancing, both with blocksize=32, on the NVIDIA Kepler GPU.

the representation of measured execution times, the average
FPS over 200 samples were used in the plots of Fig. 6.

In the first test we run all the four different N-body simu-
lation implementations (one CUDA-based and three OpenGL-
based) on the NVIDIA Kepler GPU to assess the difference in
performance that each OpenGL feature causes and how close it
can approach the CUDA-based performance. The performance
(FPS × number of bodies) plots are shown in Fig. 6a. From
these plots we observe that the geometry and the tessellation
features do not scale well and quickly degrade even with very
small numbers of bodies, while CUDA-based implementation
and the implementation that combines the tessellation and
instanced rendering features are able to maintain a good
performance even when the number of bodies grows. We can
also see that the tessellation plus instanced rendering algorithm
is the one that presents the closest performance to the CUDA-
based algorithm performance.

In the second test we compare on four NVIDIA GPUs the
performance of GPU-accelerated tessellation mechanism com-
bined with the instanced rendering in relation to the CUDA
implementation. We would not only assess the influence of the
evolution of GPU hardware in the performance of rendering
pipeline for non-graphics processing, but also the scalability of
the OpenGL and CUDA programming approaches on different
GPU architecture as well. The performance (FPS × number of
bodies) graphs are drawn in Fig. 6b. There are small hiccups
in the graphs due to various uncontrolled background CPU
workloads once our measurement procedure does not rely on
the CPU time. It is interesting to observe that OpenGL-based
implementation presents better performance than the CUDA-
based one for small numbers of bodies, but it degrades more
rapidly than the CUDA-based implementation as the number
grows. Also note that the NVIDIA Maxwell GPU, despite its
lower performance, seems to offer better scalability.

VII. DISCUSSIONS

Remapping non-graphics concepts to graphics concepts,
such as a weighted summation onto a GPU-accelerated blend-
ing function, in order to maximize performance is not a new
concern. Brook [15] is a pioneering research project that repre-
sents efforts toward using graphics hardware to solve data- and

compute-intensive general purpose applications. Nowadays the
vendor-locking CUDA API and the open standard OpenCL
API are worldwide well-known general purpose programming
interface to GPUs. Nevertheless, because that GPUs have
specifically been designed for graphics oriented workloads,
it has been shown from several studies [5], [6], [8], [10]
that an algorithm that perfectly fits the OpenGL API quite
often presents better performance than the general purpose
API counterpart. And, since version 4.3 some critical hardware
features for parallel processing, such as memory hierarchy,
thread blocking and block execution synchronization, become
available in the core OpenGL as a separate general purpose
shader.

As we have seen in Section II, several new graphics
concepts have been introduced in parallel, such as transform
feedback, tessellation shader and instanced rendering, in order
to improve rendering performance. In order to enhance the use
of hardware resources of the CUDA-enabled GPUs, we have
investigated in this work how these concepts are related with
these resources. Based on [14] and our experiments, we came
to the conclusion that these concepts are implemented on top
of an optimized hardware.

From [14] we inferred that higher tessellating performance
is achieved by pre-loading all the tessellating points of a patch
into the shared memory in a fashion similar to all the data of a
block of threads being fetched in Alg. 2. And, from the results
of our empirical timing tests, we raised the hypothesis that the
attributes of multiple instances are fetched block-wise from the
global memory which increases the data locality. To evaluate
our hypothesis, we further implemented different versions of
Interaction Calculation with gradually enhanced graphics
features, as detailed in Section V.

Time performance results on the NVIDIA Kepler GPU
summarized in Fig. 6a let us state that our hypotheses meet
the experimental outcomes. Optimization strategies we devised
for the OpenGL API are enough to reach a performance that
is even better than an optimized CUDA-implementation for
small numbers of bodies (N < 3000). Intriguing is, however,
the rapid drop of the performance for larger number of bodies
in comparison to the CUDA, as shown in Fig. 6b.. Careful
analysis led us to identify the only difference between them:



the number of bodies per group processing. In the OpenGL-
based implementation we have 32 bodies per patch and in
the CUDA-based implementation we have 256 bodies per
block. It is, therefore, expected that the latter presents better
performance than the former due to the supported block size.

Although the drop of time performance reinforces our
hypotheses, we still decide to compare the performance of two
implementations on the NVIDIA Kepler GPU with the same
number of bodies per processing group. When we set 32 as the
number of bodies per block in the CUDA-based implementa-
tion, we obtain a time performance curve quite similar to that
we obtained in the OpenGL-based implementation as shown
in Fig. 6c. It seems that as long as the number of vertices
in each patch is limited to 32 along the OpenGL rendering
pipeline, CUDA may present better performance.

Because of the limitation imposed by the hardware of
the tessellation shader, the OpenGL-based implementation
is less scalable than the CUDA-based implementation. The
plots in Fig. 6b corroborate our expectation. It is, however,
worth noting that, although presenting lower performance, the
NVIDIA Maxwell GPU has better scalability. We conjecture
that this behavior is due to a larger number of cores it has in
comparison to other GPUs (Table I).

Summarizing, from our case study we may draw a parallel
between the OpenGL API and the CUDA-enabled GPU: (1)
with the geometry shader we may enhance the parallel compu-
tation of a set of vectors instead of parallel processing of single
(vertex) vectors; (2) with the tesselation evaluation shader we
may optimize the memory accesses once the processing data
are supposed to be pre-loaded into the shared memory; and
(3) with the instanced rendering we may improve the memory
access pattern.

Note that the measurements of elapsed execution times
instead of GPU times suffice for the purpose of a comparative
study. But, we believe that if we had measured the exact
amount of time that the GPU has spent processing the data
at each rendering stage, we would have gained better insight
into the detailed behavior of the underlying hardware resource
and we would have been able to understand some intriguing
behaviors, such as small hiccups and unexpected performance
drops in the plots presented in Fig. 6.

VIII. CONCLUDING REMARKS

Motivated by looking for a solution that closes the per-
formance gaps between an OpenGL-based and an optimized
CUDA-based implementation, we presented a novel applica-
tion of the geometry shader, the tessellation shader and the
instanced rendering mechanism available in the OpenGL 4.5
API. With the geometry shader we may increase the number
of vectors to be processed in a thread. We showed that,
because the tessellation shader pre-loads its patch data in a
shared memory, patch primitives can be used to maximize the
low-latency memory accesses. We also experimentally demon-
strated that, because the data of multiple instances should
be block-wise fetched, instancing drawing can be applied to
maximize the global memory bandwidth.

Applying our findings in the implementation of a memory-
intense, but highly parallelizable, N-body simulation, we got
an OpenGL-based implementation that rivals a well optimized
CUDA-based version. We believe that these findings are useful
for devising new performance optimization strategies for the
applications developed with the OpenGL API. Nevertheless, to
fully benefit from the hardware resources we should deepen
our understanding of some unexpected behavior patterns by
profiling our shaders and analyzing probable bottlenecks.

The comparison results of using groups of 32 bodies in both
programming models open a new perspective on improving
even more the performance. Instead of a single draw call with
all N

p instances of patches, we may make N
8p draw calls with

8 instances of patch per call such that we have a total of 256
bodies per call. As further work we would like to assess the
performance gain with this rearrangement.
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