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Abstract—Blind image quality assessment (BIQA) methods
aim to estimate the quality of a given test image without
referring to the corresponding reference (original) image. Most
BIQA methods use visual sensitivity models, which take into
consideration intrinsic image characteristics (e.g. contrast, lu-
minance, and texture) to identify degradations and estimate
quality. For example, texture-based BIQA methods are based
on the assumption that visual impairments (degradations) alter
the characteristics of the image textures and, therefore, their
statistics. Although these methods have been are known to
provide an acceptable performance, they do not take into account
the semantic information of the image. In this paper, we propose
a BIQA method that estimates quality using texture character-
istics and semantic information. The texture characteristics are
obtained using the Opponent Color Local Binary Pattern (OCL)
operator. The semantic information is obtained by estimating the
probability distribution of the scene characteristics. A random
forest regression algorithm is used to map semantic and texture-
based features into a quality score. Results obtained testing the
proposed BIQA method on several public databases show the
method has a good accuracy on quality prediction.

I. INTRODUCTION

Image quality assessment (IQA) is a research area that has
achieved a great importance in the last years, mostly due
to the exponential growth of the popularity of digital visual
information (images). Given this high volume of visual infor-
mation, the task of accurately assessing the quality of an image
has become crucial for several multimedia applications. More
specifically, IQA methods are used to estimate the performance
of compression algorithms [1], multimedia transmission [2],
[3], display technologies, image enhancement and restoration
algorithms [4].

Over the past decades, a lot of progress has been made
in the area of image quality, with a large number of IQA
methods being proposed. IQA methods can be classified into
three types, according to the amount of information required
to perform the assessment task. Full-reference (FR) meth-
ods [5] require the original image and are, usually, more
precise. Reduced-reference (RR) methods require only part
information (e.g. features) about the original image [6], [7].
Because needing even partial information of the reference
image can be a hindrance for several multimedia applications,

frequently, the most adequate solution is to use blind image
quality assessment (BIQA) methods. BIQA methods [8], [9]
blindly estimate the quality of a test image without requiring
any information about its reference.

Many BIQA methods have been proposed [8]–[11]. Among
the available approaches, methods based on texture analysis
in combination with machine learning techniques have been
very successful. As an example, we can cite the work of Peng
Ye and Doermann [12], which uses local Gabor-filter features
to build a visual codebook that is used to estimate quality.
Recently, several BIQA methods based on a texture descriptor
known as the Local Binary Pattern (LBP) operator [13] have
been proposed. State-of-the-art LBP-based BIQA methods
include the efforts of Freitas et al. [9], [14], Rezaie et al. [15],
Li et al. [11], Zhang et al. [10], and Wu et al. [16].

Although the aforementioned methods achieve an accept-
able prediction accuracy, some issues remain open. As stated
by Chandler [17], so far, IQA developments focus on im-
proving the prediction accuracy for popular distortions, such
as JPEG, blurring, or noise. There are few methods that
perform efficiently for multiple distortions. Therefore, there
are very few general purpose BIQA methods. In this paper,
we investigate if semantics can improve the lack of generality
of BIQA methods.

Most IQA methods assume that the perceived quality de-
pends exclusively on the sensitivity to impairments. In this
paper, we study how image semantics can affect quality. Our
work is inspired by the subjective study performed by Siahaan
et al. [18], which demonstrated that visual quality is influenced
by the semantic content. Moreover, Farias & Akamine [19]
studied how to incorporate visual saliency into IQA methods,
obtaining interesting results. Since saliency is an aspect of
image semantics [20], we believe that image semantics can
indeed be used to improve the accuracy performance of IQA
methods.

Differently from Siahaan et al. [18], who performed an
investigation using subjective experiments, we aim to incorpo-
rate semantic features into the design of a BIQA method. More
specifically, we use a pre-trained deep convolutional neural
network to generate semantic categories of an image. These



categories are, then, combined with texture features to blindly
estimate the image quality.

The rest of this paper is organized as follows. In Section II,
we review the opponent color local binary pattern (OCL)
operator and in Section III we discuss the semantic analysis.
In Section IV, we describe how to apply the OCL and the
semantic features into a BIQA method. Sections V and VI
present the experimental setup and the results, respectively.
Finally, Section VII presents the conclusions.

II. THE OPPONENT COLOR LOCAL BINARY PATTERN

Local Binary Pattern (LBP) is arguably one of the most
powerful texture descriptors currently available. It was first
proposed by Ojala et al. [21] as a particular case of the Texture
Spectrum Model [22]. Ojala et al. [23], [24] formalized the
LBP descriptor and it has since been proven to be an effective
feature extractor for texture based problems. Because of its
effectiveness, several extended versions of the LBP operator
have been proposed [25], making it possible to adapt this
operator to specific applications.
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Fig. 1. Circularly symmetric P neighbors extracted from a distance R.

The traditional LBP operator [24] takes the form:

LBPR,P (Ic) =

P−1∑
p=0

S(Ip − Ic)2p, (1)

where

S(t) =

{
1 t ≥ 0,

0 otherwise.
(2)

In Eq. 1, Ic = I(x, y) is an arbitrary central pixel at the
position (x, y) (gray dots in Fig. 2) and Ip = I(xp, yp) is a
neighboring pixel surrounding Ic (back dots in Fig. 2), where:

xp = x+R cos
(
2π

p

P

)
and yp = y −R sin

(
2π

p

P

)
.

In this case, p = {1, 2, · · · , P} is the number of neighboring
pixels sampled from a distance R (radius) from Ic to Ip. Fig. 1
illustrates examples of symmetric samplings with different
numbers of neighboring points (P ) and radius (R) values.

Fig. 2 illustrates the steps for applying the LBP operator
on a single pixel (Ic = 8) located in the center of a 3 × 3
image block, as shown in the bottom-left of this figure. The
numbers in the yellow squares of the block represent the order
in which the operator is computed (counter-clockwise direction
starting from 0). In this figure, we use an unitary neighborhood
radius (R = 1) and eight neighboring pixels (P = 8). After
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Fig. 2. Calculation of LBP labels.

calculating S(t) (Eq. 2) for each neighboring pixel Ip, we
obtain a binary output for each Ip (0 ≤ p ≤ 7), as illustrated
in the block in the upper-left position of Fig. 2. In this block,
black circles correspond to ‘0’ and white circles to ‘1’. These
binary outputs are stored in a binary format, according to their
position (yellow squares). Then, the resulting binary number
is converted to the decimal format. This decimal number is
the output generated by the LBP operator for Ic.

Although the LBP descriptor is efficient for describing
grayscale textures, it is not sensitive to some types of impair-
ments, such as contrast distortions or chromatic aberrations.
As discussed by Maenpaa et al. [26], color and texture have
complementary roles. When texture descriptors on luminance
domain (e.g. LBP) obtain good results, color descriptors can
also obtain good results. However, when color descriptors
fail, luminance texture descriptors can produce a good per-
formance. Therefore, operators that combine both texture and
color information are more effective in predicting a wider
range of impairments.

Fig. 3. Sampling scheme for the OCLRG and OCLRB descriptors.

To combine both texture and color information into a joint
descriptor, Maenpaa [27] proposed to use the Opponent Color
Local Binary Pattern (OCL) operator. This operator improves
the operator proposed by Jain & Healey [28] by substituting
the Gabor filter with a variant of the LBP operator, what
decreases the computational cost of the method.

The OCL operator has two approaches. In the first, the LBP
operator is applied, individually, on each color channel, instead
of being applyied only on a single luminance channel. This
approach is called ‘intra-channel’ because the central pixel and
the corresponding sampled neighboring points belong to the
same color channels.
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Fig. 4. Original images and their output channels, computed using the OCL operator.

In the second approach, called ‘inter-channel’, the central
pixel belongs to a color channel and its corresponding sampled
neighboring points belong to another color channel. More
specifically, for an OCLMN operator, the central pixel is
positioned in the channel M , while the neighborhood is
sampled in the channel N . For a three-channel color space,
such as RGB, there are six possible combinations of channels:
OCLRG, OCLRG, OCLRB , OCLRB , OCLGB , and OCLGB .

Fig. 3 depicts the sampling approach of OCL when the
central pixel is sampled in R channel. From this figure, we
can notice that two combinations are possible: OCLRG (left)
and OCLRB (right). In this OCLRG, the gray circle in the red
channel is the central point, while the green circles in the green
channel correspond to ‘0’ sampling points and the white circles

correspond to ‘1’ sampling points, respectively. Similarly,
in the OCLRB the blue circles correspond to ‘0’ sampling
points and the white circles correspond to ‘1’ sampling points,
respectively.

After computing the OCL operator for all pixels, a total
of six texture channels are generated. As depicted in Fig. 4,
three LBP intra-channels (LBPR, LBPG, and LBPB) and
three LBP inter-channels (OCLRG, OCLRB , and OCLGB) are
generated. Although all possible combinations of the opposite
color channels allows six distinct channels, we observed that
the symmetric opposing pairs are very redundant (e.g. OCLRG

is equivalent to OCLGR). Due to this redundancy, only the
three more descriptive inter-channels are used.



III. VISUAL SEMANTIC MODELS

In the context of this paper, visual semantic information
refers to a description of a scene. More specifically, we use
an image as input to a pre-trained machine-learning algorithm
that automatically interprets the image content. This algorithm
associates the elements in the scene (e.g. objects, people,
animals, etc) to semantic categories, which are then associated
with a class (i.e., a unique numeric label associated with
the textual description of the semantic content). At the end,
the algorithm outputs a multi-dimensional vector, with the j-
th vector element representing the probability of the content
being described by the j-th class.

In the literature, there are several algorithms that perform
the aforementioned task. Among these algorithms, those based
on deep convolutional neural networks (CNN) represent a
big progress for the area of image classification and visual
semantic extraction [29]. This progress has been driven by the
ImageNet challange [30]. The goal of this challenge is to train
a model that can classify an input image into 1,000 separate
object categories.

Since the ImageNet was started, many methods have been
proposed and the leader-board for this challenge has been
dominated by CNN and deep learning techniques since 2012.
Among the CNN-based algorithms, it is worth mentioning
AlexNet [31], VGG [32], GoogleNet [33], and ResNet [34]
methods. All these methods use deep-learning approaches, but
differ in terms of the architectures of the neural networks, such
as the number of layers, pooling, and fine-tuning.

Table I depicts the visual semantic elements generated
using ResNet. The output is a 1,000-dimensional vector, with
each element representing a semantic category (class). The
images in Table I are the inputs, while the barplots indicate
the probability distribution of each class describing the input
image. For each image, we list the three more likely class
(descriptions), as predicted by the ResNet.

IV. PROPOSED METHOD

Fig. 5 depicts a block-diagram of the proposed BIQA
method. First, we compute the OCL channels, as described
in the Section II. Then, we extract the statistical information
of each channel, by computing the histograms of the OCL
channels. These histograms are computed as follows:

Hϕ = H(Cϕ) = {hϕ(l1), hϕ(l2), · · · }, (3)

where:
hϕ(li) =

∑
x,y

δ(Cϕ(x, y), li), (4)

and

δ(v, u) =

{
1 v = u,

0 v 6= u
. (5)

In the above equations, Cϕ depicts a OCL channel, (x, y) is
the position of a random pixel of Cϕ, and li is the i-th label of
Cϕ. The concatenation of all histograms (i.e., HLBPR

, HLBPG
,

HLBPB
, HOCLRG

, HOCLRB
, and HOCLGB

) generates a single
vector of texture features.

Texture Features 

(LBP

R

, LBP

G

, LBP

B

, OC-LBP

RG

, ...)

Semantic Features 

(e.g. AlexNet, VGG, ResNet, etc)

Random

Forest

Regression

Quality

Score

Fig. 5. Block diagram of the proposed BIQA method.

The semantic features are computed as described in Sec-
tion III (i.e., the 1,000-dimensional vector containing the
probability distribution of each class). After computing both
the OCL histograms and the semantic features, the final
feature vector is constructed by concatenating these two sets
of features. Finally, the prediction stage uses the random forest
regression (RFR) [35] technique to obtain a quality estimate. It
is worth pointing out that, although the support vector regres-
sion (SVR) is widely used in the field of IQA, recent results
indicate that RFR provides competitive performances [36]–
[38].

V. EXPERIMENTAL SETUP

Results were obtained using an Intel R© CoreTM i7-4700MQ
processor at 2.40GHz. To evaluate the prediction performance
of the proposed method, the Spearman’s Rank Ordered Cor-
relation (SROCC) between the subjective scores and the pre-
dicted scores is used. The proposed method is compared with
two FR-IQA methods (PSNR and SSIM [39]) and five pub-
licly available state-of-the-art BIQA methods are considered
for comparison (BRISQUE [40], CORNIA [41], CQA [42],
SSEQ [43], and LTP [14]).

Since all tested BIQA methods are machine learning algo-
rithms, we use the same procedure for training and testing.
To avoid overfit, the databases are divided into content-
independent training and testing subsets. In other words, image
content in the training subset was not used in the testing subset,
and vice-versa. From the complete database, 80% of the
images are used for training and 20% are used for testing. This
procedure is repeated 1,000 times, with the training and testing
subsets being randomly selected at each time. For the SVR-
based BIQA methods, we use the LibSVR implementation,
which can be accessed using a Python interface provided
by Sklearn library [44]. For each method, the optimal SVR
metaparameters (C, γ, ν, etc) are automatically found using
a grid search method. To generate the RFR prediction model
of the proposed method, we also used Sklearn. No optimized
search methods are used for the RFR version of the proposed
method.

Four models are used to generate the semantic features,
including AlexNet [31], VGG [32], GoogLeNet [33], and
ResNet [34]. These models are provided with the MatConvNet
library [45]. MatConvNet provides several pre-trained models.



TABLE I
EXAMPLE OF VISUAL SEMANTIC USING RESNET TO CHARACTERIZE FEATURES. ON EACH CELL, THE IMAGES ARE THE INPUTS USED ON

CLASSIFICATION. THE BARPLOT INDICATE THE DISTRIBUTION OF PROBABILITIES. TEXTS DESCRIBES THE THREE MOST LIKELY PREDICTIONS.
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Among these methods, we used six VGG variants and four
ResNet variants.

The three following databases are used to test the method:

• LIVE2 [46] has 982 test images, including 29 originals.
This database includes 5 categories of distortions: JPEG,
JPEG 2000 (JPEG2k), white noise (WN), Gaussian blur
(GB), fast fading (FF).

• CSIQ [47] has a total fo 866 test images, consisting of
30 originals and 6 different categories of distortions. The
distortions include JPEG, JPEG 2000 (JPEG2k), JPEG,
white noise (WN), Gaussian blur (GB), fast fading (FF),
global contrast decrements (CD), and additive Gaussian
pink noise (PN).

• TID2013 [48] contains 25 reference images with the
following distortions: Additive Gaussian noise (AGN),
Additive noise in color components (AGC), Spatially
correlated noise (SCN), Masked noise (MN), High fre-
quency noise (HFN), Impulse noise (IN), Quantization
noise (QN), Gaussian blur (GB), Image denoising (ID),
JPEG, JPEG2k, JPEG transmission errors (JPEGTE),
JPEG2k transmission errors (JPEG2kTE), Non eccentric-

ity pattern noise (NEPN), Local block-wise distortions
(LBD), Intensity shift (IS), Contrast change (CC), Change
of color saturation (CCS), Multiplicative Gaussian noise
(MGN), Comfort noise (CN), Lossy compression (LC),
Image color quantization with dither (ICQ), Chromatic
aberration (CA), and Sparse sampling and reconstruction
(SSR).

VI. EXPERIMENTAL RESULTS

To investigate the relation between semantic features and
visual quality, we train the BIQA metric using only the
semantic features (see Fig. 5) as input to the RFR. Table II
shows the results obtained, following the procedures described
in Section V, but using only the semantic features to predict
quality. The bold numbers in this table correspond to the
best average SROCC scores (1,000 simulations). Notice that,
depending on the different distortions and models, the visual
semantic (VS) have a different effect on the accuracy perfor-
mance. Also, VS-based BIQA perform better for the CSIQ
database and worse for the TID2013 database. Moreover,



TABLE II
MEAN SROCC FROM 1,000 RUNS OF SIMULATIONS ON LIVE2, CSIQ, AND TID2013 DATABASES USING DIFFERENT PRE-TRAINED SEMANTICS.

Database Distortion Alexnet GoogLeNet VGG ResNet
VGG-f VGG-m VGG-s VGG-VD-16 VGG-VD-19 VGG-face ResNet-50 ResNet-101 ResNet-152

LIVE JPEG 0.4313 0.3714 0.2078 0.3085 0.3936 0.3603 0.5077 0.1583 0.5066 0.5622 0.4906
JPEG2k 0.4127 0.3016 0.2998 0.4342 0.4061 0.3388 0.4245 0.1141 0.4296 0.5164 0.5041
WN 0.5843 0.5456 0.5894 0.6141 0.6604 0.5789 0.5887 0.4384 0.5153 0.5266 0.5035
GB 0.6759 0.5172 0.5721 0.5434 0.5801 0.4884 0.5137 0.2698 0.4994 0.5151 0.5992
FF 0.5736 0.4566 0.5339 0.4609 0.5313 0.4709 0.4871 0.2601 0.4562 0.4703 0.5345
ALL 0.5181 0.4267 0.4266 0.4612 0.4958 0.4383 0.4965 0.2401 0.4823 0.5273 0.5292

CSIQ JPEG 0.2687 0.5946 0.3595 0.4001 0.2723 0.4839 0.5162 0.1546 0.7093 0.5731 0.6619
JPEG2k 0.6578 0.6867 0.6062 0.6534 0.6737 0.5963 0.6341 0.3869 0.7541 0.6222 0.6657
WN 0.1074 0.0933 0.2105 0.1616 0.1436 0.1161 0.1181 0.0874 0.1091 0.0806 0.1217
GB 0.6831 0.6989 0.6094 0.6492 0.6918 0.6471 0.7118 0.4641 0.6890 0.6481 0.7298
PN 0.3691 0.5011 0.4846 0.4861 0.3176 0.3391 0.4476 0.2327 0.2641 0.3049 0.3476
CD 0.2436 0.2991 0.1905 0.2058 0.2941 0.3256 0.3578 0.2884 0.1356 0.1167 0.1719
ALL 0.4262 0.5268 0.4459 0.4678 0.4378 0.4445 0.4875 0.1712 0.5135 0.4541 0.5201

TID2013 AGC 0.1542 0.1525 0.1499 0.2043 0.2011 0.1909 0.1725 0.1038 0.2112 0.1138 0.1364
AGN 0.1615 0.1324 0.1277 0.1854 0.2256 0.2167 0.1619 0.1262 0.2417 0.1302 0.1321
CA 0.4021 0.2929 0.4331 0.3689 0.3611 0.3575 0.3152 0.3939 0.3291 0.3613 0.3771
CC 0.1441 0.1028 0.1661 0.1333 0.1761 0.3195 0.2959 0.2181 0.1377 0.1538 0.1103
CCS 0.2196 0.2359 0.3171 0.3289 0.3214 0.2456 0.2253 0.2537 0.1794 0.2026 0.2521
CN 0.2133 0.1991 0.2288 0.2304 0.2034 0.2943 0.1906 0.2264 0.3522 0.2927 0.2396
GB 0.5903 0.4171 0.6619 0.6377 0.5979 0.5461 0.5411 0.1984 0.6914 0.4854 0.4322
HFN 0.1976 0.1571 0.1573 0.2591 0.2403 0.2342 0.2003 0.1703 0.2535 0.1532 0.1144
ICQ 0.2997 0.2293 0.2381 0.2942 0.3851 0.3797 0.3953 0.1562 0.3492 0.1923 0.2966
ID 0.5891 0.5415 0.7045 0.7431 0.6797 0.7244 0.7149 0.2988 0.5705 0.4951 0.4443
IN 0.2055 0.1754 0.2029 0.2544 0.2322 0.2271 0.2192 0.1365 0.2711 0.1492 0.1701
IS 0.0816 0.1181 0.1124 0.0983 0.1048 0.0933 0.1073 0.1128 0.1091 0.1234 0.0928
JPEG 0.3737 0.3399 0.3227 0.3421 0.4023 0.5025 0.4273 0.0969 0.4948 0.3789 0.3545
JPEGTE 0.1731 0.1364 0.1152 0.1627 0.1763 0.2169 0.1066 0.2731 0.2819 0.1799 0.2251
JPEG2k 0.6469 0.5295 0.6811 0.6376 0.6565 0.6122 0.6001 0.4044 0.6837 0.6237 0.6281
JPEG2kTE 0.4345 0.2543 0.4061 0.4008 0.4529 0.3831 0.3285 0.3002 0.4618 0.3543 0.2806
LBD 0.1415 0.2331 0.1761 0.1701 0.1651 0.1689 0.1811 0.1919 0.2034 0.1952 0.1631
LC 0.3691 0.2317 0.3334 0.3197 0.3041 0.4568 0.3881 0.2547 0.4451 0.2969 0.3366
MGN 0.1605 0.1616 0.1611 0.2369 0.2224 0.1731 0.2062 0.1405 0.2805 0.1297 0.1256
MN 0.2532 0.2341 0.1384 0.1847 0.1988 0.1853 0.1318 0.1794 0.1663 0.1515 0.1422
NEPN 0.1688 0.1677 0.2549 0.1763 0.1941 0.1371 0.1651 0.1287 0.1917 0.1171 0.1341
QN 0.2672 0.2523 0.1768 0.2859 0.2946 0.3582 0.2816 0.2891 0.3698 0.1612 0.1881
SCN 0.4097 0.2101 0.4141 0.3775 0.4815 0.3506 0.2846 0.1556 0.3366 0.2277 0.2177
SSR 0.6191 0.5718 0.6399 0.6754 0.6390 0.6686 0.5835 0.4703 0.6608 0.5599 0.5496
ALL 0.3055 0.2311 0.2897 0.3227 0.3311 0.3411 0.2918 0.1751 0.3721 0.2651 0.2543

Average 0.3561 0.3244 0.3459 0.3652 0.3723 0.3687 0.3633 0.2295 0.3871 0.3266 0.3362

among all tested pre-trained methods, we can observe that
ResNet-50 presents the best overall (average) performance.

Given the previous results, we chose ResNet-50 as our
semantic algorithm, that will be used on the combination with
OCL features. We consider only the texture features (OCL)
and texture features combined with visual semantic features
(OCL+VS). Table III and IV depicts the results for these
two methods. Numbers in italics represent the best correlation
values among BIQA and FR-IQA methods, while numbers in
bold correspond to the best SROCC scores considering only
the BIQA methods.

From Table III, we can see that, for all databases, the
proposed method achieves the best performance among the
BIQA methods. For the LIVE2 database, the proposed method
outperforms the BIQA methods for JPEG2, GB, and ‘ALL’
distortions. For CSIQ database, the proposed method has the
best scores for all distortions, with the exception of CD. For
TID2013, the proposed method presents the best performance
for 14 out of 25 cases, followed by BRISQUE, CORNIA,
and LTP. Table III also indicates that the incorporation of
semantic features improves the prediction of subjective scores

for LIVE2 and CSIQ. For TID2013, the incorporation of the
semantics information decreases the accuracy performance,
with OCL method obtaining the best performance.

To investigate the generalization capability of the proposed
method, we perform a cross-database validation. This valida-
tion consists of training the ML algorithm using all images
of one database and testing them on the other databases.
Table IV depicts the SROCC values obtained using LIVE2
as the training database and TID2013 and CSIQ as the testing
databases. To perform a straightforward cross-database com-
parison, only the shared subset of distortions are selected from
each database. Notice that the proposed method outperforms
the other methods for almost all types of distortions. For
TID2013, the proposed method outperforms the other methods
for 4 out of the 5 distortions, while for CSIQ it outperforms
the other methods for all 5 distortions. Furthermore, the
incorporation of visual semantics improves the performance
in almost all cases, with the exception of JPEG2k artifacts in
the CSIQ database. Therefore, the cross-database validation
test indicates that the proposed method has a better general-
ization capability, when compared to the tested state-of-the-art



methods.

TABLE III
MEAN SROCC FROM 1000 RUNS OF SIMULATIONS ON LIVE2, CSIQ,
AND TID2013 DATABASES USING THE STATE-OF-THE-ART METHODS.

DB Distortion PSNR SSIM BRISQUE CORNIA CQA SSEQ LTP OCL OCL+VS

L
IV

E

JPEG 0.8515 0.9481 0.8641 0.9002 0.8257 0.9122 0.9395 0.9312 0.9244
JPEG2k 0.8822 0.9438 0.8838 0.9246 0.8366 0.9388 0.9372 0.9411 0.9421
WN 0.9851 0.9793 0.9750 0.9500 0.9764 0.9544 0.9646 0.9731 0.9734
GB 0.7818 0.8889 0.9304 0.9465 0.8377 0.9157 0.9530 0.9571 0.9624
FF 0.8869 0.9335 0.8469 0.9132 0.8262 0.9038 0.8758 0.8936 0.8942
ALL 0.8013 0.8902 0.9098 0.9386 0.8606 0.9356 0.9316 0.9418 0.9422

C
SI

Q

JPEG 0.9009 0.9309 0.8525 0.8319 0.6506 0.8066 0.9292 0.8943 0.9437
JPEG2k 0.9309 0.9251 0.8458 0.8405 0.8214 0.7302 0.8877 0.8865 0.9074
WN 0.9345 0.8761 0.6931 0.6187 0.7276 0.7876 0.6454 0.8441 0.8293
GB 0.9358 0.9089 0.8337 0.8526 0.7486 0.7766 0.9244 0.9203 0.9376
PN 0.9315 0.8871 0.7740 0.5340 0.5463 0.6661 0.7828 0.8361 0.8175
CD 0.8862 0.8128 0.4255 0.4458 0.5383 0.4172 0.2082 0.4914 0.4169
ALL 0.8088 0.8116 0.7597 0.6969 0.6369 0.7007 0.8280 0.8421 0.8611

T
ID

20
13

AGC 0.8568 0.7912 0.4166 0.2605 0.3964 0.3949 0.5963 0.5315 0.3182
AGN 0.9337 0.6421 0.6416 0.5689 0.6051 0.6040 0.6631 0.7253 0.4539
CA 0.7759 0.7158 0.7310 0.6844 0.4380 0.4366 0.6749 0.4254 0.4314
CC 0.4608 0.3477 0.1849 0.1400 0.2043 0.2006 0.1886 0.0846 0.0973
CCS 0.6892 0.7641 0.2715 0.2642 0.2461 0.2547 0.2384 0.5704 0.4911
CN 0.8838 0.6465 0.2176 0.3553 0.1623 0.1642 0.3880 0.5849 0.3582
GB 0.8905 0.8196 0.8063 0.8341 0.7019 0.7058 0.7465 0.8607 0.8398
HFN 0.9165 0.7962 0.7103 0.7707 0.7104 0.7061 0.7626 0.8118 0.7101
ICQ 0.9087 0.7271 0.7663 0.7044 0.6829 0.6834 0.7603 0.7849 0.7318
ID 0.9457 0.8327 0.5243 0.7227 0.6711 0.6716 0.7063 0.7719 0.7893
IN 0.9263 0.8055 0.6848 0.5874 0.4231 0.4272 0.6484 0.5069 0.3010
IS 0.7647 0.7411 0.2224 0.2403 0.2011 0.2013 0.3291 0.1061 0.0916
JPEG 0.9252 0.8275 0.7252 0.7815 0.6317 0.6284 0.6631 0.8201 0.7544
JPEGTE 0.7874 0.6144 0.3581 0.5679 0.2221 0.2195 0.2314 0.5153 0.3429
JPEG2k 0.8934 0.7531 0.7337 0.8089 0.7219 0.7205 0.7780 0.8769 0.8306
JPEG2kTE 0.8581 0.7067 0.7277 0.6113 0.6529 0.6529 0.6594 0.5984 0.5181
LBD 0.1301 0.6213 0.2833 0.2157 0.2382 0.2290 0.3813 0.1311 0.1746
LC 0.9386 0.8311 0.5726 0.6682 0.4561 0.4460 0.6533 0.5692 0.3862
MGN 0.9085 0.7863 0.5548 0.4393 0.4969 0.4897 0.6209 0.6753 0.4382
MN 0.8385 0.7388 0.2650 0.2342 0.2506 0.2575 0.4243 0.5146 0.2874
NEPN 0.6931 0.5326 0.1821 0.2855 0.1308 0.1275 0.1256 0.2198 0.1778
QN 0.8636 0.7428 0.5383 0.4922 0.7242 0.7214 0.7361 0.8207 0.7769
SCN 0.9152 0.7934 0.7238 0.7043 0.7121 0.7064 0.7015 0.7192 0.5804
SSR 0.9241 0.7774 0.7101 0.8594 0.8115 0.8084 0.8457 0.8892 0.8867
ALL 0.6869 0.5758 0.5416 0.6006 0.4925 0.4900 0.6078 0.6417 0.6345

TABLE IV
SROCC COMPARISON ON CROSS-DATABASE VALIDATION WHEN MODELS
ARE TRAINED ON LIVE2 AND TESTED ON CSIQ AND LIVE DATABASES.

Database Distortion BRISQUE CORNIA CQA SSEQ LTP OCL OCL+VS
TID2013 JPEG 0.8058 0.7423 0.8071 0.7823 0.8472 0.8845 0.9008

JPEG2k 0.8224 0.8837 0.7724 0.8258 0.9046 0.9024 0.9301
WN 0.8621 0.7403 0.8692 0.6959 0.6881 0.8256 0.8243
GB 0.8245 0.8133 0.8214 0.8624 0.8693 0.8641 0.8782
ALL 0.7965 0.7599 0.8214 0.7955 0.8137 0.8491 0.8586

CSIQ JPEG 0.8209 0.7062 0.7129 0.8141 0.8784 0.9254 0.9308
JPEG2k 0.8279 0.8459 0.6957 0.7862 0.8914 0.9151 0.9074
WN 0.6951 0.8627 0.6596 0.4613 0.7739 0.8799 0.8837
GB 0.8311 0.8815 0.7648 0.7758 0.8712 0.9233 0.9237
ALL 0.8022 0.7542 0.7114 0.7403 0.8628 0.8871 0.8935

VII. CONCLUSIONS

In this paper, we showed how semantic features can affect
the prediction of visual quality. By combining these semantic
features with the texture information, we generated a novel
general-purpose BIQA method. The texture statistics are ac-
quired using a texture descriptor: the OCL. This descriptor is
used with the goal of incorporating both texture and color in-
formation into the quality measurement. This characterization
is based on the fact that, when the image quality changes, it
also affects the image texture information. Quality is predicted
after a machine-learning training stage. Results show that, by
combining the statistics of OCL with the semantic features,
the accuracy performance is improved. This improvement is
most visible for LIVE2 and CSIQ databases, while not present
for the TID2013 database. On the other hand, in the important

cross-database validation the improvement in performance is
detected. This indicates that the use of semantic features are
more suitable for some types of distortions. This work repre-
sents a contribution to the area of BIQA research, since it takes
into account other factors besides the distortion sensitivity. The
proposed approach is particularly attractive in circumstances
where semantic information is readily available. Future works
include the study of the impact of visual semantic on video
quality assessment.
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