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Abstract—We perform head pose estimation solely based on the
nose region as input, extracted from 2D images in unconstrained
environments. Such information is useful for many face analy-
sis applications, such as recognition, reconstruction, alignment,
tracking and expression recognition. Using the nose region has
advantages over using the whole face; not only it is less likely
to be occluded by acesssories, it is also visible and proved to be
highly discriminant in all poses from profile to frontal. To this
end, we propose and compare two different approaches, based on
Support Vector Machines (SVM-NosePose) and on Convolutional
Neural Networks (CNN-NosePose) such that no landmarks are
needed to perform pose estimation, favoring success in extreme
pose and environment where landmark detection is non-trivial.
Our NosePose methodology was applied to four publicly available
uncontrolled image datasets (McGillFaces, AFW, PaSC and 1]JB-
A). Results show that both SVM-NosePose and CNN-NosePose
approaches are competitive, through thoughtful and comprehen-
sive experiments, when compared against state-of-the-art works
on head pose estimation.
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I. INTRODUCTION

The head pose estimation problem can be defined as deter-
mining at least one of the three parameters that configures the
face relative to its three degrees of freedom, yaw, pitch and
roll (Figure 1) and the camera [1]. The growing interest in
head pose estimation is mainly due to the advantages it brings
to facial analysis tasks. Estimating the head pose can lead
to higher accuracy rates in other computer vision problems,
such as gaze estimation [2], face quality assessment [3],
face frontalization [4], face recognition [5], facial landmark
detection [6], 3D face reconstruction [7] and facial expression
recognition [8].

Most of the previous works use 2D information from the
whole face to perform head pose estimation [1]. Recently, due
to the advent of real-time and low-cost 3D sensors, the focus
of many researchers shifted towards estimating the head pose
on facial depth images [°] [10]. However, one cannot rely
on having depth information in unconstrained environments,
where there is no control over the sensor that is being used
to capture the images. According to Zhu and Ramanan [ 1],
not only estimating extreme head poses is a difficult problem,
but even face detection. Additionally, training in-the-wild
pose estimators is not trivial as there is no reliable ground-
truth [6]. Such poses are likely to be found in unconstrained
environments and are not considered in many published works

Fig. 1. The head yaw, pitch and roll

regarding face analysis. In our work, the focus is kept on 2D
RGB images, including those with extreme poses.

Pawelczyk and Kawulok [12] extract gradient information
from the nose and use SVM to classify the pose into a discrete
set of angles. This approach was only applied to controlled
environment dataset. For estimating the pose in uncontrolled
environments, Demirkus et al. [13] propose using a set of
facial features to estimate a probability density function over
the pose on each frame and aggregating the results using
temporal information.

In this work we show that the nose region can be suc-
cessfully used for head pose estimation in unconstrained
environments. Unlike the eyes and ears, it is visible even in
profile faces; unlike the mouth, it cannot be easily deformed
by speech and expressions; it is also less likely to be partly
occluded by accessories and facial traits, such as sunglasses
and beards; when compared to using the whole face.

We developed a methodology, NosePose, composed of
two different approaches for estimating the head pose only
based on the nose region. The first one, SVM-NosePose, uses
Support Vector Machines (SVM) trained with the output of
the Local Gradient Increasing Pattern (LGIP) filter [14] on
the nose region. The second approach, CNN-NosePose, makes
use of Convolution Neural Networks (CNN). Both were tested
on four unconstrained datasets to evaluate their repeatability.
NosePose is landmark-free, does not take advantage of tem-
poral information, treats pose estimation as a classification
problem and estimates the angles based on a predefined set
of discrete poses that depends on the dataset used for training.

II. HEAD POSE ESTIMATION FROM THE NOSE REGION

While SVM has already been shown effective to estimate
the head pose [12], as it can be modelled as a classification
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Fig. 2. SVM-NosePose

problem with a small number of classes, Convolutional neural
networks appear as a suitable candidate for solving the same
problem. Not only are they efficient at classification problems
with a limited number of classes and have been used suc-
cessfully for face recognition [15] [16], they also have the
advantage of not having to explicity define the descriptors
that are being used to extract features. When using SVM, the
choice of the descriptor is, at times, empirical, using a CNN
provides a solution for this. Unbalanced data is handled better
by SVM [17], but CNNs can take advantage of very large
datasets (100,000 images or more), while training SVM with
too many images would be impractical as the training time
increases considerably.

A. SVM-NosePose for Head Pose Estimation

Our SVM-NosePose strategy uses support vector machines
for classifying a vector of extracted features into a discrete
pose. Pawelczyk and Kawulok [12] propose the use of the
raw gradient values as the feature vector. However, after
conducting more tests, we found that histograms of the LGIP
descriptor [14] can be applied to achieve higher head pose
classification accuracy, due to its ability to describe the shape
while still being robust to some variation. We exhaustively
searched the number of subregion histograms for each dataset,
to achieve maximum accuracy, however using 49 subregions
yields good results on all datasets and only minor improve-
ments were obtained using a different number.

Extracting the histogram of the nose subregions instead of
the whole region enables some of the spatial information to
be kept, while allowing some variations to occur, resulting
in higher recognition rates. Our SVM-NosePose method uses
C-SVM with a radial basis function kernel, is trained with
10-fold cross validation and is shown as a diagram in Figure
2.

B. CNN-NosePose for Head Pose Estimation

We developed a CNN architecture for estimating the head
pose of a subject given the nose region. The CAFFE (Convo-
lutional Architecture for Fast Feature Embedding) framework
[18] was used for all experiments. It was chosen due to it
being free, consistently documented, frequently updated, easy
to use and having an active community[19] [20] [21].
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Fig. 3. CNN-NosePose

The proposed CNN architecture is similar to Krizhevsky
et al’s [22] and Hu et al’s [23], the main difference lies
in the network width and parameter definition, based on
experiments performed on the IJB-A dataset [24], then applied
to all datasets. The architecture is a deep convolutional neural
network composed of five convolutional layers, followed by
three fully connected layers (Figure 3).

We evaluate CNN-NosePose’s performance using two tech-
niques, cross-validation (CV) and splitting the data into three
subsets, training, validation and testing. In both cases, the
network is trained from scratch with 100,000 backpropaga-
tion iterations. After the training is finished, fine-tuning is
performed for each different dataset in this work.

III. EXPERIMENTAL RESULTS

Ground-truth nose regions were used on both training and
testing subsets, which allows assessing the pose estimation
performance without the influence of a nose detector. When
reporting our accuracy, we also provide our weak score on
datasets annotated with more than five classes. Weak scores
are calculated considering off-by-one misses as hits.

A. McGillFaces

The McGillFaces database [25] consists of 18,000 frames
extracted from video sequences of 60 unique subjects and their
corresponding labels (face mask, gender and head yaw). How-
ever, only 10,500 frames are available publicly and only 6,665
frames have the head yaw annotation. The pose annotations
is discretized into 9 possible angles (from -90 to 90 in steps
of 23.5 degrees). During recording, the subjects were placed
in different illumination and background conditions and were
allowed free movement and object interaction. This resulted
in a variety of arbitrary face scales, expressions, viewpoints
and occlusions.

We manually annotated the nose region (bounding box)
in all 6,665 images that have the pose annotation. For our
tests, 3,208 images for training and 3,457 for testing, without
overlapping subjects, were used. When using CNN-NosePose



Fig. 4. Examples of inconsistent ground-truth annotations on the McGillFaces
dataset

without cross-validation, the training subset is the same, the
validation subset has 2,169 images and the testing subset,
1,288. Table I shows our results compared to Demirkus et
al., who reported, via personal communication, to have used
all 18,000 images for training and testing. Because of this, the
comparison is, unfortunately, biased as both of our methods
would have benefited from using almost three times as many
images.

B. Filtered McGillFaces

We investigated and evaluated the reliability of the pro-
vided pose annotations, since they were annotated semi-
automatically [25]. Each image in the dataset with a label
was evaluated by at least two different people, one by one in
random order and was tagged either good or inconsistent. This
visual analysis of the provided ground-truth annotation showed
that approximately one fifth of the images were assigned
inconsistent labels (Figure 4). Because of this, we also evaluate
our algorithms using a filtered version of the McGillFaces
dataset, containing only the images tagged as good. It contains
5,329 total images, 2,475 for training and 2,854 for testing
(1,692 for validating and 1,162 for testing when not using
cross-validation). The increase in accuracy was evident.

When performing our annotations, we learned that estimat-
ing the head pose is not a trivial task for humans, specially
when there are more than 5 classes. Each annotated dataset re-
quires multiple people, hours and revision rounds. Even when
calibration is performed to establish the pose boundaries for
the people annotating, hours of corrections are still necessary.

To evaluate the effects of using a larger training subset,
we added 5,748 training images from the PaSC datasetand
retrained. We call this experiment CNN+. A clear increase in
accuracy can be noticed. All results are available in Table I.

TABLE 1
COMPARATIVE RESULTS WHEN ESTIMATING THE YAW ON MCGILLFACES
Strict Weak
SVM (Original McGill) (3,457 images) 59.24%  83.31%
SVM (Filtered McGill) (2,854 images) 70.711%  92.68%
CNN (Original McGill) (3,457 images) 59.76%  88.08%
CNN (Filtered McGill) (2,854 images) 68.47%  94.53%
CNN (Original McGill w/o CV) (1,288 images) | 70.50%  90.76%
CNN (Filtered McGill w/o CV) (1,162 images) 77.45%  97.50%
CNN+ (Filtered McGill) (2,854 images) 72.81%  94.57%
CNN+ (Filtered McGill w/o CV) (1,162 images) | 85.46%  97.50%
[13] (18,000 images) 79.02% —

C. PaSC Experiments

PaSC (Point-and-Shoot Challenge) [26] is an in-the-wild
dataset with both videos and still frames subsets for face
recognition with no pose annotations. It contains 9,376 chal-
lenging images of 293 subjects of different ethnic backgrounds
in different environments, illumination conditions, poses and
Sensors.

The PaSC dataset is pre-divided into training and testing
subsets optimized for evaluating face recognition. This subdi-
vision proved to be poor for evaluating head pose estimation,
as the distribution of the poses in the subsets varies greatly.
We redivided the images in a way that this difference would
be less noticeable while guaranteeing that no subject is present
in both subsets.

For this experiment, we used only the still images which
we were able to manually annotate the nose region and the
head yaw (into 5 classes [—90,45,0,45,90]), resulting in
5,784 training and 6,243 testing images. When training CNN-
NosePosewithout cross-validation, 3,172 images are used for
validating and 3,071 for testing. Table II shows our results for
both approaches.

TABLE II
COMPARATIVE RESULTS WHEN ESTIMATING THE YAW ON PASC
‘ Strict
SVM-NosePose (6,243 images) 86.91%
CNN-NosePose (6,243 images) 88.42%
CNN-NosePose w/o CV (3,071 images) | 90.85%

D. AFW Experiments

The annotated faces in-the-wild (AFW) [11] dataset con-
tains 468 faces with landmark and head yaw annotations in 13
different poses (from -90 to 90 in steps of 15 degrees). Large
variations in the background, pose, expression and subject
appearance are present, as the images were extracted from
Flickr and are all from real world in-the-wild scenarios. We
manually annotated all the corresponding nose regions.

TABLE III
COMPARATIVE RESULTS WHEN ESTIMATING THE YAW ON AFW
| Strict Weak
SVM-NosePose 44.711%  81.21%
CNN-NosePose 49.43%  86.96%
CNN-NosePose w/o cross-validation | 46.00%  86.00%
[11] - 81.00%

To perform training, we augmented the AFW dataset, by
mirroring and rotating the images, we were able to increase the
number of images 14-fold, allowing us to use the dataset for
both training and testing. When using cross-validation, 3752
images were used for training and 2800 for testing, without
cross-validation, the size of the training subset is the same,
1800 images are used for testing and 1000 for validating. Our
results are compared to Zhu and Ramanan’s in Table III.



E. 1JB-A Experiments

1JB-A (IARPA Janus Benchmark A) [24] is an in-the-wild
dataset for face detection and recognition. The dataset contains
a large geographic distribution, pose variation, occlusions and
illumination. It contains 500 subjects distributed in 5,712 still
images and 2,085 videos, with an average of 11.4 images and
4.2 videos per subject and no pose annotations. The images
and videos were extracted performing searches on Creative
Commons licensed image datasets.

A large subset of the IJB-A dataset was manually annotated
(nose region and yaw) with a precision of 45 degrees. From
all 10,014 annotated images, two subsets were generated,
2,414 images for testing and 5,820 for training, totalling 7,234
images. When cross-validation is not used for training CNN-
NosePose, 1,500 images from the training subset are used for
validation. To evaluate the performance on a larger dataset, the
training subset is augmented ten-fold, by rotating and flipping.
These experiments were not performed with SVM-NosePose,
as the large number of images influences the total training time
significantly. The achieved accuracy with both our methods is
summarized in Table IV.

TABLE IV

COMPARATIVE RESULTS WHEN ESTIMATING THE YAW ON [JB-A
| Accuracy
SVM-NosePose (2,414 images) 76.47%
CNN-NosePose (2,414 images) 78.42%
CNN-NosePose augmented (2,414 images) 79.62%
CNN-NosePose w/o cross-validation (2,414 images) 76.39%
CNN-NosePose augmented w/o cross-validation (2,414 images) 76.93%

IV. FINAL REMARKS

We presented our landmark-free NosePose methodology for
head pose estimation solely based on the nose region using
two approaches, SVM-NosePose and CNN-NosePose. Both
approaches were tested on four different publicly available
datasets and compared to state-of-the-art works, achieving
favourable results. As part of future work, a complete system is
being developed, including nose and face detection, tracking,
pose estimation and expression and face recognition. All stages
use landmark-free approaches, favoring robustness in extreme
cases. Not only the combination of these different solutions
will increase the pose estimation accuracy (e.g. by including
temporal information), but the estimated pose will contribute
to the accuracy of the system as a whole.
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