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Abstract—This work describes a method for constructing a
spatio-temporal face atlas based on pairwise non-rigid registra-
tion and Kkernel regression in order to explicitly consider the
craniofacial differences that could exist across the time due to
the subjects growth. The whole pipeline includes the following
steps: (a) Facial Landmarks Positioning; (b) Sample Group
Equalization and Kernel Interpolation; (c) Registration; (d) Atlas
Construction. Our experiments on Down Syndrome face images
show that the method generates realistic and unbiased face atlases
from toddlers to teens.

I. INTRODUCTION

Face images have been used in a wide range of applications
in the last years. We can list face recognition, facial expression
analysis and facial composites as the most common ones.
However, many approaches in these applications have not
explicitly considered the craniofacial differences that could
exist across the time due to the subjects growth [1], particularly
in the first stages of human life.

Although faces are expected to have a global and common
spatial layout with all its parts such eyes, nose and mouth
arranged consistently, specific variations in these local features
are fundamental to explain our perception of each individual
singularity or samples of individuals [2]. These aspects of the
face space have already been explored to analyze, for example,
the gender and facial expression most discriminant and expres-
sive features [3] of adults, as well as for diagnosing genetic
diseases in children [4], but, to the best of our knowledge, have
not explicitly explored the variation in these features across
the time. In fact, a spatio-temporal face atlas can play the
same role of the well-known human brain atlases [S] and can
be explored to investigate shared grouping characteristics like
race, gender, ageing, with potential application in clinical face
phenotype and forensic imaging, for instance.

In this work, we have described and implemented a frame-
work to construct spatio-temporal face atlases. Based on the
approach proposed in the context of medical image [5], our
method uses non-rigid point registration and face averaging to
produce artificial and realistic face atlases taking into account
temporal information. Differently from [4], which has used
an unique face children template, we have produced, as main
contribution, a different typical face image for each chosen
time-interval.

The remainder of this paper is organised as follows. In
section II, we describe the face database used to carried out

the experiments and explain the method to build an spatio-
temporal face atlas. All the experimental results have been
shown in section III. Finally, in section IV, we evaluate the
method and discuss further improvements.

II. MATERIALS AND METHODS

The spatio-temporal face atlas has been built by per-
forming the following steps: face landmarking, sample group
equalization, non-rigid registration (or equivalently non-linear
spatial normalisation) and atlas construction by image kernel
averaging. These techniques have been previously applied to
facial composites [6], medical image registration [7] and age-
dependent spatio-temporal brain atlas construction [5].

A. Face Database

Frontal 2D face images, acquired as part of a research ini-
tiative to address the issue of missing children and adolescents
with disabilities in Brazil [8], have been used to carry out
the experiments. The subset used in this work is composed
of 62 face images of Down Syndrome children (35 male
subjects and 27 female subjects) with the age range from 5
months to 18 years old. The age histogram of this database
can be seen in Figure 1. All images have been taken in an
upright frontal position with some variation in scale. We have
rigidly registered all these 62 face images previously, using
the positions of the eyes as a measure of reference, so that
the pixel-wise features extracted from the images correspond
roughly to the same location across all subjects. All the images
are encoded in gray-scale using 8-bits per pixel. Figure 2
illustrates some of these rigidly registered samples used in this
work.

B. Facial Landmarks Positioning

To spatially normalize all the frontal face images we need
to identify a set of fiducial points or landmarks on each face.
We have used the same approach applied in [3] to semi-
automatically annotate these samples.

C. Sample Group Equalization

To handle the problem of distinct number of samples for
each time-interval, we have implemented a slightly different
version of the algorithm proposed in [5]. Such algorithm,
summarized below, attempts to solve two problems at the same
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Fig. 1. Age histogram in years of the 62 subjects of the Down Syndrome
children samples.

Fig. 2. A sample of the 2D frontal face images used in this work.

time, that is, equalizing the number of subjects among all time-
intervals and estimating the kernel parameter o of each time-
interval. These computed kernel parameters have been used
to define the contribution of neighbors subjects in the atlas
construction of each time-interval ¢.

Set n to the median of the number of samples of each time-
interval ¢
Set k < 1 as the tolerance value for the number of subjects.
Set f to the experimental increasing factor of oy.
for all time-interval ¢ do
Set n; to represent the number of subjects at time-interval
t
Set oy <— 1 to represent the kernel size at time-interval ¢
Set ¢; to represent the set of subjects at time-interval ¢
if n, <n — k then
while n; <n — k do
Add to ¢; from the original set of ¢ — 1 time-interval
Increment ny
Add to ¢, from the original set of ¢+ 1 time-interval
Increment 14
Ot < Ot - f
end while
end if
end for

Fig. 3. Sample group equalization algorithm.

D. Registration

The registration or pre-processing of the data is an impor-
tant step for any pattern recognition analysis. The purpose of
the spatial normalisation stage is to remove any confounding
effects from the data that are not relevant for the analysis.

In the context of the face analysis this means that all images
need to be mapped to a common coordinate system so that
the pixel-wise features extracted from the images correspond
ideally to the same anatomical location across all subjects [9].

We have used a 2D version of the free-form deformation
(FFD) [10], [11] algorithm proposed by Rueckert et al. [7] to
non-rigidly register all the face images. This algorithm was
originally proposed to register 3D contrast-enhanced breast
magnetic resonance images in order to minimize the non-rigid
shape changes due to the patient breathing and motions, and,
more recently, has been also applied to spatial normalisation
of face images [12], [13], [3].

The estimation of the deformation fields can be briefly
described as follows. Let

Qsource:{(xvy)‘0§x<h1a0§y<h2} (1)

be a set of points representing the input image, where h; and
ho are respectively the width and height in pixels of the image.
Let ®4ource be an ng x ny lattice of ¢, control points overlaid
on Qgource, Where 1 <n, < hy and 1 <ny < ho.

The goal here is to minimize the misalignment of the 260
landmarks from the source image to the 260 landmarks of
a target image. We have used the squared distance of the
landmarks as the alignment criterion.

To calculate the new position of a point at the location
(z,y), we have applied the 2D tensor product of B-splines
considering the sixteen control points in its neighbourhood
[11], that is

k=0 1=0

() P(itr)(i+1)s 2

where i = |z/ng| —1,j = ly/ny| -1, s=x—|z/n,| et =

— |y/ny]. Br(s) and B;(t) correspond to the uniform cubic
B-spline basis functions evaluated at s and ¢ [11], respectively,
and defined as:

Bo(u) = (—u® +3u® —3u+1)/6
Bi(u) = (3u® — 6u* +4)/6
By(u) = (—u® + 3u* +3u+1)/6
Bs(u) = u® /6,

where 0 < u < 1.

Analogously to [7], the algorithm initially performs an
affine transformation to align the landmarks of the Q44yyce tO
the same landmarks of the target image. Then the procedure
runs an iterative coarse-to-fine deformation, displacing the
control points of the lattice ®g,yrce until it achieves the
alignment criterion. This has been repeated until the finest
level of the FFD resolution is computed, estimating the final
deformation fields for each source face image.



E. Atlas Construction

The method used in this study to build an spatio-temporal
face atlas is analogous to [5]. It performs pairwise registrations
among all the subjects within a time-interval and, in the
end, averages the transformed face images to compose the
spatio-temporal face atlas. For each time-interval, we carry
out this pairwise registration by, in turn, selecting one image
as source and the rest of the images as targets, generating a
set of transformations. These transformations are averaged and
applied to the current source image. Finally, we compute the
estimated atlas by averaging the transformed source images.
This technique attempts to eliminate the bias toward any
original subject in the atlas composition. Figure 4 pictures the
idea of this spatio-temporal atlas construction.
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Fig. 4. The pairwise point based registration process for construction of
artificial face atlas. All the original images have been masked (with black
strips) to preserve the identity of the subjects.

An extended approach in the atlas construction is to cali-
brate the contribution of the neighbours included in the time-
interval, using an adaptive kernel regression [5]. The kernel
not only serves to estimate the weighted support given by
neighbours, but, it could be used to interpolate between the
subjects when there is no subjects at the exact age of interest.
Let the weight assigned to the i™ subject at the time ¢ be given
by a Gaussian kernel:
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where t; denotes the age of the subject ¢ in years.

Let Iy, ..., I, represent the images for all subjects within
a time-interval. For each image I;, selected as a source image,

the procedure of Figure 4 generates transformations T; ; for

j=1,...,n,j # i, which are averaged out to produce T;:
1 n
T,——S°T,, 4
(n—1) Z 7 “)
Jj=1

for each image i at a given time-interval. The mean image I;
is defined as the image obtained from I; spatially transformed

by T;:

Ii = I,L OTi_l (5)

The spatio-temporal face atlas can be estimated as:

A(t) _ Z?:l g(tjvt)

i ©6)
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III. RESULTS

We have applied the aforementioned algorithm on the im-
age database described on section II-A in order to equalize the
number of samples for each time-interval. Figure 5 shows the
result of the sample equalisation. Most time-interval groups of
images have changed by adding samples from their neighbours,
while Gaussian kernels have been estimated. These kernels
have been plotted over each corresponding bar. The parameter
o depends on how many samples have been taken from the
neighbours. Figure 5 shows these generated Gaussian curves

as well.
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Fig. 5. The equalized time-interval group histogram after processing the
original samples.
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We have evaluated the method by building three types of
spatio-temporal face atlases. Firstly, we just have taken the
original database and for each time-interval group of images
with more than two samples we have applied the registration
procedure described in Figure 4. The result can be seen in
the top row of Figure 6. Then, we have applied the latter
approach for the equalized database generated. The results can
be visualized in the middle row of Figure 6. Finally, we have
computed the atlas by applying the equation (6) to average
out the images in each time-interval (f = 1.3). The atlas
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The spatio-temporal face atlases artificially constructed. From top to bottom: original face database, equalized version of the database, and equalized

version with the neighbors contribution weighted by an estimated Gaussian kernel. From left to right, average images from 0 to 18 years old of the registered

faces representing the atlas of each age.

generated by the weighted kernel approach can be visualized
in the bottom row of Figure 6.

We can see that the equalization procedure has filled the
lack of original database by increasing the number of samples.
More interestingly, comparing the middle row with the bottom
row of Figure 6, we can notice less artifacts in the faces region,
which can be explained by the reduced contribution from the
neighbors to the atlas composition.

IV. CONCLUSION

In this work, we presented a method for constructing
a spatio-temporal face atlas. Despite the fact that we have
used Down Syndrome face images only to carry out the
experiments, the method is not restricted to any particular
set of samples and can be applied to construct a spatio-
temporal face atlas for any face samples of interest. In this
study, we have used very few samples indeed. Even so, the
method has produced realistic artificial face images, each of
them corresponding to an unbiased face atlas of the specific
age under investigation. The experiments have shown that
the kernel based approach produced a more detailed and less
confounding effect version of the atlas and the equalization
algorithm has overcome the lack of face images in some
time intervals. Further work would be necessary to fully
automate this framework. To do so, an automatic landmarking
processing step will be evaluated. Additionally, the use of
larger sample groups would definitely enhance shared sample
group characteristics like age, gender or race from ordinary
photos.
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