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Abstract—The fact that principal component analysis (PCA)
does not necessarily represent important discriminant directions
to separate sample groups motivates the development of the
multi-class discriminant principal component analysis (MDPCA).
This technique addresses the problem of ranking face features
in N-class problems computed by PCA components (eigenfaces).
Given a database, the MDPCA builds a linear support vector
machine (SVM) ensemble to get the separating hyperplanes that
are combined through an AdaBoost technique to determine the
discriminant contribution of each PCA feature. In this paper, we
follow the MDPCA methodology but we replace the SVM by the
linear perceptron as the basic learner in the AdaBoost approach.
In the computational experiments we compare the obtained
technique, called MDPCA-Perceptron, with the PCA and the
original MDPCA through facial expression experiments. Our
computational results have shown that the principal components
selected by the MDPCA-Perceptron allow competitive recognition
rates in lower dimensional spaces with promising results for
reconstruction tasks as well.

Keywords-Ranking PCA Components; Separating Hyper-
planes; Perceptron; AdaBoost; Face Image Analysis

I. INTRODUCTION

Face image analysis requires the managing of data sets
with a large number of features or dimensions. Therefore,
dimensionality reduction and discriminant analysis should be
used for discarding redundancy and reduce the feature space
for discriminating sample groups [1].

Techniques in linear dimensionality reduction, including
the classical principal component analysis (PCA) and the
corresponding eigenfaces approach [2], seek for new variables
that obey some optimization criterion and can be expressed as
linear combination of the original ones [3]. However, linear
subspaces selected by dimensionality reduction methods do
not necessarily include the most important discriminant direc-
tions to separate sample groups [1]. This fact motivates the
application and development of other techniques to compute
a discriminant subspace.

For the general N-class classification problems, the work
[4] presents the multi-class discriminant principal components
analysis (MDPCA), that consists of the following steps: (a)
Apply PCA technique for dimensionality reduction in order to
eliminate redundancy, (b) Compute a linear SVM ensemble,
based on the “one-against-all” SVM multi-class approach [5],
(c) Use AdaBoost techniques [6] to combine the separating

SVM hyperplanes in order to determine the global discrimi-
nant vector.

The MDPCA algorithm belongs to the class of boosting
procedures, which refers to a family of algorithms that are
able to build strong learners through weak learners as the
basic components [7]. However, the basic learner in the
MDPCA procedure is the SVM which can not be considered a
weak learner. In fact strong learners have shown performance
degradation in boosting algorithms [6]. In order to address
this problem, in [8] it is proposed another methodology to
build a weakened version of SVM, named WSVM, which
discards a percentage µ of the samples in the original data
set S to generate the training set. This strategy is applied in
the MDPCA algorithm.

In this paper, we keep the MDPCA methodology, but we re-
place the WSVM technique by the linear perceptron classifier
[9]. In this way, in the step (b) we get a a linear perceptron
ensemble, based on the “one-against-all” approach. In the
step (c) we apply the AdaBoost technique to combine the
perceptron hyperplanes to find an accurate global discriminant
vector.

It is important to highlight that we do not deal with the
problem of computing general discriminant directions that are
not principal components. Rather, we apply the idea of using
a set of linear classifiers and an ensemble method (AdaBoost,
in this case) to compute a discriminate vector that allows to
select among the principal components the most discriminant
ones.

To evaluate the new technique, named MDPCA-Perceptron
algorithm, we perform group separation tasks in facial expres-
sion experiments involving neutral, happiness, sad, fear, and
anger face images. The experiments show that the perceptron
can be used as an effective component classifier to generate
the discriminant weights for lower subspace dimensions. Fur-
thermore, the reconstruction error of MDPCA-Perceptron is
better or equal to the original MDPCA one which is also a
promising result.

The paper is organized as follows. Next, in Section II,
we review the basic elements behind discriminant analysis.
Then, Section III presents the MDPCA-Perceptron approach.
The computational experiments are described in Section IV.
Finally, in Section V, we conclude the paper, summarizing its
main contributions and describing further developments.
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II. DISCRIMINANT ANALYSIS

It was observed that, since PCA explains the covariance
structure of all the data its most expressive components [10],
that is, the first principal components with the largest eigen-
values, do not necessarily represent important discriminant
directions to separate sample groups. This is particularly true
for face image analysis where the PCA components are named
eigenfaces [2].

The Figure 1 is a simple example that helps to understand
the limitation of PCA to select discriminant features for
classification. Both Figures 1.(a) and 1.(b) represent the same
data set. Figure 1.(a) just shows the PCA directions (x̃ and ỹ)
and the distribution of the samples over the space. However, in
Figure 1.(b) we distinguish two patterns: plus (+) and triangle
(H). We observe that the principal PCA direction x̃ can not
discriminate samples of the considered groups.

(a) (b)

Fig. 1. (a) Scatter plot and PCA directions. (b) The same population but
distinguishing patterns plus (+) and triangle (H).

This observation motivates the application and develop-
ment of techniques to compute discriminant subspaces, like
MDPCA-Perceptron, which is described next.

III. MDPCA-PERCEPTRON TECHNIQUE

The MDPCA-Perceptron methodology is summarized by
the Algorithm 1. The training instances in the input database
X are supposed independently and identically distributed from
an uniform distribution D1, at the initialization of the pipeline
(line 1 of the Algorithm 1). The procedure also applies the
PCA in its first stages for dimensionality reduction (lines 2-
4).

Next, the MDPCA-Perceptron computes a perceptron en-
semble, based on the “one-against-all” approach [11]. So,
let N be the total number of classes. Each iteration t of
the Algorithm 1 constructs one linear perceptron (line 7 of
Algorithm 1), in the PCA subspace, using the procedure
Perceptron, presented in [9], and the training set built in
line 6 of Algorithm 1.

The lines (8)-(12) of the Algorithm 1 are based on the
AdaBoost philosophy [7] to derive a strong classifier by using
the linear combination of perceptron learners h1, h2, · · ·, hN :

H (x) =

N∑
t=1

αtht (x) , (1)

Algorithm 1: MDPCA-Perceptron procedure
Input:
Samples: X = {(x1, y1), (x2, y2) . . . (xM , yM )} ⊂ Rm;
where yi ∈ Y and Y = {1, 2, 3, .., N};

1 Initialize the homogeneous distribution D1(xi) = 1
M ,

i = 1, 2, · · ·,M ;
2 Determine the PCA projection matrix: Ppca;
3 Project centered data xi = (Ppca)T x̃i ∈ Rm′

, where
x̃i = xi − x̂ with, x̂ = 1

M

∑M
i=1 xi

4 Build the labeled projected data set
Θ = {(x1, y1), (x2, y2) . . . (xM , yM )}

5 for t = 1, ... to N do
6 Build the subset Θ

t
, by taking all kt projected

images from class t and label them as +1. Use
random sampling to choose 2kt

(N−1) images from
classes other than t and label them as −1;

7 Call the procedure Perceptron(Θ
t
,Y, Dt) where

Y = {−1, 1}
8 Compute: et =

∑
∀i|yi 6=ht(xi)

Dt(xi) for all xi ∈ Θ
t
;

9 if et > 0.5 then
10 break;

11 Calculate AdaBoost weight: αt = 1
2

(
1−et
et

)
;

12 Update: Dt+1(i, l) = Dt(i,l)exp(−αtyi[l]ht(x̃i,l))
Zt

, where
Zt is a normalization factor which enables Dt+1 to
be a distribution.

13 Compute discriminant weights:
|wmdpca,i| = |

∑N
t=1 αtwt,i|;

14 Sort the discriminant weights:
|wmdpca,1| ≥ |wmdpca,2| ≥ · · · ≥ |wmdpca,m′ | ;

15 Select the principal components according to the
obtained |wmdpca,i| sequence;
Output: Discriminant principal components:

q1,q2, · · ·,qm′

where αt does not depend on x [7].
The mathematical formulation of this idea is obtained by

minimizing the corresponding exponential loss function and
it gives rise to the expression in line 12 of the Algorithm 1
which updates the sample distribution Dt (see [7] for details).

The weights wmdpca,i that appear in steps 13-15 of the
MDPCA-Perceptron procedure are derived from expression
(1). So, following the same idea of [4], the MDPCA-
Perceptron determines the discriminant contribution of each
feature by investigating the weights wmdpca,i =

∑N
t=1 αtwt,i.

In fact, weights that are estimated to be 0 or approximately 0
have negligible contribution on the discriminant score H (x)
given by equation (1), indicating that the corresponding fea-
tures are not significant to separate the sample groups. In
contrast, largest weights (in absolute values) indicate that the
corresponding features contribute more to the discriminant
score and consequently are important to characterize the
differences between the groups. Therefore, the manner that



AdaBoost combines the weak classifiers gives a straight-
forward way to compute the discriminant weights (line 13
of the Algorithm 1). In this way, instead of sorting fea-
tures by selecting the corresponding principal components
in decreasing order of eigenvalues, as PCA does, MDPCA-
Perceptron selects as the most important features for clas-
sification the ones with the highest discriminant weights,
that is, |wmdpca,1| ≥ |wmdpca,2| ≥ · · · ≥ |wmdpca,m′ |, as
performed in lines 14-15 of the algorithm. The output of the
MDPCA-Perceptron procedure is the discriminant principal
components q1,q2, · · ·,qm′ , where qi is a PCA component
ordered according to its discriminant weight |wmdpca,i|.

IV. EXPERIMENTAL RESULTS

In this section we perform facial expression experiments
using the frontal poses of the Radboud (RaFD) face image
database which is an initiative of the Behavioural Science
Institute of the Radboud University Nijmegen [12]. We take
five different expressions: the neutral, happiness, sad, anger
and fear frontal profile of each person. In order to save memory
allocation along the algorithms execution, we convert each
pose to gray scale and resize it to 50×50 before computation.

Table I lists the 10 principal components with the highest
discriminant weights given by the original MDPCA [4], named
as MDPCA-SVM in this section, and MDPCA-Perceptron
(Algorithm 1), in absolute values, for discriminating the
expression samples. From Table I we can observe that the
MDPCA-SVM and MDPCA-Perceptron have selected some
distant PCA components among the first 10 most discriminant
principal ones. We expect some consequences of this fact in
the classification experiments, as we will see next.

Expression Experiment: PCA components sorted by
MDPCA-SVM and the MDPCA-Perceptron procedure

MDPCA-SVM 30 27 10 9 6 33 50 14 44 34
MPCA-Perc 30 25 24 27 1 9 8 34 19 7

TABLE I
TOP 10 DISCRIMINANT PRINCIPAL COMPONENTS, RANKED BY

MDPCA-SVM AND THE MDPCA-PERCEPTRON.

To understand the changes described by the principal com-
ponents, we reconstruct the most expressive features by vary-
ing each principal component pi separately using the equation:

I = x̂ + β · pi, (2)

where x̂ is the global mean, β ∈ {±j · λ̄0.5, j = 0,±3}, and
λ̄ is the average eigenvalue of the total covariance matrix [1].
We choose λ̄ instead of λi because some λi can be very small
(or big) in this case, showing no changes (or color saturation)
between the samples when we move along the corresponding
principal components.

From Table I we notice that the first column do not show
difference between the selected principal components. Hence,
the Figure 2 illustrates the transformations on the second
PCA most expressive component contrasted with the sec-
ond discriminant principal component selected by MDPCA-
Perceptron and MDPCA-SVM to separate facial expressions.

We can see in the Figures 2.(a)-(c) that the second PCA most
expressive direction captures the changes in gender, which are
the major variations of all the training samples.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Visualization of the changes described by the principal directions
using expression (2) and Table I: (a)-(c) PCA; (d)-(f) MDPCA-Perceptron;
(g)-(i) MDPCA-SVM.

However, when we compare these results with the ones
reconstructed by the second discriminant principal component
selected by MDPCA-Perceptron (Figures 2.(d)-(f) and by
MDPCA-SVM (Figure 2.(g)-(i)), we can see that others PCA
components (the 25, 27, according to Table I) carry more
information about expression variations then the first PCA
ones. We shall analyse the consequences of this fact in the
recognition experiments.

The following recognition tasks experiments are carried out
using the full rank PCA subspace with all non-zero eigenval-
ues. We use the 10-fold cross validation method to evaluate the
classification performance of PCA, MDPCA-Perceptron and
the MDPCA-SVM techniques. In these experiments we have
assumed equal prior probabilities and misclassification costs
for all the classes. On the PCA subspace, the mean of each
class i has been calculated from the corresponding training
images and the Mahalanobis distance from each class mean
x̂i has been used to assign a test observation xr to either the
different facial expressions. That is, we have assigned xr to
class i that minimizes:

di(xr) =

k∑
j=1

1

λj
(xrj − x̂ij)2, (3)

where λj is the corresponding covariance matrix eigenvalue,
k is the number of principal components retained, xrj and
x̂ij are the projections of the sample xr and of the mean x̂i,
respectively, in the jth component considered.

Figure 3 shows the average recognition rates for PCA,
MDPCA-Perceptron and the MDPCA-SVM, for five class
tasks. We can notice that MDPCA-Perceptron and the



MDPCA-SVM achieve higher recognition rates than the tradi-
tional PCA when considering k < 40. For 50 ≤ k ≤ 190 the
recognition rates of PCA subspaces are higher or equal to the
MDPCA methodology achieving recognition rate higher than
70% in k = 120.

The comparison between MDPCA-Perceptron and
MDPCA-SVM shows that they are equivalent for 1 ≤ k ≤ 5.
Next, MDPCA-SVM performs a bit better than MDPCA-
Perceptron in the range 7 < k < 40. Moreover, in the
interval 1 ≤ k ≤ 50 the MDPCA-Perceptron obtains the
highest recognition rate, among all the other methods, with
k = 40 achieving recognition rate of 60%. For 55 < k < 180
MDPCA-Perceptron performs better than MDPCA-SVM. In
particular, for 60 < k ≤ 96, MDPCA-Perceptron achieves
recognition rates higher than 60%, while MDPCA-SVM
performance is below in the same interval.
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Fig. 3. Average recognition rate of PCA, MDPCA-Perceptron (MDPCA-Perc
in the figure), and MDPCA-SVM largest discriminant weights criteria.

Since PCA explains features that most vary in the samples
the principal subspaces do not necessarily represent important
discriminant directions to separate sample groups [1], [4],
which justifies the reported facts about Figure 3. However,
the reconstruction results are expected to give lower errors if
we take components with higher variances. To make clear this
observation, let us quantify the reconstruction quality through
the root mean squared error (RMSE), computed as follows:

RMSEl(k) =

√∑N
i=1 ||P.Ilk.PTxi − xi||2

N
, (4)

where l ∈ {PCA,MDPCA− Perceptron,MDPCA− SVM}, and Ilk
is a truncated identity matrix that keeps the subspace with dimension
k that is selected by PCA, MDPCA-Perceptron, and MDPCA-SVM.
In Figure 4, we show the RMSE for the subspaces given by the
focused techniques in the five-class experiments. It is noticeable that
PCA reconstruction performs better than the MDPCA-Perceptron and
MDPCA-SVM discriminant components for all the simulated values
of k. Besides, the MDPCA-Perceptron shows equal or lower RMSE
values than MDPCA-SVM everywhere but largest than PCA.

V. CONCLUSION

In this paper we propose the MDPCA-Perceptron methodology
for ranking PCA components. We compute the discriminant weights
for multi-class discriminant analysis using neutral, happiness, sad,
anger and fear frontal face images of the Radboud database. The
facial expressions experiments show that the principal components
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Fig. 4. RMSE for PCA, MDPCA-Perceptron (MDPCA-Perc in the figure),
and MDPCA-SVM subspaces.

selected by MDPCA-Perceptron discriminant weights gives compet-
itive recognition rates if compared with the PCA and MDPCA-
SVM ones for subspace dimensions in the range 1 ≤ k ≤ 40.
In terms of reconstruction, Figure 4 shows that the PCA is the
best technique followed by the MDPCA-Perceptron. Therefore, in
applications that requires suitable (not the best) classification and
good reconstruction the MDPCA-Perceptron using fill features can
fulfill both requirements.

Further work is being undertaken to test the methodology using
AdaBoost.M2 technique [13] as a direction to improve the classifi-
cation performance, as well as, to use other techniques to compute
discriminant vectors, as LDA and Partial Least Squares (PLS)[1].
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