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Abstract—A method to obtain epidermal and dermal 3D
fingerprints from high-resolution images acquired using Optical
Coherence Tomography (OCT) is proposed. This method ad-
dresses limitations of current 3D reconstruction techniques such
as depth and resolution variations, sensitivity to low illumination
and poor contrast. The availability of these fingerprints made
possible the creation of new identification techniques that benefit
from the rich information available in 3D. We propose a 3D
fingerprint matching process based on KH maps, which are
2D representations of curvature types extracted by computing
the Gaussian and mean curvatures from a region of interest
around minutiae.The matching strategy, a two-step approach,
relies on local gradient patterns (LGP) of the KH maps to narrow
the search space, followed by a similarity matching, normalized
cross correlation. The accuracy and matching compatibility,
comparable or improved in relation to the 2D matching methods,
is verified through matching 3D fingerprints from two databases
one acquired using OCT and a public database. An OCT 3D
fingerprint database, the first acquired this technology to our
knowledge, contains images of people of different ages, genders,
ethnicity and cases of alterations as scars, abrasion and scratches.
We investigate the applicability of our method to the identification
of altered fingerprints. In these cases, the 3D dermal fingerprint,
compatible with the epidermis, is employed
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I. INTRODUCTION

Person identification has been used for many years in
commercial, governmental and legal applications and has been
adopted in large scale worldwide. A particular application,
gaining importance due to the increasing number of identi-
fication deception attempts [1l], is border control and access
to security facilities.

2D fingerprint technologies have been successfully used for
years but despite the continuous progress, opportunities for
improvement remain. An important issue is vulnerability to
skin alterations, unintentional as in the cases of abrasion and
scratches related to some types work, or deliberate, as the cases
of acid burns and plastic surgery with the purpose of evading
the identification by a biometric system, as described by Yoon
and Jain [1]]. Another case of relevance is the identification
of newborn babies, a challenging problem due to its high
deformability, the small dimensions of their dermatoglyphics
(2 to 3 times smaller than in adults). Skin deformability
was attributed to the small thickness of the epidermis and
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Fig. 1. B-Scan of the finger skin showing the stratum corneum and the
dermis-epidermis interface

can be prevented by contactless scanning. Lastly, it has been
estimated that 4% of the population may have poor skin ridge
quality making it very difficult or impossible to scan these
fingerprints.

3D fingerprint geometry has been studied as a promising
alternative to 2D identification technologies as it provides
richer, discriminatory information obtained through contactless
imaging and 3D reconstruction. However, despite its inherent
advantages as the immunity to skin deformation, it has been
limited to superficial images of the skin, impacted by illumina-
tion, brightness, contrast, and errors inherent to triangulation
or phase-calculation. The use of 3D scanners that provide the
spatial information directly, with no reconstruction need can
potentially minimize the errors inherent to these techniques.
By working with the 3D information, one can extract some
discriminant characteristics such as curvatures.

A new method to obtain 3D fingerprints from images of
the dermis and epidermis, acquired through OCT is proposed.
OCT, a contactless high-resolution scanning technology that
acquires in-depth 3D images of the skin layers provides
access to the internal structures of the skin (Fig.1), exposing
structures that can be potentially be used to improve iden-
tification/verification. The resolutions obtained (of microns)
are sufficient to scan newborn babies fingerprints and the
information available in the dermis-epidermis interface can
make biometric identifications viable when the epidermis has
been altered. In addition, the skin intensity profile and the
internal structures of the skin can be used to detect fake finger-
prints. In the proposed method, 3D fingerprints are extracted



from the epidermis and dermis-epidermis OCT images in a
region of interest (ROI), a small point cloud around fingerprint
minutiae, named minutiae cloud. From this ROI, the KH
maps, distinctive information used for biometric identification
is calculated. The use of multiple minutiae clouds can improve
the accuracy of the biometric identification if compared to the
traditional 2D methods. A database of epidermal and dermal
OCT 3D fingerprints, the first to our knowledge, was built
by scanning images of 11 volunteers in 2 sessions held in
different days through a partnership with Stanford University,
where an OCT scanner was made available.

A method for fingerprint matching based on the mentioned
novel patterns is also presented. The KH maps used for
matching are are computed from minutiae clouds based on
signs of the Gaussian and mean curvatures as proposed by
Besl and Jain [2]. Large databases of KH maps, one for each
minutiae cloud, can be built, what can impact the matching
response time. The matching strategy, a two-step approach
relies on local gradient patterns (LGP) of the KH maps to
mitigate this problem by narrowing the search space, followed
by a similarity matching of the nearest neighbors of the pattern
being searched. The accuracy and matching compatibility,
comparable or improved in relation to the 2D matching meth-
ods is verified through matching using epidermis-epidermis
and epidermis-dermis minutiae clouds and comparing the re-
sults (FARXFRR, ROC and CMC curves) with those obtained
for traditional 2D fingerprint matching collected from the same
volunteers.

II. BIOMETRIC IDENTIFICATION USING FINGERPRINTS

Fingerprint identification is based on dermatoglyphics, fin-
ger skin patterns present in the skin, such as the ridges,
valleys and minutiae are used. Fingerprints are formed by
the detection of these dermatoglyphics by an image sensor
or ink and paper. The skin consists of the epidermis and
dermis layers. The epidermis is a layered structure, being
the stratum corneum, the outermost. Deeper in the skin, the
epidermal-dermal interface has irregularities that are named
dermal papillae. These mold the formation of the epidermal
ridges during the fetus formation [3]], making these two
regions very similar in shape.

2D fingerprint technologies have been successfully used for
decades, being considered mature and reliable but they have
limitations. One of them is the impact of skin deformation and
the presence of dirt and moisture during the image acquisition,
which can impact the identification accuracy. Another, is
the vulnerability to biometric system obfuscation by finger
skin alterations. These can occur for unintentional reasons
as the constant use of the hands in labor activities [4] or
intentional, to try to mask a person identity through burns,
cuts, abrasion and even plastic surgery. These changes can
modify the shape of the fingerprints scanned by traditional,
contact-based or even contactless scanners and deceive the
automatic identification systems [1l]. Recently, research on
the use 3D fingerprints from images acquired with multiple
cameras or structured light systems have been proposed but

depth and resolution problems occurred. Improved matching
results have only been obtained when the scores are combined
with those obtained through 2D fingerprint matching.

IIT. ACQUISITION OF 3D FINGERPRINTS

3D acquisition systems have been proposed in the liter-
ature: in  [5)] a touchless scanner with 5 cameras and 16
LEDs obtains 3D reconstructed images using stereovision and
photogrammetry-based algorithms. Matching employs 2D and
3D features: 2D unwrapped images (from the 3D fingerprints)
are matched against existing 2D databases and the locations
of correspondent spatial minutiae triplets are adopted for 3D
matching. In [6], a sinusoidal pattern is projected by a
digital light processing (DLP) device on the finger. The skin
shape changes the phase of the projected pattern and the
resulting image can be used for the computation of the spatial
coordinates of each point. Errors of 0.0301 mm in depth and
0.0006 mm in x and 0.014mm in y were found.

Wang et al [7] uses structured light illumination and
phase measuring profilometry to obtain a 3D reconstruction
of the finger. An unwrapped 2D fingerprint is built through
a parametric technique. In the work by Labati et al [8],
whose focus was in the acquisition with moving fingers, two
images are collected and enhanced to increase fringe contrast
and correspondent points of the two images are found using
block matching and normalized cross-correlation. A 3D shape
is computed by triangulation using the coordinates of the
corresponding points to build an image of the ridge pattern
texture, that is superimposed to the 3D model. Unwrapped
fingerprints are used for matching, having obtained ERR of
0.09% and FMR of 0.12%, that dropped to 2.40% and 1.2%
when intentional misplacements and rotations are present.
Compatibility of these with flat 2D fingerprints acquired
through a regular 2D scanner was tested, the obtained ERR
was 1.48% in the worst case. In this case, the 3D reconstructed
model does not have the ridges and valleys depth information.

A different approach, using a single camera and 7 LEDs
was described in [9] and [10]. 2D images obtained by
synchronized flashing of the LEDs at different angles are used
to build a 3D fingerprint using shape estimation with shape
from shading, least squares and Poisson solver techniques. For
matching, a shape index (SI) is adopted. This index is obtained
by calculating the surface maximum and minimum curvatures
and depending on its value, the surface can be segmented in
five types (cup, rut, saddle, ridge, cap). SI is combined with the
direction of the dominant principle curvature to form a vector
named Finger Code (FC). Normalized Hamming distance
between FCs is employed for 3D matching. Another matching
approach used in the same paper relies on 3D coordinates
of minutiae, including the height and angles in relation to
a central minutia, combined with traditional 2D minutiae-
based matching. A database of 3D fingerprints from 240
users containing 3D and 2D fingerprints was built using the
proposed acquisition method. 3D fingerprint matching through
curvatures (SI) obtained an ERR of 15.56% but best matching
results were reached when 3D minutiae scores were fused with



2D minutiae-based scores (adaptive fusion), achieving an ERR
1.02% [10].

In [11]], the image is obtained through 3 cameras and
3 LEDs. 3D image reconstruction starts by estimating the
finger shape, then SIFT features and minutiae correspondence
between the collected 2D images are found and used to
calculate the spatial coordinates of each point of the finger.
These coordinates are superposed to the shape model to form
the 3D fingerprint. Reconstruction errors of up to 0.35 mm
were found. Curve skeletons extracted from these 3D images
[12] are used for matching along with curvature maximum
and minimum measures. Curvature shape matching alone
resulted in EER of 15%, improved to 3.4% when the curvature
measures were included.

A set of common problems found in the listed 3D recon-
struction methods can summarized as follows: depth, resolu-
tion and ridge variations from the center to the image borders;
low overlapping regions among images from multiple cam-
eras; poor illumination and low-contrast, affecting coordinate
calculation.

IV. 3D FINGERPRINT ACQUISITION WITH OCT

OCT technology can generate 2D cross-sectional images
(B-scans) and 3D images of the skin. It have been used
in the biomedical area to image structures with submicron
resolution [13]. In human skin, OCT images at depths of
a few milimiters, have been reached [14], [15] and in
biometric identification using the finger skin, detection of fake
fingerprints has been reported [16], [17].As OCT uses low
time-coherent interferometry, no reconstruction is needed, the
image of the skin layers is acquired directly from the sample
with no resolution and depth variation from center to borders
of the finger and illumination being contrast problems also
prevented.

An example of cross-sectional OCT images of the skin is
presented in Fig. 2.a (top), where the external part of the
epidermis (stratum corneum) appears as a thin bright layer due
to large the refractive index mismatch between the air and the
skin, as a consequence the ridges and valleys are clearly visible
in these images. Deeper in the skin, the interface between
epidermis-dermis has a structure whose shape is very similar
to the stratum corneum [18] and visible as a lower intensity
(if compared to the stratum corneum) section of the skin in
the B-scans as the refractive index mismatch is not so large.
By detecting the interfaces between the stratum corneum/air
and the dermis/epidermis, two point clouds, the 3D dermal
and epidermal fingerprints can be built.

A. 3D Fingerprint extraction

OCT finger images are processed to generate the 3D
epidermis fingerprint (external) from the stratum corneum
and the 3D dermal fingerprint (internal) from the epidermis-
dermis interface. Different methods are adopted for extrnal and
internal 3D fingerprints. For the external, since the stratum
corneum is a high-intensity sharp line, Canny edge detector
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Fig. 2. Detection of external fingerprint: (a) Original (top) and detected
external layer (bottom); (b) detection directions (white arrows).

is used as shown in Fig.2. Edge detection is executed in two
orthogonal directions to increase the amount of points.

For internal 3D fingerprint, the intensity of dermis-
epidermis interface is first enhanced by the method proposed
by [19] that takes into consideration the intensity contribution
of groups of neighbor points in this region. First a weighted
median filter is applied to the B-scan, then for each column of
the B-scan (represented by a white arrow in Fig.3) an intensity
profile is built and the second intensity peak (second maximum
in Fig.3 graph) is located. This corresponds to the epidermis-
dermis interface. An edge detector is then applied to this image
to obtain the 3D internal fingerprint.

(®)
Fig. 3. Epidermis-dermis detection: (a) A-scan represented by the white
arrow; (b) the intensity graph of the A-scan.

3D fingerprints are formed by stacking of all the detected
edges, as shown in Fig.4.

(@ (b)

Fig. 4. 3D Fingerprints from OCT images: (a)External 3D fingerprint;
(b)Internal 3D fingerprint



B. OCT 3D Fingerprint database (OCTDB)

A 3D fingerprint database was acquired through a part-
nership with Stanford University and followed an approved
acquisition protocol. 3D images were scanned using a general-
purpose OCT with a field of view of 14.1 mm X 14.1 mm and
a resolution of 7.5m (equivalent to approximately 1170 ppi).
Volumes of 700 x 700 x 256 voxels were obtained from 11
volunteers in two scanning sessions and occurred in different
days. The 10 fingers of each volunteer were scanned and
when needed, additional scans were done if motion artifacts
(by involuntary motion) were observed. A total of 163 3D
internal and external fingerprints were obtained. The processed
images formed the first OCT 3D fingerprint database (referred
as OCTDB) to our knowledge. In addition, 2D images of
the fingerprints using a regular contact-based scanner were
scanned from the same volunteers. This database differs from
the others acquired by the other technologies by the higher res-
olution, clearly defined ridges and valleys, accurate scanning
of all the skin irregularities and the availability of the internal
structures as the epidermis, dermis, sweat ducts and dermal
papillae. Its use in future research can open the exploitation
of new biometric features and innovative matching methods
as the one proposed in the next session.

C. ROI Extraction to Matching

Our proposed matching process uses regions of the 3D
cloud around the minutiae, considered distinctive regions of
the finger. These were extracted selecting a frame of 150x150
pixels (X-Y) centered in the minutiae coordinates to obtain
the region of interest (ROI), named minutia cloud (Fig. 5.a).
Only the minutiae types bifurcations and endings were used
in this experiment.

Minutiae clouds acquired in the first scanning session were
stored in the gallery group and those acquired in the second
session in the probe group. Probe represents the enrolled minu-
tiae clouds of a user to be identified by searching the minutiae
clouds stored in the gallery. Minutiae clouds are convenient to
matching as their configuration makes them very distinctive
from mere ridges and are found in reasonable amounts in the
fingers. They are used to calculate our distinctive features, the
KH maps (Fig 5.b), obtained from the Gaussian and Mean
curvatures of point clouds.

D. KH Maps

KH maps (Fig.5) are obtained from the minutiae cloud by
the following steps: (1) Gaussian smoothing; (2) interpolation
of the 3D points in a regular grid; (3) computing curvature
values for each 3D point; and (4) converting the curvature
values to the 2D KH map. The regular grid is based on the
useful area of the 3D minutia cloud. Finally, the regions are
segmented by curvature type and different greyscale intensities
(10, 30, 70 and 90) are attributed to the curvature types of
each minutiae cloud segment for visualization, showing that
different segments have clear separation edges.
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Fig. 5. Minutiae clouds and correspondent KH Map: (a) Minutiae cloud
rendered image ; (b) KH Map
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Fig. 6. 3D Fingerprint Matching process

V. 3D FINGERPRINT MATCHING

Our two-step 3D fingerprint matching method [20] starts
by extracting the minutiae clouds, from the full 3D finger-
print image. Follows the computation of the KH maps,their
local gradient patterns and the final score calculation (2D
correlation). Two sets of KH maps are used: 1) the gallery,
resulting from the 3D fingerprints scanned in the first session,
simulating the enrollment stage and the 2) probe, composed of
the 3D fingerprints scanned in the second session, representing
the case of a user having its 3D fingerprints scanned to
identification. Samples of the probe KH-maps are matched
against the gallery. Fig. 6 shows an overview of the matching
process. After the KH maps are calculated, a texture descriptor
for each of them is computed, Local Gradient Patterns (LGP)
[21] followed by a similarity calculation through normalized
cross-correlation of the KH-maps.

LGPs are obtained for each point of the KH maps first
calculating the intensity gradient g; of it to its p closest
neighbors (in absolute value), then obtaining the average of
these gradients and attributing a value S; (0 or 1) correspond-
ing to each neighbor. S; values are concatenated to form the
LGP value for each pixel, a p-bits number. The image is
then divided in 25 sections and the histogram of LGP values
for each section is computed and concatenated to form a
representative vector. This vector is generated for each gallery



KH map. The whole set of vectors is stored as a Kd-Trees
(gallery database) that will be used to matching. Kd-Trees
contribute to reduce the search space when trying to search
correspondences in gallery database, making the identification
faster.

The probe minutiae cloud, extracted from the 3D fin-
gerprints of the person to be identified, has its KH map
calculated, its finger type determined and LGP descriptor built.
Then a KNN search on the Kd-Tree returns the K closest
neighbors using Euclidean distance. Finally, the 2D correlation
is executed between the probe KH map and all the K closest
neighbors to determine the similarity score (normalized cross-
correlation) used for matching. The matching process is re-
peated for all the minutiae clouds found in each finger (probe)
and a score S for all the Rank-1 matches is calculated. The
FARxFRR, CMC and ROC curves are plotted based on the S
score to evaluate the accuracy of the method for single and
multiple minutiae.

VI. EXPERIMENTS AND MATCHING RESULTS

We measured the matching accuracy using two databases,
the OCTDB and a public database. In addition, we evaluated
the compatibility of the minutiae clouds extracted from the
dermis-epidermis interface and epidermis to check if dermis
3D fingerprint can be used when the epidermis is altered or it
is inaccessible.

A. 3D Fingerprint Database from Hong Kong Polytechnic

A public database gently made available by the Hong Kong
Polytechnic University, [9]], referred as POLYUDB in this
work, was used in tests to check the method applicability and
to compare with OCTDB results. This database has around
1,560 3D images from 260 subjects. In our work we selected
88 images from 44 subjects, the ones that had clear definition
of curvature types as opposed to images excessively smoothed
and showing artifacts.

B. KH Map Matching (CORR2D)

A test with KH maps from different fingers (and users)
was executed to evaluate the accuracy of the method by first
trying to match a single minutia cloud from the probe to
the ones in the gallery to evaluate how accurate the use of
a single minutiae cloud was for identifying a finger. After
that, matching was applied using whole set of minutiae clouds
found for each the finger in order to measure the improvement
in matching accuracy.

C. Tests with the OCTDB Database

Tests using 3,945 minutiae from OCTDB were executed
to evaluate the matching accuracy. 86 fingers from the probe
were matched. On average 4.12 minutiae clouds per finger
were found. The resulting FARXxFRR and CMC curves, are
shown in Fig.7 (left). First test (single minutia) resulted in
an EER (equal error rate) of 12.77% and an identification
rate of 75% for Rank-1. In the second test (multiple minutiae
clouds) an ERR of 3.8% was obtained and an identification
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Fig. 7.  FAXxFRR and CMC curves (OCTDB): (left) single minutia; (right)
multiple minutiae
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Fig. 8. FAXxFRR and CMC curves (POLYUDB): (left) single minutia;
(right) multiple minutiae

rate of 94.23% as shown in Fig.7 (right), showing a significant
improvement on both the EER and the identification rates.

D. Tests with POLYUDB database

Tests using 350 minutiae clouds extracted from 86 3D
fingerprints of 43 volunteers from POLYUDB were executed.
An average of 3.97 minutiae clouds per finger was found. As in
the previous database tests, single and multiple minutia cloud
tests were run. For single minutiae, an EER of 12.36% and
a CMC curve with 77.61% recognition rate was found as in
Fig.8 (left). For multiple minutiae, a significant improvement
was found an ERR of 9.96% and an identification rate 99%
for Rank-1 as in Fig.8 (right). A comparison of the EER and
identification rates obtained for the OCTDB and POLYUDB
show that EER and identification rates are similar for a single
minutia but for multiple minutiae, EER is better for OCTDB
than for POLYUDB and the identification rate is better for
POLYUDB than for OCTDB.
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E. Compatibility of 3D Dermal and Epidermal Fingerprints

The hypothesis that the internal (dermal) 3D fingerprints
can be used for matching when the epidermal fingerprint is not
available [18]] is tested. Images from 3D epidermis x dermis
fingerprints from the gallery and probe sets were selected. A
total of 11 fingers from 5 volunteers and a total of 52 minutiae
clouds were used. As can be seen in Fig. 9, the resulting
FARXFRR and CMC curves show an EER of 0.6% and an
identification rate of 88.89% (Rank-1). The identification rate
obtained using the dermis is typically inferior to regular 2D
due to the smaller percentage of minutiae coincidence between
the epidermis and dermis. However, the identification rate
obtained was superior to the results obtained by traditional
invasive process used in identification of corpses, (exposure
of the dermis by chemical process) [L8].

VII. CONCLUSIONS

The acquisition of 3D fingerprints obtained through the use
of OCT was proved viable and the first OCT 3D fingerprint
database to date was built, containing 163 internal and external
3D fingerprints. This database allows the exploitation of fea-
tures as the curvatures and new structures as papillary glands
and sweat ducts for improved matching. OCT has a series
of advantages over the triangulation-based and structured
illumination profilometry-based systems such as the immunity
to contrast, illumination problems and reconstruction errors.
Besides that, the access to the internal layers of the skin
opens the possibility to do biometric identification in the
presence of alterations or when the external layer of the skin
is not accessible. A new matching method based on KH maps,
computed from the minutiae clouds, was proposed to improve
the identification accuracy. A two-step LGP-based matching
process was devised to cope with the large volume of minutiae
clouds and reduce the processing time. The matching results,
for OCTDB and POLYUDB were obtained and a comparison
with 2D traditional matching was executed. Identification rates
of 75% and 77.61% and ERR of 12.77% and 12.36% for
respectively the OCTDB and POLYUDB for a single minutiae
cloud and 94.23% and 99% for an ERR Of 3.9% and 9.96%
for multiple minutiae were achieved. The case of matching an
external 3D database using internal fingerprints has been tested
obtaining identification rate of 88.89% and EER of 0.06%
showing that identification is feasible in the case of alterations
or when the external layer cannot be acquired.
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