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Abstract—Gesture recognition has been an area of great inter-
est and study in recent years due to the evolution of technology
and computers processing power, generating a higher degree
in the Interaction Human Computer (IHC). These advances
now allow communication between man and machine through
hand gestures or entire body, especially in games, after the
advent of Microsoft Kinect and other depth sensors. This paper
proposes a dynamic gesture recognition system for user hand.
The system is evaluated in two bases of dynamic hand gestures
from the literature. The experiments show that the proposed
model overcomes other algorithms presented in the literature in
hand gesture recognition tasks, achieving a classification rate of
97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI
dynamic gesture dataset.
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I. INTRODUCTION

Gestures are the main way of deaf-mute people commu-
nication and they are present in most of the communication
between all kind of people. Gestures can express several and
different emotions, expressions among other things [1]. Sign
Languages use manual communication and body language
instead of sound patterns.

Nine millions of people in the world cannot communicate
through sound patterns due some hearing or speaking disabil-
ity [2]. This group of people makes use of sign language to
communicate. The sign language is a set of gestures with a
meaning that can represent the language signs of a community.

As every language, sign language needs to be understood
by people who surround the deaf-mute ones such as fam-
ily, friends, sellers, customers and others. Systems based on
computer vision can use a camera to capture the gestures
performed by people and translate them using computer vision
techniques so that anyone can understand.

Several efforts have been applied to perform a real-time
translation between different sound pattern languages around
the world [3], [4]. Likewise, many works have developed
techniques to translate sign language in real time. Oreifej and
Liu [5] proposed a technique called Histogram of Oriented
4D Normals (Hon4d) that uses a 4D histogram approach
for feature extraction, while Yang [6] proposed an algorithm
for 2D and 3D spaces that extracts some features from the
executed gestures: the location of the left hand with respect
to the signer’s face in 3D space; the angle from the face to
the left hand; the position of the left hand with respect to the

shoulder center; the occlusion of both hands. Doliotis et al. [7]
proposed a feature extraction method using images generated
by a Microsoft Kinect, retrieving a 3D pose orientation and
full hand configuration parameters.

Contributions: In this paper, we propose a novel ap-
proach for dynamic gesture recognition with depth maps
called hybrid approach for gesture recognition with depth
maps (HAGR-D). Our system uses a version of CIPBR
(convex invariant position based on RANSAC) algorithm [8]
for feature extraction, a combination of the binary particle
swarm optimization [9] and a selector algorithm to make
the feature selection and a hybridization between DTW and
HMM classifiers for recognition. DTW is used to find the
most probable gestures, while HMM refines DTW output.
This system is the result of a research developed during a
master course resulting in a dissertation entitled ”Um sistema
para reconhecimento de gestos baseado no Algoritmo Ransac
Convexo” and the articles presented in Section V.

This paper is organized as follows. Section II describes
the proposed model. In Section III, experiments with gesture
images captured by the Microsoft Kinect are shown. Finally,
in Section IV, we present some concluding remarks1 .

II. HYBRID APPROACH FOR GESTURE RECOGNITION

Our hybrid approach is composed by some techniques
described in the following subsections.

A. CIPBR

The Depth CIPBR algorithm is an approach composed of a
sequence of tasks to reduce a depth map of a hand posture into
two signature sets proposed by Keogh et al. [10]. To complete
these tasks, there are four modules connected in cascade as
presented in Figure 1.

The first module, “Radius Calculation,” uses a hand posture
image that is segmented from the depth map generated by the
Microsoft Kinect, Figure 2.(a). The hand posture contour is

1This work is a master dissertation entitled ”Um sistema para reconhec-
imento de gestos baseado no Algoritmo Ransac Convexo”, presented on
Universidade de Pernambuco. This master dissertation is part of a research
project called: ”Um Sistema de Reconhecimento de Gestos para Dispositivos
Móveis”, with aims to build a tool that is capable of recognizing gestures
and synthesize them into sounds and being able to identify sounds converting
them into text or signals. Thus, communication between deaf people with
normal hearing and may occur with flow in both directions.
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Fig. 1. Depth CIPBR architecture.

extracted from this image generating the contour, Figure 2.(b),
and the center of mass (C) of the hand posture is calculated
from the image contour using the center moments [11].
Then, the point that has the lower Y coordinate is found,
P , Figure 2.(c). Finally, this module calculates the distance
between the center of mass and point P . Figure 2.(d) presents
an output example of the ”Radius Calculation” module. The
dark gray point is the center of mass of the contour given by
C, the red point is the highest point of the contour given by
P , and the line connecting these points is given by PC.

Fig. 2. (a) The hand segmented using the Microsoft Kinect; (b) The hand
posture contour; (c) The mass center point drawn in the hand posture contour
(dark gray point); (d) The convex hull points with the maximum circumcircle
Θ (red circle), the center mass point(dark gray point), the highest point (red
point) and the segment of line PC (green line)

The second module of Depth CIPBR, “Draw Maximum
Circumcircle,” uses the line segment PC as radius to draw a
circle inside the hand contour. If this circle exceeds the hand
contour boundary, a triangle is calculated using the three most
distant contour points from the point C, being two of them
in opposite sides of the contour. The biggest circle inside this
triangle is the maximum circumcircle Θ of the contour with
the center in point C.

The third module of Depth CIPBR, “Calculate Signatures,”
receives the maximum circumcircle Θ and points P and C as
input. The hand contour points are substantially reduced using
the Andrew’s monotone chain convex hull algorithm [12].

Andrew’s algorithm outputs a set Ψ = {p1, p2, . . . , pn}
from Convex hull points, which is used to generate two
signature sets. The first signature set is composed of distances
(D) calculated as follows:
• For each point ω ∈ Ψ, the length of the line segment ωC

is calculated based on the Euclidean distance from ω to
the point C;

• Then, this length is subtracted from the circumcircle
radius, in order to obtain the ωQ length, where point
Q is the intersection between segment ωC and Θ.

Therefore, the first signature set is composed of each dis-
tance DωQ, ∀ω ∈ Ψ, calculated using the following equation
(1):

where:
• C is the center of mass of the hand posture contour;

• ωx, Cx are the x coordinates for points ω and C respec-
tively;

• ωy, Cy are the y coordinates for points ω and C, respec-
tively;

• radius is the radius of Θ calculated by the “Draw
Maximum Circumcircle” module.

The second signature set consists of a vector of angles
obtained by calculating the angle between a line composed
of each point w ∈ Ψ of the convex hull hand shape point and
the line segment PC. Both signature sets are obtained in a
clockwise direction always starting with point P .

Finally, in the last module, “Feature Vector Normalization,”
the signature sets are normalized. The first signature set is
normalized dividing each distance by the radius calculated in
the “Draw Maximum Circumcircle” module. The normalized
distance vector is represented by D′ = {d′1, d′2, . . . , d′n}:

d′i =
di

radius
. (1)

The set of angles is normalized by dividing each angle
by 360◦:

a′i =
ai

360◦
. (2)

Angle and distance sets are concatenated in the follow-
ing order: angles first and distances at the end of the sig-
nature vector. Therefore, the final feature vector is F =
{ a′1, a′2, . . . , a′n, d′1, d′2, . . . , d′n}.

B. Feature Selection Method

Some classifiers used for gesture recognition are more sensi-
tive to the curse of dimensionality [13], such as the HMM [14],
[15]. In order to overcome this obstacle, Feature Selection
method finds the smallest size possible for the feature vector
and assigns the same size for the feature vectors of all gestures.
This is also an important task since many classifiers use inputs
with the same predefined size.

In this study, Binary Particle Swarm Optimization [9]
(BPSO) finds the target size of the reduced feature vector,
while the Selector algorithm is used to resize the feature
vectors. The objective that BPSO seeks to optimize is the
minimum distance between the particle composed of 0’s and
1’s and the gestures sequences. The number of 1’s in the
particle denotes the size of the new feature vector.

The next subsections explain in detail how these algorithms
work.

1) Particle Swarm Optimization: Particle swarm optimiza-
tion [16] solves an optimization problem with a swarm of
simple computational elements, called particles, exploring a
solution space to find an optimal solution. The position from
each particle represents a candidate solution in n-dimensional
search space (D) defined as X = {x1, x2, x3, . . . , xn}, where
each xn is a position in the n-dimension, and the particle
velocity is represented by V = {v1, v2, v3, . . . , vn}.

The fitness function evaluates how well each particle
presents itself in each iteration. When a particle moves and



its new position has a better fitness value than the previous
one, this value is saved in a variable called pbest. To guide the
swarm to the best solution, the position, where a single particle
found the best solution until the current execution, is stored
in a variable called gbest. Therefore, to update the particle
velocity and position, the following equations are used:

vi(t+ 1) = κvi(t) + c1r1[pi,best− xi(t)] + c2r2[gbest− xi(t)]
(3)

xi(t+ 1) = xi(t) + vi(t+ 1) (4)

where i = (1, 2, 3, . . . , N), N is the size of the swarm, c1
represents the private experience or “cognitive experience” and
c2 represents the ”social experience” interaction, usually used
with a value of 2.05 [16]. Variables r1 and r2 are random
numbers between zero and one and represent how much pbest
and gbest will influence the particle movement. The inertia
factor κ is used to control the balance of the search algorithm
between exploration and exploitation. The xi represents the
particle position in the i-th dimension. The recursive algorithm
runs until the maximum number of iterations is reached.

2) Binary PSO: The binary PSO is a variation of the tradi-
tional PSO in discrete spaces. The major difference between
this algorithm and its canonical version is the interpretation
of velocity and position. In the binary version, the particle’s
position and velocity are represented by zeros and ones only.
This change requires a reformulation in how velocity is
calculated, according to the following equation:

If rand <
1

1 + e−vi(t+1)
then

xi(t+ 1) = 1; else xi(t+ 1) = 0 (5)

where rand is a random number between zero and one.
Finally, to binarize all of the feature vectors, a threshold

calculated through the mean of all of the feature vectors
is used. BPSO calculates a distance from each xij binary
particle’s position to the same j position in all binary vectors
for the same gesture. After each iteration, all distances are
added up to generate the fitness function output. Particles are
improved as soon as the fitness values become smaller in
comparison with the fitness obtained by the previous iteration.
The particle fitness function is:

fitnessi =

m∑
j=1

[

√√√√ n∑
k=1

(xik − Fjk)2] (6)

where (xi1, xi2, . . . , xin) is the particle’s i-th position
and (Fj1, Fj2, . . . , Fjn) is the j-th features in all vectors.

3) Selector Algorithm: BPSO chooses the target size for the
reduced feature vector S′. Then, the selector algorithm [17]
reduces the CIPBR feature vector S to S′, producing the final
vectors of the proposed approach. In this process, some rules
must be respected. First, if any vector has fewer points than
the target size of S′, zeros are added to the feature vector
until it matches the desired length. Second, feature vectors
larger than the target size of S′ are redefined using a selection

algorithm. This algorithm consists of calculating a window W
through the division of the current vector length by the target
size of S′. The current vector S is parsed, and each value in
the W position is included in the new feature vector. If the
new output vector S′ is even smaller than the desired length,
the remaining positions are randomly visited in S and used to
compose the new output vector S′ until the desired length is
reached.

III. EXPERIMENTS

In order to evaluate our proposed system, two experiments
are performed with public benchmarks: the MSRGesture3D
dataset [18] and the RPPDI dynamic gesture dataset [19]. The
next subsections explain these experiments in detail.

A. MSRGesture3D

The MSRGesture3D is a dynamic hand gesture dataset
captured by the Kinect RGB-D camera. There are 12 dynamic
hand gestures defined by American Sign Language (ASL) in
MSRGesture3D, and each dynamic gesture was performed
two or three times by each one of 10 subjects. The gestures
presented in the dataset are: “bathroom”, “blue”, “finish”,
“green”, “hungry”, “milk”, “past”, “pig”, “store”, “where”,
“J” and “Z’.’ The dataset contains only depth data images
and is considered challenging mainly because of self-occlusion
issues. We used the leave-one-subject-out cross-validation to
evaluate the dataset as proposed in [18].

The following parameters are used for training the HAGR-
D: noitemsep
• DTW: k = 5;
• BPSO: noitemsep

– 15 particles;
– 20 dimensions;
– 30 simulations;
– 200 iterations;
– c1 = c2 = 2.05;
– inertia factor of w = 0.9→ 0.4;
– r1 = r2 = rand(0...1);

• HMM: noitemsep
– three states;
– 100 iterations.

To find the initial states of HMM, we use a k-means
clustering [20] technique, avoiding the random initial matrices,
while the BPSO uses few dimensions in its particles to
guarantee small final vectors. The works in [21], [22] use
similar approaches to determine the final size of the vectors
in their studies.

We compared our system with a model using the same
feature extraction approach, but with DTW or HMM alone as
classifiers, “called depth CIPBR + DTW” and “depth CIPBR
+ HMM”. Therefore, we are able to evaluate the performance
of the proposed model with DTW before HMM and solely
with HMM. The inputs for DTW are the raw sequences
generated by depth CIPBR, and the inputs for the HMM are
the output sequences of the feature selection method. Figure 3



presents the boxplot for each method. It is easy to see that the
hybridization between DTW and HMM significantly improved
the proposed model. Furthermore, in several iterations, our
hybrid approach classification rate was very close to 100%,
and only two sequences were misclassified, corresponding to
the gesture “green” being classified as “store” and the gesture
“blue” being classified as “where”. Another point to be made
is that outliers presented using solely HMM as a classifier
no longer exist with our approach. The size of the boxplot
generated by the results of each classifier also elucidate a low
variation between the results of each classifier, providing a
certainty about the consistency of the results.

Fig. 3. Comparison between our proposed system, depth CIPBR with DTW
and depth CIPBR with HMM for hand gesture recognition.

Our proposed system and “depth CIPBR + DTW”, re-
spectively, applied to the MSRGesture3D dataset present low
number of mistakes. The hybridization of the “depth CIPBR
+ DTW” with HMM generating an improvement of the
classification rates, and most of mistakes happened between
the gestures “green” and “store”, with 7% of the “green” being
classified as “store”.

Figure 4 shows a representation of the two gesture vectors
most confused by our system and how close they are. To rep-
resent this gesture in a 2D space, they are normalized in size
using the “selector algorithm” with only two features as the
final length. It is easy to see that sometimes, a few examples
cross the division between classes, making classification more
difficult.

Fig. 4. Example of two generated classes by the CIPBR algorithm.

Finally, Table I presents the results obtained for the MSGes-
ture3D dataset using the leave-one-subject-out cross-validation
as a testing procedure in comparison with other methods in the
literature. The proposed system achieved the best classification
result of 97.49%.

Method (%)
HAGR-D 97.49

Depth CIPBR + DTW 91.53
Depth CIPBR + HMM 88.98

Actionlet [23] 95.29
Histogram of Oriented 4D Normals (HON4D)

+ Discriminative Density (Ddisc) [5] 92.45
HON4D [5] 87.29

Random Occupancy Patterns (ROP), Wang et al. [18] 88.50
Depth motion maps, Yang et al. [24] 89.20

Kurakin et al. [25] 87.70
Klaser et al. [26] 85.23

TABLE I
COMPARISON BETWEEN THE RESULTS FOR MSRGESTURE3D WITH THE
LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION AS THE CLASSIFICATION

PROCESS.

Venkateswara et al. [27] use the same dataset in their study,
but modifying the experiment using five subjects for training
and five for testing their methods, achieving 94.6% as their
best result, which is still above ours.

B. RPPDI Dynamic Gesture Dataset
The RPPDI dynamic gesture dataset is a set of images

of seven dynamic hand gestures performed in front of a
smartphone camera. Figure 8 illustrates one sequence example
for each gesture in the dataset. Each gesture is performed
several times, and Table II presents the number of sequences in
each gesture. We used the same test configuration as proposed
by Barros et al. [19], [17] with 2/3 of the dataset for training
the model and 1/3 for testing.

Fig. 5. Example for each of the gestures performed on the RPPDI dynamic
gesture dataset.

Gesture Number of Sequences
Gesture 1 24
Gesture 2 24
Gesture 3 31
Gesture 4 18
Gesture 5 26
Gesture 6 33
Gesture 7 32

TABLE II
NUMBER OF SEQUENCES CAPTURED BY EACH GESTURE IN THE RPPDI

DYNAMIC DATASET.



The experiments in the RPPDI dataset used the same con-
figuration for BPSO and HMM as presented in Section III-A,
and the results are compared to Barros et al.’s previous works.
The CIPBR uses the Otsu threshold [28] as a binarization
method in the first module to segment hand posture. Table 6
presents the results obtained, and Table IV presents the con-
fusion matrix of the HAGR-D system. The proposed method
committed a few mistakes, misclassifying only one gesture,
while achieving 100% accuracy in some iterations.

Method Classification Rate (%)
HAGR-D 98.43

SURF + HMM [17] 75.00
LCS + HMM [17] 77.00

Convex SURF (CSURF) + HMM [17] 91.00
Convex LCS (CLCS) + HMM [17] 91.00

SURF + DTW [17] 38.00
LCS + DTW [17] 78.00

CSURF + DTW [17] 93.00
CLCS + DTW [17] 97.00

TABLE III
COMPARISON BETWEEN THE RESULTS IN RPPDI DYNAMIC GESTURE

DATASET.

Gest. 1 2 3 4 5 6 7
1 100% - - - - - -
2 - 100% - - - - -
3 - - 89% - - 11% -
4 - - - 100% - - -
5 - - - - 100% - -
6 - - - - - 100% -
7 - - - - - - 100%

TABLE IV
CONFUSION MATRIX OF RPPDI DYNAMIC GESTURE DATABASE

CLASSIFIED BY THE HAGR-D SYSTEM.

C. Remarks
The proposed approach, achieved the best results in two

different datasets due to the combination of depth CIBPR for
feature extraction and the hybrid classifier with DTW and
HMM. The classifiers compensated the failures of each other
by reducing misclassifications between different gestures with
DTW and refining the classification output through validation
of the most similar sequences using the HMM. The hybrid
classifier improved the results in comparison with DTW and
HMM applied individually.

One of the limitations of our system is the definition of
the number of sequences returned by DTW, k. In this study,
such a parameter was empirically defined. Another limitation
is the computation cost of DTW that might impair real-time
application of the proposed model.

Another point to be made is that the few mistakes committed
by the proposed system were due to very similar sequences.
Nevertheless, many conditions must be fulfilled in order for
HAGR-D to misclassify a given gesture: the number of similar
postures, the distance from the hand to the sensor, the speed
of gesture execution and occlusion.

IV. CONCLUSION

Hand gesture recognition have been a challenge for real
time applications due the need of requirements of robustness,
accuracy and efficiency. In this Master dissertation, we pro-
posed both a variation of the CIPBR algorithm for depth maps
and a hybrid classifier for gesture recognition using DTW and
HMM. The HAGR-D, presents better results than the ones
in the literature, achieving a classification rate of 97.49%
in the MSRGesture3D dataset and 98.43% in the RPPDI
dynamic gesture dataset. The application of depth CIPBR for
feature extraction showed good results, while the hybridization
between the DTW and HMM classifiers significantly improved
classification accuracy.

Although the focus of classification in this paper relies
on the task of hand gesture recognition, in future research,
we intend to extend our proposed system to other types of
gestures, such as human body movements. Furthermore, the
DTW has a high computational cost, which makes the system
execution slow; however, the FastDTW [29] is a variation of
the traditional form of the DTW that promises to exponentially
reduce the computational cost, and it will be addressed in our
next experiments.
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