1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPAW/3M8SRRE |
Repository | sid.inpe.br/sibgrapi/2016/08.12.00.56 |
Last Update | 2016:08.12.00.56.22 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2016/08.12.00.56.22 |
Metadata Last Update | 2022:05.18.22.21.07 (UTC) administrator |
Citation Key | CamargoBugaSait:2016:AbApAt |
Title | Abordagem de Aprendizado Ativo para Classificação de Dados Biomédicos  |
Format | On-line |
Year | 2016 |
Access Date | 2025, May 09 |
Number of Files | 1 |
Size | 130 KiB |
|
2. Context | |
Author | 1 Camargo, Guilherme 2 Bugatti, Pedro Henrique 3 Saito, Priscila Tiemi Maeda |
Affiliation | 1 Universidade Tecnológica Federal do Paraná (UTFPR) 2 Universidade Tecnológica Federal do Paraná (UTFPR) 3 Universidade Tecnológica Federal do Paraná (UTFPR) e Universidade Estadual de Campinas (UNICAMP) |
Editor | Aliaga, Daniel G. Davis, Larry S. Farias, Ricardo C. Fernandes, Leandro A. F. Gibson, Stuart J. Giraldi, Gilson A. Gois, João Paulo Maciel, Anderson Menotti, David Miranda, Paulo A. V. Musse, Soraia Namikawa, Laercio Pamplona, Mauricio Papa, João Paulo Santos, Jefersson dos Schwartz, William Robson Thomaz, Carlos E. |
e-Mail Address | gcamargo@alunos.utfpr.edu.br |
Conference Name | Conference on Graphics, Patterns and Images, 29 (SIBGRAPI) |
Conference Location | São José dos Campos, SP, Brazil |
Date | 4-7 Oct. 2016 |
Publisher | Sociedade Brasileira de Computação |
Publisher City | Porto Alegre |
Book Title | Proceedings |
Tertiary Type | Work in Progress |
History (UTC) | 2016-08-12 00:56:22 :: gcamargo@alunos.utfpr.edu.br -> administrator :: 2022-05-18 22:21:07 :: administrator -> :: 2016 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Keywords | aprendizado ativo análise de imagens classificação imagens biomédicas floresta de caminhos ótimos |
Abstract | A huge volume of biomedical data (images, genes, among others) is daily generated. The analysis of such data is a complex task that demands specialized knowledge, and the level of expertise directly impacts the diagnosis. Besides, due to the volume of data such task becomes extremely tiresome, and hence highly susceptible to errors. Trying to solve this problem, machine learning approaches have been proposed in the literature to perform automatic classification of such data. Despite the several proposed techniques, the great majority strictly focus just on the effectiveness, and relegate the efficiency of the classification. This paper presents a novel learning approach capable to obtain high accuracies, as well as maintaining a minimal involvement of the expert and interactive computational time during the learning process. To do so, the proposed approach exploits the active learning paradigm, in order to reduce, organize and select the most informative samples to the learning process of the pattern classifier. |
Arrangement | urlib.net > SDLA > Fonds > SIBGRAPI 2016 > Abordagem de Aprendizado... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPAW/3M8SRRE |
zipped data URL | http://urlib.net/zip/8JMKD3MGPAW/3M8SRRE |
Language | pt |
Target File | 2016-sibgrapi-wip.pdf |
User Group | gcamargo@alunos.utfpr.edu.br |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPAW/3M2D4LP |
Citing Item List | sid.inpe.br/sibgrapi/2016/07.02.23.50 32 sid.inpe.br/banon/2001/03.30.15.38.24 6 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination doi edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume |
|