
Custom Shader and 3D Rendering for
computationally efficient Sonar Simulation

Rômulo Cerqueira∗†, Tiago Trocoli∗, Gustavo Neves∗, Luciano Oliveira†, Sylvain Joyeux∗ and Jan Albiez∗‡
∗Brazilian Institute of Robotics, SENAI CIMATEC, Salvador, Bahia, Brazil, Email: romulo.cerqueira@fieb.org.br

†Intelligent Vision Research Lab, Federal University of Bahia, Salvador, Bahia, Brazil
‡Robotics Innovation Center, DFKI GmbH, Bremen, Germany

osg world osg viewport

Sonar Parameters
opening angle, direction, range

3D Shader

Distance from Camera
Near

Far

Surface Angle to Camera
90°

0°

Beam Angle in Camera
n°

-n°

0°

select rendering area

rendering of three channel picture

1

0,5

0 10,5 0,77 x

f(x)

Distance Histogramm

Near Far

#

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data Structure of Sonar Beam for n°

Bin #
Bin Val

Return Intensity

select beam
select bin

return normalisationreturn value

calculation

Fig. 1. A graphical representation of the individual steps to get from the OpenSceneGraph scene to a sonar beam data structure.

Abstract—This paper introduces a novel method for simulating
underwater sonar sensors by vertex and fragment processing.
The virtual scenario used is composed of the integration between
the Gazebo simulator and the Robot Construction Kit (ROCK)
framework. A 3-channel matrix with depth and intensity buffers
and angular distortion values is extracted from OpenSceneGraph
3D scene frames by shader rendering, and subsequently fused
and processed to generate the synthetic sonar data. To export
and display simulation resources, this approach was written in
C++ as ROCK packages. The method is evaluated on two use
cases: the virtual acoustic images from a mechanical scanning
sonar and forward-looking sonar simulations.

Keywords-Synthetic Sensor Data; Sonar Imaging; Robot Con-
struction Kit (ROCK); Underwater Robotics.

I. INTRODUCTION

When designing and programming autonomous robotic sys-
tems, simulation plays an important role. This applies to
physically correct simulations (which are needed to design the
hardware but take longer to calculate), as well as to simulations
which are not completely physically correct but run in real-
time. The latter kind of simulation is important when it comes
to developing and testing the control system of autonomous
robots, especially the higher level parts. The key element here

is that the simulation has to be good enough to test the decision
making algorithms in the control system.

When dealing with autonomous underwater vehicles
(AUVs) a real-time simulation plays a key role. Since an AUV
can only scarcely communicate back via mostly unreliable
acoustic communication, the robot has to be able to make
decisions completely autonomously. While the part dealing
with the analysis and interpretation of sensor data can be
thoroughly tested on recorded data, for the test and verification
of the vehicle’s reaction to this data, a simulation is needed
to reduce the risk of vehicle damage or even vehicle loss in
the real world.

In the FlatFish project [1] was developed an interface to
integrate the Gazebo real-time simulator 1 into the software
framework ROCK 2 as presented in [2]. With this integration
it is able to simulate basic underwater physics and underwater
camera systems. The missing part, needed by most underwater
robots, was the sonar system.

In this paper we present our current sonar simulation ap-
proach which uses a custom shader in a 3D rendering pipeline

1http://gazebosim.org
2http://rock-robotics.org/

to compute a sonar image with low computational cost. The
model representation is presented in Figure 1.

A. Related work

Several models have been used to simulate sonar data.
[3] applied frequency-domain signal processing to generate
synthetic aperture sonar image. In this method, the acoustic
image was created by expressing the Fourier transform of the
received signal in terms of the transmitted signal. Simplifi-
cations in the frequency domain model resulted in a basic
illumination model.

An application of optical ray tracing to the simulation of
underwater side-scan sonar imagery was presented in [4]. The
sonar images were generated by the use of acoustic signals
represented by rays. The process of projecting rays is repeated
for a 2D-array, representing all angles the sonar can emit
signal. Then a 3D point cloud is constructed from the ray
detection point with high computational costs.

The basic methodology of 2D forward-looking sonar sim-
ulation, using optical ray tracing combined with processing
in the frequency domain, was proposed in [5]. The average
simulation time of 2.5 minutes for one simulated image
prevents its evaluation in real time.

In [6], a 2D forward-looking sonar was proposed using
acoustic tubes instead of rays. This implementation added
noise to the point cloud generated by rays before converting it
into a sonar image, but the material reflectance was statically
defined. It resulted in same intensity values for all points on
a single object.

We are not aware of any previous work which customizes
the 3D rendering pipeline to generate underwater sonar im-
ages – the present work therefore represents an important
innovation in sonar simulation. Another contribution is that
the method proposed herein is able to reproduce any type of
underwater sonar images, as seen in evaluation tests with two
kind of simulated sonars.

II. SONAR BACKGROUND

Sonars use sound propagation in water to detect and identify
submerged objects and their boundaries. An acoustic signal (or
ping) is emitted by the sonar into an area to be observed. Then,
the sonar listens for echoes that have been produced by the
acoustic signal bouncing back from objects in the area [7].

A single beam emitted from a sonar transducer is shown in
Figure 2. The azimuth θB and elevation φB widths show the
horizontal and vertical beamwidths of the emitted sound pulse,
respectively. The sonar data is formed by plotting the intensity
received over time of the acoustic signal. Each record is also
named as bin. So, every beam has a number of bins. Since the
speed of sound underwater can be measured, the time-of-flight
effectively corresponds to sonar range.

The propagation of acoustic waves in each beam can be
modeled by the acoustic version of the wave equation [8].
Finally, the array of transducer readings forms the sonar
image. Since all incoming signals converge on the same point,
the reflected echo could have originated anywhere along the

corresponding elevation width. Therefore, the 3D information
is lost in the projection into a 2D image [9].

Fig. 2. Single sonar beam’s geometry[6]

III. DEVELOPMENT

The goal of this work was to simulate any kind of under-
water sonar with low computation-time cost. The complete
pipeline of this implementation, from the virtual scene to the
synthetic acoustic image, is seen in Figure 1 and detailed in
the following subsections.

A. Underwater Scene

The underwater scene was achieved by the ROCK-Gazebo
simulator [2], where Gazebo is used to simulate the kine-
matics and the ROCK graphics tools are responsible for the
visualization. ROCK’s graphical engines are based on the
OpenSceneGraph 3 library, which is a C/C++ 3D graphics
toolkit based on OpenGL. The osgOcean 4 library is used to
simulate the ocean’s visual effects, and the ocean buoyancy is
simulated by the Gazebo plugin described in [2].

The underwater scene’s components, such as robot parts,
sensors and joints, and the objects in the environment, are
defined by means of SDF (Simulation Description Format)
files, which uses the SDFormat 5, an XML format used to
describe simulated models and environments.

Each component described in the SDF file becomes a ROCK
component, which is based on the Orocos RTT (Real Time
Toolkit) 6 and provides ports, properties and operations as its
communication layer. When the models are loaded, ROCK-
Gazebo creates ports that allow other system components to
interact with the simulated models.

The underwater scene is illustrated in Figure 3.

B. Shader Rendering

Modern graphics hardware offers a way to customize tasks
embedded in Graphical Processing Units (GPU). Based on
parallel processing, this approach can speed up 3D graphics
processing and reduce the computational effort of the Central
Processing Unit (CPU).

3http://www.openscenegraph.org/
4http://wiki.ros.org/osgOcean
5http://sdformat.org
6http://www.orocos.org/rtt

Fig. 3. The FlatFish robot in the ROCK-Gazebo underwater scenario.

The OpenGL Shading Language (GLSL 7) is a high level
programming language similar to C/C++, which allows to
handle the rendering pipeline executed on the GPU. In this
work, the rendering pipeline was specialized to simulate the
sonar sensor as a camera of the 3D rendering process, with
same 3D position, orientation and field of view horizontal and
vertical (FOV-X, FOV-Y). With this approach, it is possible to
compute 3D sonar data in a cost efficient parallel process:

• Intensity simulates the echo reflection energy based on
an object’s surface normal;

• Depth is the euclidean 3D distance between the camera
focal point and the object’s surface point;

• Angle distortion is the angle formed from the camera
center column to the camera boundary column, for both
directions;

These data are normalized between 0.0 and 1.0, where
means, respectively, no echo energy and maximum echo
energy for intensity data. For depth data, the minimum value
portrays a close object while the maximum value represents
a far object, limited by sonar max range. Angle distortion
has 0.0 value in center column, and 1.0 value in both border
columns which presents FOV-X half value. At the end, the
shader process gives a 3-channel matrix data of intensity, depth
and angle distortion stored in each channel.

C. Synthetic Sonar Data

The 3-channel matrix is processed in order to simulate the
virtual sonar data. The initial step is to split the matrix in
beam parts using the angular distortion presented in the shader
matrix. In this case, all pixels in a column have the same
angle value. Since the angular distortion is equally spaced over
the FOV-X degree sector, each column is correlated with its
respective beam, according to sonar bearings, as seen in Figure
1.

Each beam sub-image (with its respective columns) is
converted into bin intensities using the depth and intensity
values from shader process. In a real sonar, the bin number
is proportional to the real distance from the sensor. In other
words, the initial bins represent the closest distances, while the
latest bins are the furthest ones. Therefore, a depth histogram
is evaluated to associate each pixel with its respective bin,

7http://www.opengl.org/documentation/glsl/

according to the depth channel. This information is used to
calculate the intensity of each bin.

Due to acoustic attenuation in the water, the final bins have
less echo strength than the first ones, because energy is lost
in the environment. In order to correct for this, the sonar uses
an energy normalization that applies a time varying gain to
spreading losses in the bins. In this simulation approach, the
accumulated intensity in each bin is normalized as seen in
Equation 1:

Ibin =

n∑
x=1

1

n
∗ sig(i(x)) (1)

where Ibin is the accumulated intensity in the bin after the
energy normalization, x is the pixel in the shader matrix, n
is the depth histogram value (number of pixels) of that bin,
sig(.) is the sigmoid function and i(.) is the intensity value
of the pixel.

Since the shader returns a normalized final data in 8-bits
color space (1 / 256 = 0.00390625), if the number of bins are
greater than 256, the depth histogram will contain some blank
spaces that will be reflected in the final sonar image as ”black
holes”. To avoid this problem, it is necessary to distribute the
sonar intensity data by applying a simple linear interpolation.
After this, the simulation sonar data process is done.

For mechanical scanning sonars, with one beam per reading,
the sonar image is built for each pulse. These images are
usually shown on a display pulse by pulse, and the head
position reader is rotated according to motor step angle. After
a full 360 degree sector reading (or the desired sector defined
by left and right limit angles), the accumulated sonar data is
overwritten. For forward-looking sonars, with n beams being
read simultaneously, the current data is overwritten by the next
one, similar to a camera image.

D. ROCK’s Sonar Structure

To export and display the sonar image, the simulated data
is encapsulated as ROCK’s sonar datatype and provided as an
output port of ROCK’s component.

IV. RESULTS AND DISCUSSION

In order to evaluate the proposed method, the synthetic
images generated by the underwater sonar simulators are
presented here. The virtual scenario consisted of the FlatFish
AUV, a manifold located in the seabed (Figure 3) and a grid
around the robot (Figure 6).

The first experiment applied a forward-looking sonar with
the following configuration: field of view of 120◦ by 20◦; 256
beams simultaneously; 500 bins per each beam; range set at
50m; and angle tilt between the sonar and AUV at 20◦. The
manifold model was ensonified to generate the acoustic image
and its respective shader image from the OpenSceneGraph
scene is presented in Figure 4. The frontal face of the manifold
and its shadow, as a portion of the seabed, are clearly visible
in the final sonar image, as seen in Figure 5.

A mechanical scanning sonar on top of the robot was
simulated in the second experiment. It was configured as

Fig. 4. The shader image acquired by FlatFish’s forward-looking sonar
sensor.

Fig. 5. The simulated forward-looking sonar image.

follows: field of view of 3◦ by 35◦; 500 bins in the single
beam; 360◦ sector scan reading; and a motor step angle of
1.8◦. The rotation of the sonar head position produced the
synthetic sonar image of the grid surrounding the robot seen
in Figure 7.

Fig. 6. The underwater scenario used in the mechanical scanning sonar
simulation.

Finally, the computation-time was evaluated. For 150 sam-
pling frames, the proposed method produced one multibeam
sonar data every 121.44 milliseconds and one singlebeam
sonar data every 8.5 milliseconds, much faster than the rates
listed by the authors in [6] (1 second) and [5] (2.5 minutes).

In both experiments, the approach was able to simulate
qualitative acoustic images in real time for different kinds of
underwater sonars successfully.

V. CONCLUSION & OUTLOOK

In this paper we presented a method using the shader
engine of modern graphic cards to simulate different kinds

Fig. 7. The simulated mechanical scanning sonar image.

of sonars in a time-efficient way. The system is already used
with success in our underwater projects as an extension of the
Gazebo simulator.

Future work will focus mainly on adding different kinds
of noise to make the images more realistic, add a simple
refraction model and extend the 3D world by material prop-
erties to allow for different sonar reflections. Furthermore, we
will perform a comprehensive comparison with other sonar
simulators.

ACKNOWLEDGMENT

The authors would like to thank Shell Brazil and ANP for
financing the work and SENAI CIMATEC and DFKI RIC for
the great institutional support.

REFERENCES

[1] J. Albiez, S. Joyeux, C. Gaudig, J. Hilljegerdes, S. Kroffke, C. Schoo,
S. Arnold, G. Mimoso, R. Saback, J. Neto, D. Cesar, G. Neves, T. Watan-
abe, P. Merz Paranhos, M. Reis, and F. Kirchner, “FlatFish - a compact
auv for subsea resident inspection tasks,” in Proceedings of the MTS/IEEE
OCEANS 2015, Washington DC, USA, Oct 2015, pp. 1–8.

[2] T. Watanabe, G. Neves, R. Cerqueira, T. Trocoli, M. Reis, S. Joyeux, and
J. Albiez, “The rock-gazebo integration and a real-time auv simulation,”
in Proceedings of 12th Latin American Robotics Symposium (LARS’15),
Uberlandia, Brazil, Oct 2015, pp. 132–138.

[3] A. D. Wait, Sonar for Practising Engineers. Wiley, May 2002.
[4] J. M. Bell and L. M. Linnett, “Simulation and analysis of synthetic

sides- can sonar images,” in Proceedings of the IEEE Radar, Sonar and
Navigation, 1997, pp. 219–226.

[5] H. Saç, K. Leblebicioğlu, and G. Bozdaği Akar, “2d high-frequency
forward-looking sonar simulator based on continuous surfaces approach,”
Turkish Journal of Electrical Engineering and Computer Sciences, no. 23,
pp. 2289–2303, 2015.

[6] K. DeMarco, M. West, and A. Howard, “A computationally-efficient 2d
imaging sonar model for underwater robotics simulations in gazebo,” in
Proceedings of the MTS/IEEE OCEANS 2015, Washington DC, USA, Oct
2015, pp. 1–8.

[7] E. Coiras and J. Groen, “Simulation and 3d reconstruction of side-looking
sonar images,” in Advances in Sonar Technology, In-Tech, Ed., 2009,
ch. 1, pp. 1–14.

[8] D. S. Drumheller, Introduction to Wave Propagation in Nonlinear Fluids
and Solids. Cambridge University Press, 1998.

[9] N. Hurtos, “Forwad-looking sonar mosaicing for underwater environ-
ments,” Ph.D. dissertation, Universitat de Girona, 2014.

	Introduction
	Related work

	Sonar Background
	Development
	Underwater Scene
	Shader Rendering
	Synthetic Sonar Data
	ROCK's Sonar Structure

	Results and Discussion
	Conclusion & Outlook
	References

