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Abstract—We present an object matching method that em-
ploys matches of local graphs of keypoints, called keygraphs,
instead of simple keypoint matches. For a keygraph match to
be valid, vertex (keypoint) descriptors must be similar and
both keygraphs must satisfy structural properties concern-
ing keypoints orientation, scale, relative position and cyclic
ordering; as a result, the large majority of initial incorrect
keypoint matches is correctly filtered out. We introduce a novel
approach to sample keypoint triples (i.e. keygraphs) in a query
image, based on complementary Delaunay triangulations; this
generates a linear number of triples with relation to the number
of keypoints. Query keygraphs are then matched against the
indexed model keypoints; each established keygraph match is
used to evaluate a candidate pose (an affine transformation).
The proposed method has been evaluated for object recogni-
tion and pose estimation, achieving a better performance in
comparison to state-of-the-art methods.

Keywords-Local image feature matching; semi-local graph
matching; graph topological properties.

I. INTRODUCTION

Many problems in computer vision involve matching an
image against a large database of images. For instance, the
problem of 3D object recognition can be cast as one of image
matching, by storing images of a range of views for each
model object and then treating a test image as a query.

One of the most succesful approaches for image matching
is the local feature framework [1], which extracts interest
points (keypoints) from images. Currently, most methods
on the literature follow the strategy of establishing cor-
respondences between individual keypoints (e.g. [2], [3],
[4], [5]). However, establishing simple one-to-one keypoint
correspondences disregards structural aspects contained in
neighborhoods of keypoints in images. Recent work on the
literature has attempted to use such a structural information
(e.g. [6], [7], [3]), but in limited ways.

This paper presents an improved approach to deal with
structural organisations of keypoints in images. We substi-
tute matches between keypoints by matches between local
graphs of keypoints. Each image is represented by a set
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Figure 1. Keygraph (i.e. keypoint triplet) matches between a query image
(left) and a model image (right). Keygraphs are sampled in the query
image by using complementary Delaunay triangulations and then matched
against the model keypoints. A valid keygraph match must satisfy structural
properties concerning keypoints orientation, scale, relative position and
cyclic ordering.

of local, small graphs, whose vertices are keypoints and
whose edges contain structural information; these local
keypoint graphs are called keygraphs. Correspondences are
then established between keygraphs in the query image
and keygraphs in the model images. Establishing a match
between graphs encompasses not only keypoint descriptor
information (vertex matches) but also requires both graphs
to satisfy structural properties (see Figure 1). We consider
keygraphs composed of three vertices, due to the favorable
structural and topological properties of keypoint triples.

Our first main contribution is a novel set of graph
structural properties which are used to filter out incorrect
candidate keygraph matches. Keygraph structure concerns
keypoints orientation, scale, relative position and cyclic
ordering. The filtering stage correctly rejects more than 99%
of the initial candidate keygraph matches, which improves
efficiency and performance in the final pose estimation stage.

Our second main contribution is an algorithm to sample



triples of keypoints (i.e. keygraphs) in a query image.
Initially, we sample a subset of keypoints such that no two
keypoints are too close. Then, a Delaunay triangulation is
constructed, producing triples of neighbouring keypoints.
This process is repeated T times; keypoint subsets are se-
lected in a pairwise complementary way. For a query image
with n keypoints, running the algorithm has complexity
O(Tn log n) and produces O(Tn) keypoint triples.

Keygraphs in the query image are matched against in-
dexed [8] model keypoints; each established keygraph match
generates a candidate object pose (an affine transformation).
Thus the number of pose evaluations grows linearly with the
number of keypoint matches between a pair of images.

Keygraphs constitute an intermediate level feature, above
the keypoints. Keygraphs can be used with any keypoint
detector that assigns scale and orientation to every keypoint.
In this paper, we employ SIFT [2] features.

We evaluated our method for object recognition and local-
isation. A better performance was achieved in comparison
to state-of-the-art methods [2], [3], [4], particularly in a
scalable scenario, where many model images were used.

II. RELATED WORK

The concept of keygraphs was introduced by Hashimoto
et al. [9] and used for indoors self-localisation using sign
boards by Morimitsu et al. [10]. Fourier coefficients of
keygraph edges were used as local descriptors, providing
a high efficiency. However, in comparison to our method,
Morimitsu et al. only employed cyclic ordering for match
filtering and used a single Delaunay triangulation to generate
query keygraphs. Also, all the model keygraphs must be
stored in memory during application time, which imposes a
limit on the number of model images. On the other hand,
we propose a keygraph based method that uses a large set
of model images.

Philbin et al. [5] propose an image retrieval method which
uses affine-invariant keypoints [1]. This allows a single
keypoint match to carry enough information to instantiate
a candidate pose, while we use a single keygraph match
for that. There are two main advantages of using keygraph
matches instead of keypoint matches. First, more robust
candidate object poses are generated, since three image
regions are employed for pose generation. Second, rich
structural information can be used for match filtering, which
is not possible in case only one point is matched.

Hsiao et al. [4] present a 3D object recognition method
which uses 3D object models built using structure-from-
motion. Keypoints are extracted from many artificially dis-
torted model images and then triangulated into the 3D
model, which augments the set of model keypoints.

Sattler et al. [3] explore structural information in keypoint
neighbourhoods. The idea is that a correct keypoint match
usually occurs close to other correct keypoint matches in
the image. Thus each keypoint match (p, q) is required

Info / Method [3] [6] [7] [11] [10] Ours
Cyclic ordering X X X
Keypoints scale X X X X
Keypoint orientation X X
Keypoint relative position X X X
Keypoint neighbourhood X X X X

Table I
STRUCTURAL AND TOPOLOGICAL INFORMATION USED IN MATCHING

to have some neighbour matches around p (in the query
image) and around q (in the model image) agreeing about
the matched image; otherwise, (p, q) is filtered out. We also
explore the fact that a correct keypoint match is likely to
be close to other correct keypoint matches in the image. A
keypoint triple in the query image is composed of neighbour
keypoints, which increases the chance that all the three
keypoint matches are simultaneously correct.

Hao et al. [6] present a 3D object recognition method.
First, a filtering stage, similar to the method by Sattler et
al. [3], is employed. Then, another structural property is
evaluated: for every pair of matches, the method requires
agreement between distances in the 3D model and keypoint
scales. However, in comparison to our method, [6] neither
employs cyclic ordering nor keypoint orientation for key-
point match filtering, which decreases efficiency.

Hao et al. [7] employ triples of keypoint matches, simi-
larly to the proposed method. For keypoint match filtering,
the authors use structural information concerning keypoints
scale, relative position and cyclic ordering. Before applica-
tion time, the method in [7] explicitly stores a large number
of model keypoint triples, which are then matched against
the keypoints in a query image. The method in [7] differs
from ours in three main aspects. First, we explore the use
of local neighborhood of keypoints. Second, our method
additionally uses keypoint orientation for match filtering.
Third, in [7], a large memory space is needed to store a
sufficiently diverse set of model keypoint triples. On the
other hand, in the proposed method, every keygraph is
efficiently generated during execution time.

Jégou et al. [11] presented an image retrieval method
which uses structural information for keypoint match fil-
tering, by requiring consistency in keypoints scale and ori-
entation. However, the method neither uses cyclic ordering
nor verify the consistency of keypoints scale or orientation
with their relative position.

Table II summarizes the previous discussion concerning
the structural information used for keypoint match filtering.
Our method employs a more heterogeneous set of informa-
tion, which provides a better performance in filtering.

III. PROPOSED METHOD

Object recognition is carried out by finding affine trans-
formations mapping the query image to one or more model
images. Before application time, the model keypoints are
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Figure 2. Establishing keygraph matches between a query image

and training images. Query keypoints are matched against indexed

training keypoints, establishing keypoint matches. Then, keypoint

matches are transformed into keygraph matches, which correctly

eliminates the large majority of the initial keypoint matches.

the structural information used for keypoint match filtering.

Our method employs a more heterogeneous set of informa-

tion, which provides a better performance in filtering.

3. Proposed method

Object recognition is carried out by finding affine trans-

formations mapping the query image to one or more training

images. Before application time, the training keypoints are

extracted and indexed [11]. During application time, our

method follows this pipeline:

1. Keypoint matching: Each keypoint in the query image

runs through a hierarchical k-means tree [11], match-

ing keypoints in many training images (see Figure 2).

2. Keygraph matching: Keypoint triples are sampled in

the query image (see Figure 3) and then matched

against the training images, by using the previously ob-

tained keypoint matches (see Figure 2). This generates

candidate keygraph matches. Each candidate keygraph

match must satisfy the keygraph structural properties

in order to be considered as valid (see Figure 4).

3. Pose estimation: The remaining keygraph matches

are used to search for affine transformations mapping

query and training images. Each keygraph match gen-

erates a candidate transformation that is evaluated by

counting the number of keygraph vertex matches (i.e.

filtered keypoint matches) that agree with it.

3.1. First stage: keypoint matching

The present work employs a hierarchical k-means tree

[11] to index training keypoints. The tree is built by recur-

sivally applying k-means to the descriptor space; each leaf

node stores a set of (less than k) training keypoints.

During application time, each query keypoint p runs

through the tree in order to match stored training keypoints.

p is compared to a stored keypoint q by calculating the Eu-

clidean distance between their SIFT descriptors [8].

An important parameter is the number L of keypoint

comparisons that are done between a query keypoint p and

stored training keypoints. The key advantage of employing

a keypoint indexing tree is that setting L to a small value,

such as 0.01% of the total number of stored training key-

points, already provides good detection results.

The original k-means tree [11] finds the single nearest

neighbour of a query keypoint p. We follow a different strat-

egy, aiming to find many good matches. We let p establish

up to one match with a keypoint in each training image,

namely the match with the lowest Euclidean distance.

3.2. Second stage: keygraph matching

In the second stage, keygraphs are obtained from the

query image and then matched againt the training images.

A keygraph is defined as a graph G = (V,E), where the
vertex set V is composed of keypoints extracted from the

same image, and E is the set of graph edges. Every key-

graph G has κ vertices and consists is an oriented circuit in

the counter-clockwise direction, G = (v1, v2, . . . , vκ) [10].

We employ keygraphs with κ = 3 vertices, which allows
the use of cyclic ordering and makes one keygraph match

be sufficient to instantiate an affine transformation.

3.2.1 Sampling keygraphs in a query image

Obtaining keygraphs from a query image involves sampling

from the set of all possible triples of keypoints. RANSAC

approaches this by independently selecting each keypoint

match in a triple; however, this causes the number of eval-

uated affine transformations to increase cubically with the

number of keypoint matches between a pair of images. Our

method follows a more elaborate strategy, based on using

complementary Delaunay triangulations, which produces a

linear number of triples and affine transformations while

each triple is a local neighbourhood of keypoints.

We avoid using keygraphs with very short edges, which

would increase sensitivity to noise. We select a keypoint

subset S ⊆ P from the original set P of query keypoints

such that no keypoints in S are very close to each other in

the image. As |S| can possibly be much smaller than |P|,
we use T different subsets, S1, . . . ,ST , virtually guarantee-

ing that every keypoint from P is selected at least once.

To select the first keypoint subset S1 ⊆ P , start with S1

as an empty set. Then, keypoints pj are randomly accessed

in P , and a tentative is made to include each pj in the set S1

being constructed. The construction of S1 stops after all the

keypoints in P have been accessed. To include a keypoint

pj in S1, the �∞ distance, in pixels, between pj and every

keypoint already included in S1 must be above δ = 8 pixels.

3

Figure 2. Establishing keygraph matches between a query image and model
images. Query keypoints are matched against indexed model keypoints,
establishing keypoint matches. Then, keypoint matches are transformed
into keygraph matches, which correctly eliminates the large majority of
the initial keypoint matches.

extracted and indexed [8]. During application time, our
method follows this pipeline:

1) Keypoint matching: Each keypoint in the query image
runs through a hierarchical k-means tree [8], matching
keypoints in many model images (see Figure 2).

2) Keygraph matching: Keypoint triples are sampled in
the query image (see Figure 3) and then matched
against the model images, by using the previously ob-
tained keypoint matches (see Figure 2). This generates
candidate keygraph matches. Each candidate keygraph
match must satisfy the keygraph structural properties
in order to be considered as valid (see Figure 4).

3) Pose estimation: The remaining keygraph matches
are used to search for affine transformations map-
ping query and model images. Each keygraph match
generates a candidate transformation that is evaluated
by counting the number of keygraph vertex matches
(i.e. filtered keypoint matches) that agree with it.

A. First stage: keypoint matching

We employ a hierarchical k-means tree [8] in order to
index model keypoints. The tree is built by recursivally
applying k-means to the descriptor space; each leaf node
stores a set of (less than k) model keypoints.

During application time, each query keypoint p runs
through the tree in order to match stored model keypoints.
p is compared to a stored keypoint q by calculating the
Euclidean distance between their SIFT descriptors [2]. We
let p establish up to one match with a keypoint in each model
image, namely the match with the lowest Euclidean distance.
The parameter L sets the number of keypoint comparisons
performed between a query keypoint p and stored model
keypoints.

B. Second stage: keygraph matching

In the second stage, keygraphs are obtained from the
query image and then matched againt the model images.

A keygraph is defined as a graph G = (V,E), where the
vertex set V is composed of keypoints extracted from the

same image, and E is the set of graph edges. Every keygraph
G has κ vertices and consists is an oriented circuit in the
counter-clockwise direction, G = (v1, v2, . . . , vκ) [10].

We employ keygraphs with κ = 3 vertices, which allows
the use of cyclic ordering and makes one keygraph match
be sufficient to instantiate an affine transformation.

1) Keygraph sampling in a query image: Obtaining key-
graphs from a query image involves sampling from the set
of all possible triples of keypoints. The proposed method
follows a strategy based on using complementary Delaunay
triangulations, which produces a linear number of triples. In
order to avoid using keygraphs with very short edges, which
would increase sensitivity to noise, the method samples a
keypoint subset S ⊆ P from the original set P of query
keypoints such that no keypoints in S are very close to each
other in the image. As |S| can possibly be much smaller
than |P|, we use T different subsets, S1, . . . ,ST . In order
to select the first keypoint subset S1 ⊆ P , we start with S1

as an empty set. Then, keypoints pj are randomly accessed
in P , and a tentative is made to include each pj in the set S1

being constructed. The construction of S1 stops after all the
keypoints in P have been accessed. To include a keypoint
pj in S1, the ℓ∞ distance, in pixels, between pj and every
keypoint already included in S1 must be above δ = 8 pixels.

Random selection of keypoints is implemented by creat-
ing an array A of keypoints from P , and then randomly
permuting the elements in A. Then, for selecting the first
keypoint subset S1, the sequence of accessed keypoints is
obtained by starting from the first position of the array A and
then increasing one position at a time until the last element
of the array is accessed. Each time an array position j is
accessed, the method tries to include the keypoint pj stored
in this position into the set S1 being constructed.

After the creation of the first keypoint subset S1 ⊆ P ,
the next subset S2 ⊆ P is constructed. The same array of
permuted keypoints A that was used for S1 is also used
for S2, but, for S2, the elements of A are accessed starting
from the last position of the array and then decreasing one
position at a time until the first position of A is achieved.

The complexity of selecting a keypoint subset Si is
O(n), where n is the number of keypoints in the query
image. Permuting the positions of a keypoint array A has
complexity O(n). Then, keypoints from A are included into
Si; trying to include a keypoint has complexity O(1), thanks
to the use of a grid of squares with cell length δ = 8 pixels1.

To obtain T keypoint subsets, the procedure described to
obtain S1 and S2 is simply repeated. Each pair of subsets Si

and Si+1 employs the same array Ai of permuted keypoints.
Finally, each keypoint subset Si is used to generate a De-

launay triangulation. Si produces the set of keypoint triples
Di = {(p1, p2, p3), (r1, r2, r3), . . .}, with each triple in Di

1Including a keypoint p in a grid cell demands checking if this cell is
already occupied by a keypoint and then checking the ℓ∞ distance between
p and a (possible) keypoint in each of the eight neighbouring grid cells.
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Figure 3. Sampling keypoint triples in a query image. First, query

keypoints P are detected. Then, complementary keypoint subsets

S1 and S2 are obtained (using a minimum �∞ distance between

keypoints of δ pixels) and employed to calculate Delaunay trian-

gulations D1 and D2. The triples T = D1 ∪ D2 are returned.

Random selection of keypoints is implemented by cre-

ating an array A of keypoints from P , and then randomly
permuting the elements in A. Then, for selecting the first

keypoint subset S1, the sequence of accessed keypoints is

obtained by starting from the first position of the array A

and then increasing one position at a time until the last ele-

ment of the array is accessed. Each time an array position

j is accessed, the method tries to include the keypoint pj
stored in this position into the set S1 being constructed.

After the creation of the first keypoint subset S1 ⊆ P ,
the next subset S2 ⊆ P is constructed. The same array

of permuted keypoints A that was used for S1 is also used

for S2, but, for S2, the elements of A are accessed starting

from the last position of the array and then decreasing one

position at a time until the first position of A is achieved.

The complexity of selecting a keypoint subset Si is

O(n), where n is the number of keypoints in the query im-
age. Permuting the positions of a keypoint arrayA has com-

plexity O(n). Then, keypoints from A are included into Si;

trying to include a keypoint has complexity O(1), thanks to
the use of a grid of squares with cell length δ = 8 pixels1.
To obtain T keypoint subsets, the procedure described to

obtain S1 and S2 is simply repeated. Each pair of subsets Si

and Si+1 employs the same arrayAi of permuted keypoints.

Finally, each keypoint subset Si is used to generate a De-

launay triangulation. Si produces the set of keypoint triples

Di = {(p1, p2, p3), (r1, r2, r3), . . .}, with each triple in Di

being a keygraph. Calculating the Delaunay triangulation

Di has complexity O(n log n) and produces O(n) triples.
The set of all keypoint triples is given by T = D1∪ . . .∪

DT . Every keypoint triple in T is included in a hash table

for checking in O(1) time whether that triple is repeated.
In summary, calculating the set T of keygraphs in a

query image has complexity O(Tn logn). This produces

1Including a keypoint p in a grid cell demands checking if this cell is

already occupied by a keypoint and then checking the �∞ distance between

p and a (possible) keypoint in each of the eight neighbouring grid cells.

a number of keygraphs (keypoint triples) |T | = O(Tn).

3.2.2 Matching query and training keygraphs

Keygraphs in the training images are not generated by a De-

launay triangulation. Instead, we first calculate potential

keygraph matches that may occur, based on the initial key-

point matches. Then, the candidate keygraph matches are

filtered out by using structural information.

Obtaining initial candidate keygraph matches. A key-

graph in the query image can establish up to onematch with

each training image. Let G = (v1, v2, v3) be a query key-
graph; G can be matched in all images where all its ver-

tices have reported correspondences. During the keypoint

matching stage, assume that the keypoint matches (v1, u1),
(v2, u2) and (v3, u3) are established between the query im-
age and a training image I . Thus the candidate keygraph

match between G and the image I is (G,H), where H =
(u1, u2, u3) is a candidate keygraph in the training image I .
Therefore, the keygraph match (G,H) is associated to the
keypoint matchesM = {(v1, u1), (v2, u2), (v3, u3)}.
Implementing this initial stage involves checking, for

each query keygraph G = (v1, v2, v3), which training im-
ages have keypoint matches with v1, v2 and v3. To calculate

this, we use, for each query keypoint p, words of 64 bits in-
dicating which training images are matched by p. Thus the

images initially matched to G = (v1, v2, v3) are obtained
by using a AND binary operation between the words for v1,

v2 and v3; the 1’s in the resulting binary words can be ac-

cessed by using count-leading-zeros machine instructions.

Keygraph match filtering using structural information.

Every keygraph match (G,H) must satisfy the graph struc-
tural properties in order to be considered as a valid match.

Cyclic ordering is a topological property, invariant to

perspective transformation in 2D images. Every keygraph

G in a query image is a circuit (a triple) oriented in the

counter-clockwise direction. Since it is assumed that mir-

roring is not a possible distortion of the query image, the

circuit of a matched keygraph H in a training image has to

be oriented in the counter-clockwise direction as well.

Four other attributes are calculated for each keygraph:

• Edges length: A keygraph edge is a straight line con-

necting two vertices with length expressed in pixels.

A keygraph U = (h1, h2, h3) has three edges, e12 =
(h1, h2), e23 = (h2, h3) and e31 = (h3, h1), whose
lengths are lU12, l

U
23 and l

U
31 (see Figure 4-a).

• Keypoints scale: Each keypoint in U = (h1, h2, h3)
has a scale assigned by SIFT. They are denoted as sU1 ,

sU2 and s
U
3 , respectively (see Figure 4-b).

• Edges orientation: Each keygraph edge forms an angle

with the x axis of the image (a keygraph edge is treated

4

Figure 3. Keypoint triple sampling in a query image. First, query keypoints
P are detected. Then, complementary keypoint subsets S1 and S2 are
obtained (using a minimum ℓ∞ distance between keypoints of δ pixels)
and employed to calculate Delaunay triangulations D1 and D2. The triples
T = D1 ∪ D2 are returned.

being a keygraph. Calculating the Delaunay triangulation Di

has complexity O(n log n) and produces O(n) triples.
The set of all keypoint triples is given by T = D1∪ . . .∪

DT . Every keypoint triple in T is included in a hash table
for checking in O(1) time whether that triple is repeated.

In summary, calculating the set T of keygraphs in a query
image has complexity O(Tn log n). This produces a number
of keygraphs (keypoint triples) |T | = O(Tn).

2) Matching query and model keygraphs: First, we calcu-
late potential keygraph matches that may occur, based on the
initial keypoint matches. Then, (incorrect) keygraph matches
are filtered out by using structural information.

Obtaining initial candidate keygraph matches. A key-
graph in the query image can establish up to one match
with each model image. Let G = (v1, v2, v3) be a query
keygraph; G can be matched in all images where all its
vertices have reported correspondences. During the keypoint
matching stage, assume that the keypoint matches (v1, u1),
(v2, u2) and (v3, u3) are established between the query
image and a model image I . Thus the candidate keygraph
match between G and the image I is (G,H), where H =
(u1, u2, u3) is a candidate keygraph in the model image I .
Therefore, the keygraph match (G,H) is associated to the
keypoint matches M = {(v1, u1), (v2, u2), (v3, u3)}.

Implementing this initial stage involves checking, for each
query keygraph G = (v1, v2, v3), which model images have
keypoint matches with v1, v2 and v3. To calculate this, we
use, for each query keypoint p, words of 64 bits indicating
which model images are matched by p. Thus the images
initially matched to G = (v1, v2, v3) are obtained by using
a AND binary operation between the words for v1, v2 and
v3; the 1’s in the resulting binary words can be accessed by
using count-leading-zeros machine instructions.

Keygraph match filtering using structural information.
Every keygraph match (G,H) must satisfy the graph struc-
tural properties in order to be considered as a valid match.

Cyclic ordering is a topological property, invariant to

perspective transformation in 2D images. Every keygraph G
in a query image is a circuit (a triple) oriented in the counter-
clockwise direction. Since it is assumed that mirroring is
not a possible distortion of the query image, the circuit of a
matched keygraph H in a model image has to be oriented
in the counter-clockwise direction as well.

Four other attributes are calculated for each keygraph:

• Edges length: A keygraph edge is a straight line con-
necting two vertices with length expressed in pixels.
A keygraph U = (h1, h2, h3) has three edges, e12 =
(h1, h2), e23 = (h2, h3) and e31 = (h3, h1), whose
lengths are lU12, lU23 and lU31 (see Figure 4-a).

• Keypoints scale: Each keypoint in U = (h1, h2, h3) has
a scale assigned by SIFT. They are denoted as sU1 , sU2
and sU3 , respectively (see Figure 4-b).

• Edges orientation: Each keygraph edge forms an angle
with the x axis of the image (a keygraph edge is treated
as a regular vector in 2D space). The orientations of the
edges of a keygraph U = (h1, h2, h3) are denoted as
αU
12, αU

23 and αU
31 (see Figure 4-c).

• Keypoints orientation: Each keypoint in U =
(h1, h2, h3) has an orientation assigned by SIFT. They
are denoted as oU1 , oU2 and oU3 (see Figure 4-d).

For each candidate keygraph match (G,H), our method
calculates the changes in orientations, lengths and scales
from G to H . A valid keygraph match must present a similar
change in edges orientation and keypoints orientation, as
well as a similar change in edges length and keypoints scale.

Let the candidate keygraph match (G,H) between G =
(v1, v2, v3) and H = (u1, u2, u3) be associated to the
keypoint matches M = {(v1, u1), (v2, u2), (v3, u3)}, as
illustrated by Figure 4-e. Attribute changes are calculated:

• Changes in edges length: Three ratios between the
length of corresponding edges in the match (G,H):
Φ12 = lG12/l

H
12, Φ23 = lG23/l

H
23, Φ31 = lG31/l

H
31;

• Changes in keypoints scale: Three ratios between the
scale of corresponding keypoints in the match (G,H):
Φ1 = sG1 /s

H
1 , Φ2 = sG2 /s

H
2 , Φ3 = sG3 /s

H
3 ;

• Changes in edges orientation: Three changes in orien-
tation of corresponding edges in the match (G,H):
∆12 = αG

12−αH
12, ∆23 = αG

23−αH
23, ∆31 = αG

31−αH
31;

• Changes in keypoints orientation: Three changes in
orientation of corresponding keypoints in (G,H):
∆1 = oG1 − oH1 , ∆2 = oG2 − oH2 , ∆3 = oG3 − oH3 .

Similar changes in keypoints scale and keygraph edges
length. For a keygraph match (G,H), let the three ratios
between the length of corresponding edges be Φ12, Φ23

and Φ31, while the three ratios between the scale of cor-
responding keypoints are Φ1, Φ2 and Φ3. As illustrated
in Figure 4-e, a valid keygraph match must satisfy the
following property: for any pair Φ′,Φ′′ of those six ratios
{Φ12,Φ23,Φ31,Φ1,Φ2,Φ3}, the largest ratio must be lowert
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Figure 4. Structural information employed in keygraph match filtering. (a) Keygraph edges length: l12, l23 and l31. (b) Keypoints (SIFT)

scale: s1, s2 and s3. (c) Keygraph edges orientation: α12, α23 and α31. (d) Keypoints (SIFT) orientation: o1, o2 and o3. (e) Checking

whether changes in keypoints scale and keygraph edges length are similar. For the corresponding keypoints scale sG1 (in a query keygraph

G) and sH1 (in a training keygraphH), the ratio Φ1 = sG1 /s
H
1 is calculated, as well as the ratio between the length of corresponding edges

Φ23 = lG23/l
H
23. We check whether Φ1 is similar to Φ23: 0.5 ≤ Φ1/Φ23 ≤ 2. A similar check is done for every pair Φ�,Φ�� from the set

of ratios {Φ1,Φ2,Φ3,Φ12,Φ23,Φ31}. (f) Checking whether changes in keypoints orientation and keygraph edges orientation are similar.

For the corresponding keypoints orientation oG2 and oH2 , the change in orientation Δ2 = oG2 − oH2 is calculated, as well as the change in

orientation of the corresponding edgesΔ31 = αG
31 − αH

31. We check whetherΔ2 is similar toΔ31: arccos(Δ2 −Δ31) ≤ 60◦. A similar

check is done for every pairΔ�,Δ�� from the set of changes in orientation {Δ1,Δ2,Δ3,Δ12,Δ23,Δ31}.

as a regular vector in 2D space) 2. The orientations of

the edges of a keygraph U = (h1, h2, h3) are denoted
as αU

12
, αU

23
and αU

31
(see Figure 4-c).

• Keypoints orientation: Each keypoint in U =
(h1, h2, h3) has an orientation assigned by SIFT. They
are denoted as oU

1
, oU

2
and oU

3
(see Figure 4-d).

For each candidate keygraph match (G,H), our method cal-
culates the changes in orientations, lengths and scales from

G to H . A valid keygraph match must present a similar

change in edges orientation and keypoints orientation, as

well as a similar change in edges length and keypoints scale.

Let the candidate keygraph match (G,H) between G =
(v1, v2, v3) and H = (u1, u2, u3) be associated to the key-
point matches M = {(v1, u1), (v2, u2), (v3, u3)}, as illus-
trated by Figure 4-e. Attribute changes are calculated as:

• Changes in edges length: Three ratios between the

length of corresponding edges in the match (G,H):
Φ12 = lG

12
/lH

12
, Φ23 = lG

23
/lH

23
, Φ31 = lG

31
/lH

31
;

• Changes in keypoints scale: Three ratios between the

scale of corresponding keypoints in the match (G,H):
Φ1 = sG

1
/sH

1
, Φ2 = sG

2
/sH

2
, Φ3 = sG

3
/sH

3
;

2The origin of an image is in the bottom-left corner: the y axis points

upwards and the x axis points to the right. Positive angles are counter-

clockwise, starting from the x axis.

• Changes in edges orientation: Three changes in orien-

tation of corresponding edges in the match (G,H):
Δ12 = αG

12
−αH

12
,Δ23 = αG

23
−αH

23
,Δ31 = αG

31
−αH

31
;

• Changes in keypoints orientation: Three changes in

orientation of corresponding keypoints in (G,H):
Δ1 = oG

1
− oH

1
, Δ2 = oG

2
− oH

2
, Δ3 = oG

3
− oH

3
.

Similar changes in keypoints scale and keygraph edges

length. When an image is subject to a zooming transfor-

mation with factor r, the length of every keygraph edge and
keypoint scale is multiplied by r. But when a perspective
transformation changing the viewing angle in ψ degrees is

employed, a unit circle becomes an ellipse whose longer

and shorter axes have length 1 and cosψ, respectively [13].

SIFT features lose reliability when ψ > 60◦ [8]. When

ψ = 60◦, the length of the transformed ellipse’s shorter axe
divided by the original circle’s diameter is cos 60◦/1 = 0.5.

For a keygraph match (G,H), let the three ratios be-
tween the length of corresponding edges be Φ12, Φ23 and

Φ31, while the three ratios between the scale of corre-

sponding keypoints are Φ1, Φ2 and Φ3. As illustrated in

Figure 4-e, a valid keygraph match must satisfy the fol-

lowing property: for any pair Φ�,Φ�� of those six ratios

{Φ12,Φ23,Φ31,Φ1,Φ2,Φ3}, the largest ratio must be low-

5

Figure 4. Structural information employed in keygraph match filtering. (a) Keygraph edges length: l12, l23 and l31. (b) Keypoints (SIFT) scale: s1, s2
and s3. (c) Keygraph edges orientation: α12, α23 and α31. (d) Keypoints (SIFT) orientation: o1, o2 and o3. (e) Checking whether changes in keypoints
scale and keygraph edges length are similar. For the corresponding keypoints scale sG1 (in a query keygraph G) and sH1 (in a model keygraph H), the
ratio Φ1 = sG1 /s

H
1 is calculated, as well as the ratio between the length of corresponding edges Φ23 = lG23/l

H
23. We check whether Φ1 is similar to Φ23:

0.5 ≤ Φ1/Φ23 ≤ 2. A similar check is done for every pair Φ′,Φ′′ from the set of ratios {Φ1,Φ2,Φ3,Φ12,Φ23,Φ31}. (f) Checking whether changes
in keypoints orientation and keygraph edges orientation are similar. For the corresponding keypoints orientation oG2 and oH2 , the change in orientation
∆2 = oG2 − oH2 is calculated, as well as the change in orientation of the corresponding edges ∆31 = αG

31 − αH
31. We check whether ∆2 is similar to

∆31: arccos(∆2 −∆31) ≤ 60◦. A similar check is done for every pair ∆′,∆′′ from the set of changes in orientation {∆1,∆2,∆3,∆12,∆23,∆31}.

than than twice the smaller ratio, i.e.2

0.5 ≤ Φ′

Φ′′ ≤ 2. (1)

Similar changes in keypoints orientation and keygraph
edges orientation. For the keygraph match (G,H), let the
changes in keygraph edges orientation be ∆12, ∆23 and ∆31,
while the changes in keypoints orientation are ∆1, ∆2 and
∆3. As illustrated in Figure 4-f, a valid keygraph match must
satisfy the following property: for any pair ∆′,∆′′ of those
six changes in orientation {∆12,∆23,∆31,∆1,∆2,∆3}, the
angle between ∆′ and ∆′′ must be less than 60◦, i.e.3,

arccos(∆′ −∆′′) ≤ 60◦. (2)

C. Third stage: pose estimation

In the third stage, the remaining keygraph matches are
used to localise objects and estimate their pose.

2A perspective transformation changing the viewing angle in ψ degrees
makes a unit circle become an ellipse whose longer and shorter axes have
length 1 and cosψ, respectively [3]. SIFT features lose reliability when
ψ > 60◦ [2]; when ψ = 60◦, the length of the transformed ellipse’s
shorter axe divided by the original circle’s diameter is cos 60◦/1 = 0.5.

3Rotating an image by θ degrees changes the orientation of every
keypoint and keygraph edge in this image in the same θ degrees. On the
other hand, when a perspective transformation is applied, not every keypoint
and keygraph edge rotates in the same θ degrees, although very different
changes in orientation cannot occur.

One keygraph match generates κ = 3 keypoint matches,
which can be used to instantiate a candidate affine trans-
formation mapping query and model image. Each candidate
pose is then evaluated by counting the number of keypoint
(vertex) matches that agree with it.

Affine transformations with agreeing keypoint matches.
Let G be the set of keygraph matches between the query
image and a model image I , G = {M1,M2, . . . ,M|G|}, in
which Mi is a set of three keypoint matches (associated to a
keygraph match). Thus the set of keypoint matches between
those images is M = M1 ∪M2 ∪ . . . ∪M|G|.

To evaluate the quality of a candidate affine transfor-
mation, the method counts the number of matches that
agree with this transformation: for each keypoint match
(p, q) ∈ M, let xp, yp be the position in the query
image as established by the match, and let f(xq), f(yq)
be the position in the query image as predicted by the
affine transformation. If the ℓ∞ distance between xp, yp
and f(xq), f(yq) is below three pixels, the keypoint match
agrees with the candidate transformation. The confidence in
a solution is given by such a number of keypoint match
agreements.

Each affine transformation with at least one keypoint
agreement is considered as a possible solution. Each possible
solution is further refined using least-squares fit.

Dealing with multiple detections. The final stage involves
projecting the objects and dealing with multiple detections.



First, the candidate affine transformations are sorted based
on the number of agreeing keypoint matches (i.e. confi-
dence). The most confident solution is returned as a correct
pose, and the ground-truth of its matched model image is
projected in the query image.

Then, the next more confident solution re-counts its agree-
ing keypoint matches, now discarding matches lying inside
the projection of any previously returned solution. If at least
one keypoint agreement remains, that solution is returned as
a correct pose and the ground-truth of its model image is
projected in the query image. The procedure continues by
similarly examining the remaining elements in the sequence
of produced possible solutions.

IV. EXPERIMENTS AND RESULTS

For performance evaluation, we used the CMU10 object
recognition dataset made available by Hsiao et al. [4]. This
dataset contains ten types of model objects, for a total of
250 model images and 500 query images.

We also evaluated the scalability of our method, by
significantly increasing the number of model images. We
randomly selected a subset of 4000 images from the PAS-
CAL VOC 2007 dataset [12] and employed them as model
images together with the CMU10 model images. Detecting
a PASCAL image constitutes an error.

SIFT keypoints were extracted using the VLFeat [13] li-
brary. The CMU10 and CMU10+PASCAL dataset generated
2.5× 105 and 7.5× 106 model keypoints, respectively.4 For
each dataset, the keypoints were indexed in a hierarchical
k-means tree (both using k = 16).

For each detection, we used the recovered affine trans-
formation to project the model object’s ground truth seg-
mentation onto the query image and calculated the region
R inside the convex hull. The region overlap criterion
(R ∩ Rgt)/(R ∪ Rgt) > 0.4 between the region R and
the ground truth segmentation Rgt (in the query image)
determines if an object is correctly detected.5

To evaluate the results we used the mean Average Pre-
cision (AP), computed over all ten object classes of this
dataset.

A. Baseline systems

We evaluated our method against SCRAMSAC [3],
Lowe’s test [2] and the results reported by Hsiao et al. [4].

4For the CMU10 images, we used ground-truth segmentation to remove
keypoints not belonging to the object. For the PASCAL images, ground-
truth was not used, thus all parts of an image act as a model “object”.

5Hsiao et al. [4] projected 3D models onto 2D query images; their 3D
models included inferred object faces which are not actually visible in
any model image. In order to make a more fair evaluation of our method,
which is based on affine transformations, we modified the ground-truth
segmentations in the query images by removing hidden faces of the object
(e.g. the top of tins). Furthermore, we observed that our method enables
the use of a smaller overlap threshold (0.4, instead of 0.5), giving more
true positive matches without any increase in the number of false positives.

Initially, a hierarchical k-means tree is used to establish
keypoint matches. For Lowe’s test, each query keypoint p
can only match its single nearest neighbor in the whole
model set. For SCRAMSAC, each query keypoint p, after
running through the tree, can match keypoints in different
model images, up to one match per image. Then, for each
query keypoint p, only the top N keypoint matches are
retained (based on descriptor distance). Finally, keypoint
matches without sufficient local support are removed [3].

In the final stage, RANSAC is used for object pose
estimation. For Lowe’s test and SCRAMSAC, each putative
affine transformation is generated by randomly selecting
three keypoint matches that occur with the same model
image. For our method, each putative affine transformation
is generated by randomly selecting one keygraph match.

B. Results

Figure 6 shows two sample object detection results of our
method.

Figure 5-a shows the AP achieved by our method versus
the number T of Delaunay triangulations used to sample
keypoint triples. Each curve corresponds to a model dataset,
CMU10 or CMU10+PASCAL; in both cases, in the initial
keypoint matching stage, L = 1000 model keypoints were
compared to each query keypoint.

As shown in Figure 5-a, employing a large number
of Delaunay triangulations provided a significant gain in
performance: the AP increased in almost 0.50 in comparison
to using T = 1. For the CMU10 dataset, the AP plateaued
at T = 50. Interestingly, when employing the more com-
plex CMU10+PASCAL model dataset, the AP continued to
increase for T > 50, going from 0.49 to 0.58 when using
T = 200. This suggests that our sampling strategy was able
to generate a diverse set of query keygraphs, as employing
more triangulations partially compensated the decrease in
accuracy due to the use of a larger number of model images.

Figure 5-b shows that the number of keygraphs grows
sub-linearly with the number of triangulations.

Figure 5-c shows the average number of keygraph matches
between a query image and all the model images versus the
threshold of the filtering stage in Equation 1. We changed
the interval of accepted ratios, which is [0.5, 2] in Equation
1. When a large interval of [1/60, 60] is used, all candidates
are accepted, thus filtering is performed only by the cyclic
ordering requirement and the orientation based filtering stage
(which uses a threshold of 60◦). Increasing the interval
from [0.5, 2] to [1/60, 60] caused the number of established
keygraph matches to increase by a factor of 100.

Figure 5-d is similar to Figure 5-c, but considers the
orientation based filtering stage. Increasing the threshold
from 60◦ (Equation 2) to 180◦ caused the number of
established keygraph matches to increase by a factor of 10.

Using both Equations 1 and 2 for filtering, the average
number of keygraph matches established per query image
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Figure 5. First row: evaluation of the effect of parameters in our method. (a) AP versus number T of Delaunay triangulations for the

CMU10 or CMU10+PASCAL training datasets. In the latter dataset, PASCAL images were added to the training set to assess scalability

and the effect of added negative samples, which is expected to reduce the AP as more mismatches may occur. (b) Average number of

keygraphs sampled in a query image versus T . (c) and (d) Average number of keygraph matches between a query image and the training

images versus the threshold used by the filtering stage based on (c) scale/length or (d) orientation. Second row: comparisons against other

methods. (e) AP versus the maximum allowed number of pose evaluations of all training images for each query. (f) AP of SCRAMSAC

versus the maximum allowed number N of training images matched by a query keypoint. (g) and (h) AP versus the number L of keypoint

comparisons between query and indexed training keypoints, for (g) CMU10 or (h) CMU10+PASCAL.

Initially, a hierarchical k-means tree is used to establish
keypoint matches. For Lowe’s test, each query keypoint

p can only match its single nearest neighbor in the whole
training set. For SCRAMSAC, each query keypoint p, af-
ter running through the tree, can match keypoints in differ-

ent training images, up to one match per image. Then, for

each query keypoint p, only the topN keypoint matches are

retained (based on descriptor distance). Finally, keypoint

matches without sufficient local support are removed [13].

In the final stage, RANSAC is used for object pose esti-

mation. For Lowe’s test and SCRAMSAC, each putative

affine transformation is generated by randomly selecting

three keypoint matches that occur with the same training

image. For our method, each putative affine transformation

is generated by randomly selecting one keygraph match.

4.2. Results

Figure 6 shows two sample object detection results of

our method.

Figure 5-a shows the AP achieved by our method ver-

sus the number T of Delaunay triangulations used to sam-
ple keypoint triples. Each curve corresponds to a training

dataset, CMU10 or CMU10+PASCAL; in both cases, in the

initial keypoint matching stage, L = 1000 training key-
points were compared to each query keypoint.

As shown in Figure 5-a, employing a large number of

Delaunay triangulations provided a significant gain in per-

formance: the AP increased in almost 0.50 in comparison
to using T = 1. For the CMU10 dataset, the AP plateaued
at T = 50. Interestingly, when employing the more com-
plex CMU10+PASCAL training dataset, the AP continued

to increase for T > 50, going from 0.49 to 0.58 when using
T = 200. This suggests that our sampling strategy was able
to generate a diverse set of query keygraphs, as employing

more triangulations partially compensated the decrease in

accuracy due to the use of a larger number of training im-

ages.

Figure 5-b shows that the number of keygraphs grows

sub-linearly with the number of triangulations.

Figure 5-c shows the average number of keygraph

matches between a query image and all the training images

versus the threshold of the filtering stage in Equation 1. We

changed the interval of accepted ratios, which is [0.5, 2] in
Equation 1. When a large interval of [1/60, 60] is used, all
candidates are accepted, thus filtering is performed only by

the cyclic ordering requirement and the orientation based

filtering stage (which uses a threshold of 60◦). Increasing
the interval from [0.5, 2] to [1/60, 60] caused the number of
established keygraph matches to increase by a factor of 100.

Figure 5-d is similar to Figure 5-c, but considers the ori-

entation based filtering stage. Increasing the threshold from

60◦ (Equation 2) to 180◦ caused the number of established
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Figure 5. First row: evaluation of the effect of parameters in our method. (a) AP versus number T of Delaunay triangulations for the CMU10 or
CMU10+PASCAL model datasets. In the latter dataset, PASCAL images were added to the model set to assess scalability and the effect of added negative
samples, which is expected to reduce the AP as more mismatches may occur. (b) Average number of keygraphs sampled in a query image versus T . (c)
and (d) Average number of keygraph matches between a query image and the model images versus the threshold used by the filtering stage based on (c)
scale/length or (d) orientation. Second row: comparisons against other methods. (e) AP versus the maximum allowed number of pose evaluations of all
model images for each query. (f) AP of SCRAMSAC versus the maximum allowed number N of model images matched by a query keypoint. (g) and (h)
AP versus the number L of keypoint comparisons between query and indexed model keypoints, for (g) CMU10 or (h) CMU10+PASCAL.

was 600, for the CMU10 model images (T = 50), and 400,
for the CMU10+PASCAL model images (T = 200).

Figure 5-e shows the AP versus the maximum allowed
number of pose evaluations (affine transformations), em-
ploying the CMU10+PASCAL model dataset. Our method
achieved a better performance than SCRAMSAC and Lowe’s
test, even for very few pose evaluations.

Figure 5-f shows the AP achived by SCRAMSAC versus
the maximum allowed number of matches N between a
query keypoint and the model images. We evaluated two
cases: using a maximum of 1000 or 10000 pose evaluations.
Using the CMU10 model dataset, the best results were
achieved around N = 10, while for the more complex
CMU10+PASCAL model dataset, the best results were
achieved around N = 50; in both cases, using additional
pose evaluations improved the performance. An advantage
of the proposed keygraphs method is not having a parameter
such as N , as our method does not limit the number of model
images initially matched by a query keypoint.

Figure 5-g shows the AP versus the number L of indexed
model keypoints which are compared to a query keypoint,
for the CMU10 model dataset. Good results were achieved
by employing L = 1000 (0.4% of the number of stored
keypoints), for both SCRAMSAC and our method. For
Lowe’s test, setting L above 400 did not provide significant
improvement.

Figure 5-h is similar to Figure 5-g, but considers the

CMU10+PASCAL dataset. For our method and SCRAM-
SAC, employing L = 30000 allows achieving the same AP
as when using L = 1000 with the CMU10 dataset. This
is interesting, as the number of model descriptors, from
CMU10 to CMU10+PASCAL, also increased by a factor of
30. On the other hand, Lowe’s test was not able to similarly
compensate the performance loss caused by the use of a
larger number of model images.

In summary, for the CMU10 model dataset, the AP of
our method, SCRAMSAC and Lowe’s test was, respectively,
0.82, 0.70 and 0.61. For the CMU10+PASCAL model
dataset the AP was: for L = 1000: 0.58, 0.51 and 0.44;
for L = 2000: 0.65, 0.58 and 0.46; and for L = 30000:
0.84, 0.70 and 0.51.

The AP achieved by our method using the CMU10 model
dataset, 0.82, was superior to the AP reported by Hsiao et
al. [4], 0.78, even though Hsiao et al. employed 3D object
models which allows to use matches to different model
images and to use 3D-2D pose instantiation.

We evaluated the computation time demanded by our
method (using a C implementation). For both the CMU10
and CMU10+PASCAL model dataset, when using L =
1000, T = 50, the time per query image was 1.4± 0.3 sec.,
with 55% of the time being spent on keypoint matching,
3% on keygraph sampling and 39% on keygraph matching.
Using the CMU10+PASCAL model images and T = 200,
the time per query image was, for L = 1000, 2.5±0.7 sec.,
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350Figure 6. Keygraph and keypoint matches. The region overlaps achieved by the affine transformations were 0.61 and 0.73, respectively.

and for L = 2000, 6.8 ± 1.7 sec.; for L = 1000, 33% of
the time was spent on keypoint matching, 9% on keygraph
sampling and 57% on keygraph matching; for L = 2000
those values were 26%, 3% and 70%, respectively.

V. CONCLUSION

Keygraphs constitute an intermediate level feature, above
the keypoints. Initially, keypoint matches are established
by using an indexing tree. Then, keypoint matches are
transformed into keygraph matches, which correctly removes
the large majority of the incorrect initial keypoint matches.

This paper introduced structural properties used to filter
out candidate keygraph matches. We considered an hetero-
geneous information set, concerning keypoints scale, orien-
tation, image position and cyclic ordering, which allows to
correctly filter out 99% of the candidate keygraph matches.

We also introduced an efficient algorithm to sample query
keypoint triples, based on using complementary Delaunay
triangulations. Each triangulation is done in a way that
vertices are not too close to each other so the triangles
generate more robust pose hypotheses.

At application, the processing time of our method depends
almost exclusively on parameters that are pre-set by the user
(triangulations T and keypoint comparisons L). We showed
that a 30-fold increase in the number of model keypoints
does not significantly deteriorate the performance of our
method.
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