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Abstract—In this article we present a hierarchical stochastic
image segmentation approach. This approach is based on a
framework of edge-weighted graph for minimum spanning forest
hierarchy. Image regions, that are represented by trees in a
forest, can be merged according to a certain rule in order to
create a single tree that represents segments hierarchically. In
this article, we propose to add a uniform random noise into
the edge-weighted graph and then we build the hierarchy with
several realizations of independent segmentations. At the end,
we combine all the hierarchical segmentations into a single one.
As we show in this article, adding noise into the edge weights
improves the segmentation precision of larger image regions and
for F-Measure of objects and parts.
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I. INTRODUCTION

Image segmentation aims to obtain boundaries or frontiers
of regions of interest from a given image. Thus, image
segmentation plays a key role on image analysis as a fun-
damental step for several applications like image retrieval,
classification [1], automatic annotation, and others. Although
image segmentation has been researched for more than 40
years, it is still a challenging problem due to its complexity
and the semantic nature inherent to this problem. Among
several approaches that can be used for image segmentation,
watershed transformation is one of the most powerful tools.

Considering a grayscale image as a topographic surface:
the gray level of a pixel becomes the elevation of a point, the
basins and valleys of the topographic surface correspond to
dark areas, whereas the mountains and crest lines correspond
to the light areas. Intuitively, the watershed divide is a set of
points which satisfy the “drop of water principle”: a separating
set of points from which a drop of water can flow down
towards at least two regional minima.

Aiming to compute the watershed of a digital image, sev-
eral approaches have been proposed [2]-[7]. Many of them

consider a grayscale digital image as a vertex-weighted graph.
One of the most popular consists of simulating a flooding of
the topographic surface from its regional minima [3], [8]. The
divide is made of “dams” built at those points where water
coming from different minima would meet. Another approach,
called topological watershed [6], [9], [10], allows the authors
to rigorously define the notion of a watershed in a discrete
space and to prove important properties not guaranteed by
most watershed algorithms [11]. It consists of lowering the
values of a map (e.g., the grayscale image) while preserving
some topological properties, namely, the number of connected
components of each lower cross-section. In this case, the
watershed divide is the set of points which are not in any
regional minimum of the transformed map.

Because of inherent noise and other minor structures typi-
cally present on images, a great number of catchment basins
embedded on the topography is created. Thereby, when the
topographical surface has a large number of catchment basins,
watershed transformation produces a large number of regions
of interest. In order to reduce the large number of segments,
markers can be used on regions of interest, a process known
as seeded watershed.

Automatically setting the markers for seeded image seg-
mentation is not a trivial task, specially for complex im-
ages. Another successful technique which makes use of the
waterfall algorithms [12] is hierarchical image segmentation
[13]. Rather than preventing oversegmentation, hierarchical
segmentation computes the importance of segments given
some criteria like catchment basin area, volume, depth or
other. Roughly, this technique merges catchment basins that
belong to almost homogeneous image regions. Hierarchical
image segmentation provides a way for analyzing images from
a rough representation of the segments to a detailed description
of their smaller parts.

This article is focused on hierarchical stochastic image seg-



mentation of watershed cuts in an approach where the image
topography receives a uniform distributed random noise, pro-
ducing n realizations of slightly different topographic surfaces
for the watershed. Each noised topographical surface is then
processed by the hierarchical watershed algorithm proposed
by Cousty et al. [15], generating each one a hierarchical
segmentation. At the end of the process, the n hierarchical
segmentation versions are then combined into a single one
in order to generate the final hierarchical result. As far as
we know, this is the first hierarchical stochastic watershed
segmentation work. Concerning to stochastic watershed seg-
mentation, most references present a few quantitative results,
in this sense, another important contribution of this article is to
evaluate a stochastic watershed segmentation using a database
for segmentation evaluation (BSDS500 [16]).

The present work is structured as follows. Section II
presents a review on stochastic watershed image segmenta-
tion with some highlighted works. Section III describes our
proposal for hierarchical stochastic image segmentation based
on noised topographical surfaces that are modeled with edge-
weighted graphs. The section describes how noise is inserted
on the edge weights and some improvements taken to enhance
the results. Our experiments are presented in Section IV and
Section V concludes this article.

II. RELATED WORKS

Stochastic watershed is an unsupervised seeded watershed
segmentation approach introduced by Angulo et al. [17]. The
main idea of the approach is to apply several realizations of
random markers to build a Probability Density Function (PDF)
of the most significant regions which is then segmented by
volumetric watershed. Roughly, a series of n realizations with
r random markers are generated for a watershed segmentation
applied to color gradient. After obtaining several segmentation
versions of random seeds, the process estimates the probability
Density function pd f(x) that is obtained from all contours by
Parzen window method. Despite the use of random markers
is obviously not an appropriate choice of seeds, this arbitrary
choice will be balanced by the use of a given number of n
realizations, hence, filtering out non significant fluctuations.
To avoid oversegmentation of the large watershed areas caused
by uniform distribution of the markers, the authors proposed
to partition the pdf(x) of contours with the volume-based wa-
tershed in order to obtain the r most significant regions. Thus,
each catchment basin volume corresponds to its probability to
be a region of segmentation. According to Angulo et al. [17],
this approach overcomes the standard watershed algorithms
when the objective is to segment complex images into a
few number of regions or segments. The stochastic watershed
proposed in [17] works better for images with homogeneous
regions size, what implies on some limitations for the approach
because image regions may have a wide variety of sizes in real
images.

A similar work to [17], also based on estimation of Prob-
ability Density Function for stochastic watershed segmenta-
tion for hyperspectral images was proposed by Angulo et

al. [18]. Besides the application of hyperspectral images, this
work also presented an innovation according to the use of
multiscale approach for the computation of the pdf(x). In
fact, two multiscacles approaches were presented, one linear
scale-space using Gaussian filters and another, nonlinear, for
morphological scale-space pyramid using levelings.

Aiming to avoid the split of large regions caused by uni-
form distribution of markers using Poisson process, the work
presented by Noyel et al. [19] proposed to place markers with
help of spectral classification of multispectral images. The
approach also computes the PDF by Parzen kernel method.
A highlighted advantage of the approach is that it requires
a single parameter, which is the number of classes within
the image instead of the number of segments. Thinking on
the number of classes instead of regions is a better strategy
because some kinds of image tend to have similar number of
classes to be segmented, but not the same number of regions.

Recently, Bernarder et al. [20] proposed two modifications
for stochastic watershed [17] aiming to improve the image
segmentation. The first improvement was the addition of
uniform distributed random noise on the input image at every
iteration of the seeded watershed. The second modification is
focused on the use of a random placed grid to distribute the
markers in order to obtain the PDF. According to authors, the
addition of uniform distributed random noise brought major
positive impact on the work, rather than the random placement
of grid. Further, the proposed algorithm does not break up
large regions and can better handle stochastic watershed on
images with different sizes of segments, which makes the
algorithm useful for a large set of segmentation problems.
Also, the output is less sensitive to the number of markers.

Finally, in [21], Malmberg et al. presented an efficient
method for computing the stochastic watershed PDF without
performing any actual seeded watershed computations. Fur-
ther, an alternative method to estimate contour strength without
need of several random markers simulation was presented by
Meyer et al. in [22].

Aiming to improve the watershed cut algorithm using area
criteria for extinction values, and to evaluate the segmentation
quality on a wide variety of real images by quantitative
measurements, we propose here an algorithm for stochastic
hierarchical watershed which is presented in next section.

III. STOCHASTIC HIERARCHICAL WATERSHED

Due to noise on acquisition, digitalization, compression,
transmission and/or other origin, natural image present a large
number of local minima on their gradient topography. Several
methods have been proposed to solve this problem, such as:
(i) the removal of local minima on a preprocessing step;
(ii) region merging on a postprocessing step; (iii) or the use
markers for each region to be delineated. Thereby, on this
last idea, each marked region subistitute all the minima of the
region by the marker [20].

Seeded watershed segmentation presents one problem at
uniform areas of the image. If two markers are inserted on the
same uniform region, the segmentation algorithm will produce



two segments. Aiming to avoid this pattern, the work presented
in [20] adds a uniform distributed random noise of small
energy on the image pixel values. This noise must be strong
enough to be mixed to the natural noise of the image, however
not too strong to destroy image objects structure.

In this work, we add noise in a edge-weighted graph rep-
resenting the topographical surface of the image in a method
that we call Stochastic Hierarchical Watershed (SHW). The
idea behind this approach is to modify the noise inherent
to images in different versions of the topographic surface.
This modification changes minima position and borders of
catchment basins with small dynamics [23] magnitude. In
order to achieve this desired characteristic, noise energy must
be as strong as the inherent image noise but week enough
to not destroy or corrupt important ridges on the topographic
surface, once they represent relevant borders of segments.

From the topographical surface of the image, a set of n
hierarchical segmentations are built from disturbed weights
of the graph edges. Each hierarchical segmentation is them
regularized by a Gaussian convolution and finally combined
at the end in a single saliency map as illustrated in Fig. 1.
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Stochastic hierarchical watershed cut segmentation diagram.

Fig. 1.

A. Random perturbation of edge weights

The topographical surface of an image can be represented
by a undirected edge-weighted graph where vertex represent
pixels and edge weights represent the absolute difference
between the values of two neighbor pixels. Adding noise
to the graph edge weights, that in this work represents the
topographical surface of an image, changes the configuration
of the catchment basins with small ridges, nonetheless we
still have an oversegmented image obtained by this process.
To overcome this problem, it is necessary to obtain a set of
segmentations provided by several versions of perturbed edge
weights, each one obtained by the original image gradient
modulus (topographical surface) softly modified by uniform
random noise. In our proposal, the perturbation on the edge
weights followed by the hierarchical image segmentation by
watershed cuts is repeated n times, creating n independent
saliency maps. At the end, the final result is obtained by
an arithmetic average combination of those segmentations.
In this work, instead of computing the PDF from seeded
watershed, we use the approach of Cousty et al. [15] based
on the hierarchical minimum spanning forests and saliency of
watershed cuts to obtain hierarchical image segmentation, but
in a stochastic method.

B. Hierarchy of watershed cuts and saliency maps

A hierarchical segmentation is a hierarchy of connected
regions. Rather than preventing oversegmentation, it computes
the importance of contours respecting some criteria. Let &7,
be a set of partitions of a plane. The family (&7, ); is a
hierarchy if h; > h; implies &), O f@hj, i.e., any region of
partition &7, is a disjoint union of regions of partition &,
[13].

A useful representation of hierarchy, named saliency map,
was first introduced by Najman et al. [13]. Every hierarchy
can assigned to a saliency map, by evaluating each point on
the plane by the highest value A such that it appears in the
boundaries of partition &7;,. Considering a partition equivalent
to a segment, we can assign its importance to a contour.

According to [15], [24], [25], forests of minimum weight
of the edge-weighted graph characterize watersheds associated
with the set of minima, where each minima is rooted in a tree
of the forest. The hierarchy of watershed cuts, produced by
e.g. the algorithm [15], [26] are deeply linked to minumum
spanning tree which preserves all the necessary information
aiming to rank the minima according to the catchment basin
mesurement criteria, either dynamics [23], either area, either
volume or other one [15], [27], [28]. Those values to rank
the catchment basins hierarchically are called extinction values
[29]. For example, regarding to ranking criteria by area, the
bigger is the basin area, the higher it must be placed in the
hierarchy, while for dynamics, the deeper is the catchment
basin, the higher this related segment is placed in the hierarchy.

C. Edge-weighted graph convolution

One observed characteristic on the SHW approach is that
noise changes the configuration of catchment basins with small
ridges, while do not affect big ridges or presents only a small
disturbance but not destroying their structure. Those small
ridges, usually present on small and uniform regions, appear in
a lower position on the hierarchical segmentation, i.e., near to
the leaves of the tree. By consequence, small ridges generate
lower contrast boundary on the saliency map. In such way,
each different version of saliency map provided by SHW dras-
tically change contours position on lower hierarchical levels,
while on higher hierarchical one, do not change or change
just a little as observed in Fig. 2 (b), (c), (d) and in Fig. 4. In
order to preserve contours at similar position and specially
to weaken contours in disagreement position compared to
different saliency maps of the same image, we experimented
the use of a Gaussian convolution method directly applied
to the edge-weighted graph representation of saliency map.
We consider that relevant contours are repeated in the same
or similar position, while contours in different positions are
not that relevant. The convolution with a Gaussian kernel that
we used can better preserve contours in the neighborhood,
i.e., inside the kernel coverage, while it makes weaker the
contours without repetition on its around. For that, we used
the smallest possible kernel because we did not wanted to
reinforce distant contours which may remain to different
objects or segments. Three Gaussian kernel graphs for graph



(b)

Fig. 2.
of saliency map obtained from (a); and (d) arithmetic average of saliency maps (b) and (c). Details on Fig. (d) show that while the strongest contours of
(b) and (c) are preserved due to big ridges on the topographical surface, contours remaining to small catchment basins are slightly different due to the noise

disturbance on the topographic surface of the image gradient obtained from (a).

convolution are presented in Fig. 3. In this figure, the three
kernels (K1, K2 and K3) present small variation on their
coverage and weights.
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Fig. 3. Gaussian Kernel graphs used on the edge-weighted graph convolution.
Edge weights are presented beside their edges.

(K2)

Consider the segment of Fig. 2 (d) presented in detail in
Fig. 4. This segment composed by two averaged saliency maps
presents two examples detached respectively in the blue and
the green dashed rectangles. On the blue one, the segment
of the airplane object was slightly moved on each version of
saliency map origin by the uniform noise. In this case, the
position difference is very small and we want to keep this
contour. The proposed kernels shown in Fig. 3 still cover the
adjacent segment. Now consider the segment inside the green
dashed rectangle. This segment, present only in one version
of the original saliency map of Fig. 2 (b), is not important
because appeared only once, thus it has no other border on its
neighborhood and the Gaussian kernel will weaken it.

The graph convolution works in a similar way of image
convolution, where graph edge weights substitute the pixel
values.

The kernels presented on Fig. 3 are used for “horizontal”
edges. The kernels used for “vertical” edges are isomorphic
to kernels presented on Fig. 3, but they are rotated 90°.

D. Stochastic hierarchy of watershed cuts

The process of disturbing the edge-weighted graph is re-
peated n times creating n slightly modified topographic sur-
faces representations. Finally contours are combined at the
end with arithmetic average. Let G = (V,E) be an undirected
weighted graph, where V and E are finite sets that repre-
sent respectively vertices and edges; V € {vi,va,...,v} and
E € {ey,ea,....em}, k is the number of vertices and m the

(© (d)

(a): Original color image; (b): saliency map obtained from (a) with uniform random noise added on the topographic surface; (c): another example

Fig. 4. Segment of Fig. 2 (d) detaching two cases of averaged contours of
saliency maps of Fig. 2 (b) and (c). In the first case (blue dashed rectangle),
two segments are softly misplaced by noise addition. In the second case (green
dashed rectangle), one segment obtained only from saliency map of Fig. 2 (b).

number of edges. The arithmetic average of the edge-weights
associated to a saliency map is obtained by Eq. 1:

1 n
d(w}):;ZwﬂejeEi (1)

i=1

where n represents the number of graphs in the set
{G1,G2,...,G,} and w; the weight associated to edge e;.

At the end of this process, we obtain a hierarchical stochas-
tic watershed segmentation using hierarchical minimum span-
ning forest and saliency watershed cuts as described in [15].

Fig. 2 illustrates some segmentation results of noise addition
on the topographic surface of image in Fig. 2 (a). Figs 2 (b) and
(c) represent two examples of saliency maps obtained by SHW
of Fig 2 (a). Details on Figs 2 (b) and (c) reveal that slight
differences on contours of both saliency maps are produced by
the impact of noise on the topographic surface of the image.
Figs 2 (d) presents an averaged saliency map obtained by the
arithmetic average of two saliency maps (b) and (c).

E. Stochastic topographical watershed algorithm

The algorithm for the SHW approach is presented in Algo-
rithm 1.



Algorithm 1: Stochastic hierarchical watershed

Data: e: noise energy;
n: number of disturbed graphs;
eV extinction values;
G: edge-weighted graph;
k: kernel used in the convolution k € {1,2,3};
H: set of saliency maps;
Result: .#: Saliency map
1 for i< 1 to n do
2 N« disturbEdgeWeights(G,e);
3 [61,eV] « extinctionValues(.N;, ared');
4 S < hierarchicalWatershed(&;,eV);
5 if k€ {1,2,3} then
6 | A+ graphConvolution(H,k);

7 X + averageSaliencyMap(H ,n);
8 [2,eV] < extinctionValues(Z", dynamics');
9 % < hierarchicalConstruction(2,eV);

In this algorithm, given a undirected edge-weighted graph
G; disturbEdgeWeights(G,e) adds noise of intensity e on
the edge-weights of G as described in Section III-A;
extinctionValues(N;, criteria’) determines the segment hi-
erarchical order according to some criteria (area or dyn-
imics); hierarchicalWatershed(&;,eV) performs the hierar-
chical construction of segments of watershed cuts algo-
rithm; graphConvolution(%, k) performs a graph convolu-
tion using one of the kernels presented in Fig. 3; and
averageSaliencyMap(H,n) computes the average weight for
the edges of the set of graphs H as presented in Eq. 1.

IV. EXPERIMENTS AND RESULTS

In this section, we present a set of experimental results
for Stochastic Hierarchical Watershed (SHW) image segmenta-
tion. The experiments use the evaluation method ground-truth
for covering described by Arbelaez et al. [14] and F-Measure
for object and parts Fpp described by Tuset ez al. [30]. Details
about the experiments are described on the following.

A. Experimental setup

In this work, we used RGB color images where each color
channel is represented in discrete mode in the range [0, ...,255].
We added random uniform noise in a 4-connected undirected
edge-weighted graph representing the topographic surface of
RGB gradient modulus [15]. Each edge weight represents the
absolute difference between two neighbor pixels values sum
of the three RGB chanels. This noise is random and uniformly
distributed varying on the range [—e,...,0,...,e], where e
represents the noise energy defined on each experiment. After
adding noise on the edge weights of the graph, negative values
are truncated to O and values higher than 255 are truncated
to 255. In order to assess our approach and evaluate its
effectiveness, we used the image database of Martin et al. [16]
(BSDS500) that consists in a set of 500 images and a ground-
truth of human segmentations in a wide variety of natural
scenes provided by Arbelaez [14]. We used 200 images with

ground-truth from this database on each experimental method
described on following.

The evaluation of image segments is performed using the
approach comparison of covering. Roughly, according to Arbe-
laez [14], the segmentation of ground-truth covering is defined
using as basis the overlap between two regions, R and R’'.
We say roughly because although the overlapping of regions
is the basis of the covering measure, other minor elements
are taken into consideration. For a detailed description of the
ground-truth covering measure we recommend the reference
[14]. Aiming to compare two different experiments, we used
the paired t-test analysis considering the results of 200 images
of each experiment.

B. Stochastic hierarchical watershed (SHW) evaluation of
parameters

In this section, we present the results evaluating the pa-
rameters for stochastic hierarchical watershed (SHW) using
covering comparison. We experimented noise energy (Sec-
tion IV-B1); the number of topographical noised surfaces
(Section IV-B2), and convolution kernels (Section IV-B3).
Finally, we compare the best result of our experiments with the
non stochastic hierarchical watershed based on area (WArea)
(Section IV-C).

1) Noise energy evaluation: The signal-to-noise ratio must
be well established in such way that the noise inserted can be
mixed to the inherent noise without destroying important im-
age structures, i.e., without corrupting important basin ridges.
This experiment evaluates this relation inserting a very low
noise energy growing to higher magnitude. In Fig. 5 the bars
respectively represents the experimental results of increasing
noise energy e = 1,2,3,4. We used three stochastic watershed
saliency maps that are joined with arithmetic average (<) and
convolution was not used in the experiments of Fig. 5.

It is important to note that the data presented in Figs. 5,
6 and 7 correspond to the normal distribution of individual
results on each image of the BSDS500 database. On the
experiments, each image is evaluated 29 times, one for each
ground-truth covering measurement considering from 2 until
30 segments. The best ground-truth covering of the interval
[2-30] is taken to represent each image segmentation fitness
on each experiment. Further, for Figs. 5, 6 and 7, we have:
i) the median covering (central bar); i) the first and third
quartile (extremities of the box); iii) the lowest datum still
within 1.5 inter quartile range (difference between the third
and first quartile) of the lower quartile, and the highest datum
still within 1.5 inter quartile range of the upper quartile range
(left and right extremities); and iv) the outliers (individual
points).

The lowest noise energy (Fig. 5 SHWel) presented the
higher median value for covering. This result is also statisti-
cally better than higher energy (SHWe2, SHWe3 and SHWe4)
as shown by the paired t-test analysis of Table L.

2) Number of saliency maps evaluation: An other impor-
tant question raised for the hierarchical stochastic watershed
was the best number of saliency maps that should be produced
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Fig. 5. Comparison for covering of stochastic hierarchical watershed with

different levels of noise. From the first bar to the last one, we have increasing
noise energy level. For the first bar; noise level e = 1; for the second bar,
e = 2; for third bar e = 3; and for the fourth bar ¢ = 4. On each experiment
we used three stochastic watershed samples joined with arithmetic average.
Convolution was not used in these experiments.

TABLE I
BEST METHOD CHOICE WITH CONFIDENCE INTERVAL FOR EACH PAIRWISE
COMPARISON OF NOISE LEVEL.

Methods The best Confidence interval (95%)
SHWel X SHWe2 SHWel [0.000864, 0.018]
SHWel X SHWe3 SHWel [0.00486, 0.0225]
SHWel X SHWe4 SHWel [0.00199, 0.0195]
SHWe2 X SHWe3  equivalent [-0.00232, 0.0108]
SHWe2 X SHWe4 equivalent [-0.00693, 0.00946]
SHWe3 X SHWe4  equivalent [-0.00977, 0.00382]

to improve the segmentation accuracy. A small number of
segmentations may not be enough while a large number
may not be necessary. Aiming to evaluate this question we
compared the use of several stochastic saliency maps in the
set n = {3,6,9,25}, i.e., the average combination of three
segmentations, six, nine and 25. Results are presented in Fig. 6,
where the first bar represents the result of the experiment
combining 3 saliency maps, the second bar 6 saliency maps,
the third bar 9 saliency maps and the last bar 25 saliency maps.

In the experiment presented in Fig. 6, we used noise
energy e = 1 and arithmetic average (<) of n saliency maps.
Convolution was not used. Note that SHWn3 of Fig. 6 is equal
to SHWel presented in Fig. 5, once that those experiments
present the same parameter setup.
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Fig. 6. Comparison of stochastic hierarchical watershed (SHW) with different
number of saliency maps. From the first to the last bar, we have arithmetic
averages respectively with 3, 6, 9 and 25 different stochastic saliency maps.

Table II presents a paired t-test analysis of the experiments
presented in Fig. 6. Although the results are all equivalent to
one each other on the paired t-test, we chose SHWn6 as the
best because it presents a higher median value in Fig. 6.

3) Convolution kernels evaluation: The basic idea of
adding noise to the image gradient, and at the end averaging
the saliency maps, is that strong contours tend to be repeated

TABLE II
BEST METHOD CHOICE WITH CONFIDENCE INTERVAL FOR EACH PAIRWISE
COMPARISON IN NUMBER OF SALIENCY MAPS.

Methods The best Confidence interval (95%)
SHWn3 X SHWn6 equivalent [-0.0134, 0.00219]
SHWn3 X SHWn9 equivalent [-0.0105, 0.00634]
SHWn3 X SHWn25 equivalent [-0.0116, 0.00398]
SHWn6 X SHWn9 equivalent [-0.00244, 0.00941]
SHWn6 X SHWn25  equivalent [-0.004, 0.0076]
SHWn9 X SHWn25  equivalent [-0.00649, 0.00313]

TABLE III

BEST METHOD CHOICE WITH CONFIDENCE INTERVAL FOR EACH PAIRWISE
COMPARISON OF CONVOLUTION KERNELS.

Methods The best Confidence interval (95%)
SHWn6 X SHWK1 SHWK1 [-0.0142, -0.000415]
SHWn6 X SHWK2 SHWn6 [0.0109, 0.0266]
SHWn6 X SHWK3 SHWn6 [0.00586, 0.0209]
SHWK1 X SHWK2 SHWK1 [0.0181, 0.0339]
SHWKI1 X SHWK3 SHWK1 [0.0138, 0.0275]
SHWK2 X SHWK3 equivalent [-0.0118, 0.00109]

in the same position while noise disturbs weak contours that
are not repeated in each version of saliency map. Further,
weak noise can disturb the border position of strong contour,
but not drastically. Aiming to weaken even more contours
that appear in a completely different position, and to keep
strong contours at near position, we apply a convolution with a
Gaussian kernel. We experimented three different kernels with
different coverage size and weights. The kernels are presented
in Fig. 3. In Fig. 7, the first bar represents the experimental
results of the SHW without convolution while the following
bars are experiments respectively with convolution Gaussian
kernels K1, K2 and K3. In the experiments shown in Fig. 7
we used six stochastic saliency maps and noise energy e = 1.

I I T T I I I
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Fig. 7. Comparison for covering of stochastic hierarchical watershed without
convolution and with convolution using three different kernels. First bar
presents the experimental result of SHW without convolution, the second bar
presents the SHW with convolution kernel K1, the third bar convolution with
kernel K2 and the fourth bar convolution with kernel K3. In this figure, all
experiments used six stochastic saliency maps and noise energy e = 1.

Table III presents a paired t-test analysis of one experiment
without convolution and experiments using convolution with
kernels K1, K2 and K3. Following this analysis we conclude
that the kernel K1 presented the best result over the other
kernels and the experiment without convolution.



TABLE IV
BEST METHOD CHOICE WITH CONFIDENCE INTERVAL FOR PAIRWISE
COMPARISON BETWEEN NON STOCHASTIC HIERARCHICAL WATERSHED
BY AREA AND STOCHASTIC HIERARCHICAL WATERSHED BY AREA.

Methods The best

SHWK1

Confidence interval (95%)
[-0.0268, -0.0102]

WArea X SHWK1

C. Comparing the stochastic and non stochastic approach
based on area

In this section we compare the standard hierarchical wa-
tershed by area (WArea) with the best result of stochastic
hierarchical watershed (SHWKI). The stochastic method is
the one combining the best parameters of each experiment
presented, i.e., noise energy e = 1, six stochastic saliency maps
and convolution kernel K1. Fig. 8 presents this comparison.
First bar represents the standard hierarchical watershed area
while the second presents the best result obtained in this work.

As shown in Fig. 8, the addition of uniform random noise
on the image gradient outperforms the watershed cut algorithm
using area criteria (WArea). Further paired t-test analysis pre-
sented in Table IV shows that method SHWKI is statistically
better than WArea.

WArea - —{5u]  }— — ]
SHWKI1 |- ‘ ‘ [.573]  F— 4 0]
2200 .300 .400 .500 .600 .700 .800 .900 1.000

Fig. 8. Comparison of covering between hierarchical watershed area (WArea)
and stochastic hierarchical watershed with six stochastic saliency maps, energy
noise e =1 and convolution using kernel K/ (SHWKI).

1) Scale comparison with covering: In this section we
present the results using the BSDS500 database with cover-
ing evaluation. However, instead of analyzing the results of
individual images as presented in Section IV-B, the results
presented here correspond to the whole database regarding to
scale parameters. The scale parameter is related to the desired
number of segments for each image of the database.

The scale parameter do not corresponds to the provided
hierarchy, but it is somehow “normalized” to take into account
only the 30 highest distinct provided segments. Thus, this
experiment presents the average covering of segments from
200 images of each average between 2 and 30 segments.

Fig. 9 presents the results of covering comparison regarding
to the number of segments. Area line (WArea) represents
hierarchical watershed area. The other lines represent best
results of each SHW experiment: SHWe3 from Fig. 5; SHWn6
from Fig. 6; and SHWK] from Fig. 7. Ordinate represents the
covering measure while abscissa the number of segments from
2 to 30.

Enforcing the covering results for single images presented
in Section IV-B2, the covering results considering scale shows
that stochastic hierarchical watershed overcomes the hierarchi-
cal watershed area. Although results of SHW are considerable
higher, especially for few number of segments, on the opposite

0,4400

0.4200

0,4000

0,3800

0.3600
0,3400
0.3200
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Fig. 9. Covering comparison between watershed area and stochastic water-

shed, from segment parameter 2 to 30. Each line represents one experiment.
The line WArea represents the baseline using watershed area cuts while the
other lines represent the best results of SHW on each experimental setup.

side of the scale parameter where we have 23 segments or
more, non stochastic watershed area presents better results.

2) F-Measure for object and parts (Fop) comparison: In
this section we present the experimental results using Fop (F-
Measure for object and parts) [30]. Like on the experiments
presented on Sections IV-C1, the experiments using Fpp are
evaluated for the desired number of parts.

F-measure for object and parts
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SHWK1
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Fig. 10. Comparison using Fp.

Enforcing the results of covering, the comparison of object
and parts for stochastic hierarchical watershed overcames
watershed area in precision, as shown in Fig. 10. In this figure,
we compare the hierarchical watershed area (WArea) to the
best fitness experiment of this article (SHWK]I).

V. CONCLUSION

This article presented a hierarchical stochastic image seg-
mentation approach which adds uniform random noise to the
topographic surface for watershed cuts segmentation. Several
segmentations are taken from different noised topographic
surfaces of the same image to generate at the end, the final
segmentation. The proposed approach is then compared to
watershed cuts based on area operator. This one is used as



baseline because according to literature this measure of image
segments presents the best results for hierarchical watershed
cuts. Although other measures like volume are also good, area
is a very simple one.

In terms of ground-truth covering and F-Measure for object
and parts for few number of segments, the noise addition
outperfoms the watershed area. Further, the use of a Gaussian
convolution using kernel K1 on the averaged saliency map
improves the results for the SHW.

About noise, just a very small noise energy is enough.
Experiments show that increasing the noise energy degrades
the ground-truth covering measurement due to the corruption
caused on the topographical surface. Further, literature says
that noise must be no stronger than the inherent noise of
the input image. Because artificial noise should ideally not
be stronger than the noise in the input image, as a future
work, image noise estimations [31] could be used to set this
parameter.
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