
Improving the Selection of Bases of BRDFs for
Appearance Preservation

Fernando Melo Nascimento
Departamento de Computação

Universidade Federal de Sergipe
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Abstract—An important step in the appearance preservation
of real materials is the analysis of how they interact with light.
Since this phenomena happens at a microscopic level, heuristics
with different complexity have been developed to capture and
reproduce it. In order to minimize sampling efforts, one of these
approaches consists in representing the reflectance of a material
as a linear combination of a basis of known reflectance functions.
To accomplish realistic and efficient representations, this basis
must be expressive and contain a reduced number of elements.
This work presents three approaches to select such basis. The first
one performs an empirical leave-one-out optimization procedure.
The other two are based on classical and evolutionary clustering
algorithms. To improve clustering results, a new BRDF-oriented
fitness function is designed. These approaches are evaluated using
NNLS algorithm to estimate sampled materials and a comparison
based on numerical precision is performed.

Keywords-BRDF; clustering; appearance modeling; genetic
algorithms; linear combination of BRDFs.

I. INTRODUCTION

Appearance preservation is a relevant aspect to be consid-
ered when creating 3D models from real data, as it seeks to
estimate how materials reflect the incident light under different
illumination settings. The first step in the reproduction of what
is seen in the real world is the analysis of how different
materials interact with light. This interaction can be given in
different ways: the material can reflect light, absorb light, and
it can display more complex phenomena such as fluorescence
or inter-reflection. Thus, for different materials, different mod-
els can be used, whose dimensionality and complexity vary
depending on the properties of the material to be reproduced.

The interaction between light and a surface can be de-
scribed by the Bidirectional Reflectance Distribution Function
(BRDF) [1]. This function calculates the reflectance of a
point p on a surface through the quotient of the exitant
radiance emitted by p and the incoming irradiance at this point.

The irradiance incidence direction and the radiance emission
direction define the four basic parameters of a BRDF: the polar
coordinates of these directions, respectively ωin = (θin, φin)
and ωout = (θout, φout).

Many computer graphic applications use BRDFs to re-
produce materials from the real world. In film and game
industries, BRDFs are used to reproduce special effects and
realistic animations. These functions can also be used in the
digital preservation of scientific and cultural heritage [2] and
during quality inspection of products like metal car panels,
lacquers, coats and camouflaging materials1.

The BRDF of a single material can be measured using
a gonioreflectometer [1] or through cameras in an image-
based process [3]. These measurements are commonly very
accurate and generate realistic BRDFs however, as reflectance
values are measured from combinations of incident and exitant
directions, the number of samples can be very high. Another
recurrent problem during the acquisition of samples is the
need of environments with highly controlled illumination
settings. The acquisition of a BRDF can take days with a
gonioreflectometer, or hours using cameras [4].

In order to minimize sampling efforts, previous works have
shown that it is possible to represent a material as a linear
combination of a basis of BRDFs [5], [6], [7]. This basis
is composed of known BRDFs, and an optimization process
is performed to find the coefficients of this combination. As
this approach defines the BRDF as a linear combination of
existing BRDFs, the results tend to be more stable and present
consistent renderings.

An important consideration about a basis of BRDFs is its
size. On the one hand, more BRDFs means an increase in
representativeness for the basis. On the other hand, estimating
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a new BRDF from a large basis means more complex opti-
mization techniques and higher rendering costs. In this context,
this work explores new ways of finding bases of BRDFs from
a set of known BRDFs. These bases must be chosen aiming
at both reducing the number of terms required in the linear
combination and improving its overall representativeness.

We propose three new approaches to automatically perform
such task. The first one consists in an empirical procedure,
based on a systematic selection of BRDFs with highest rele-
vance during the approximation of other materials. The other
two adopt classical and evolutionary clustering algorithms and
are based on k-medoids and Genetic Clustering for Unknown
K (GCUK), respectively. To improve the clustering process, a
new BRDF-oriented similarity measure was designed.

Another contribution of this work is a set of experiments to
evaluate both the ideal size and the expressiveness of a basis
of BRDFs. The first is defined using a clustering validation
measure and analysing the empirical approach result. The
second is measured by approximating a series of reference ma-
terials using Non-Negative Least Squares (NNLS) algorithm.
The numerical precision and the rendering quality of these
approximations are presented and compared with previous
work.

This paper is organized as follows. Section II introduces
the technical background, followed by the related works in
Section III. Section IV details how to represent a new ma-
terial from a basis of BRDFs, and Section V presents our
approaches to generate a basis from a set of known BRDFs.
The experiments and the results are presented in Section VI,
and conclusions and suggestions for future work are made in
Section VII.

II. TECHNICAL BACKGROUND

A. Clustering

Clustering is an unsupervised data-mining task that aims
to divide an input data set into clusters with the following
property: members of the same cluster have high similarity,
whereas the clusters are very separated from each other.
Several algorithms have been developed to perform clustering,
some of which specific for particular sets of data. To determine
to which cluster an element belongs, similarity measures
(fitness functions) are adopted.

One problem with classical clustering algorithms is the
obligation of choosing into how many clusters the data set
must be divided. Genetic clustering algorithms are capable of
finding the optimal quantity of clusters, being an alternative
when the approximate number of clusters in a data set is
unknown.

1) Clustering validation – Davies-Bouldin index: The
Davies–Bouldin index (DBindex) is a metric for evaluating
clustering algorithms proposed by Davies and Bouldin [8].
This index is a function of the ratio of the sum of within-cluster
scatter to between-cluster separation [9]. In other words, it
is based on two principles of clustering: clusters should be
compact and very separated from each other.

III. RELATED WORK

A. Measured BRDFs

A straightforward way to measure reflectance properties of
a material is through a device called gonioreflectometer [10].
The gonioreflectometer is basically composed of a photo-
detector and a light source, where the photo-detector measures
the light reflected from the light source on a point. This
device reaches high-precision results, but it is highly time and
resource consuming [4], [11]. To overcome these restrictions,
several improvements and alternatives have been proposed
in the last decades. Image-based approaches became popular
in this context, presenting solutions to reduce acquisition
time [1], to improve accuracy [11] and to capture BRDFs of
surfaces with a regular shape [12].

Using an image-based method, Matusik et al. collected the
reflectance data of 100 isotropic materials using a camera
and small spheres of materials such as plastics, metals and
fabrics [3]. The collected data is known as MERL data set, as
this experiment took place in Mitsubishi Electronic Research
Laboratories (MERL).

B. Analytical BRDFs

Ward et al. [1] classified analytical BRDFs models into
two main categories: empirical and theoretical. The first group
refers to models with (commonly) few simple adjustable pa-
rameters designed to fit reflectance of materials. These models
normally are not physically plausible, since their derivations
are not concerned with physics laws. In some cases, the
parameters of these models only control the shape of specular
lobe(s). Some models classified in this category are the ones
proposed by Phong [13] and Ward [1].

Theoretical BRDF models are designed from a careful
derivation in order to produce physically plausible render-
ings [1]. Reflectance models in this category include Cook-
Torrance [14], He et al. [15] and Ashikhmin-Shirley [16].
The models in this category usually generate very realistic
representations at the cost of higher complexity.

Brady et al. [17] developed a framework called genBRDF
to automatically find new analytical reflectance models. In-
stead of trying to derive them manually, they used a genetic
algorithm to generate reflectance models based on a grammar.
According to the authors, the goal is not to replace the human
effort of deriving analytical models, but to provide a support
tool in the development or improvement of analytical models.

C. Using Analytical BRDFs to Reproduce Measured BRDFs

As noted by Ward [1], to use a analytical BRDF model
one must consider fitting its parameters to measurements of
actual reflectance data. Ngan et al. [18] used the MERL raw
data set to fit the parameters of seven analytical BRDF models
through a least squares optimization. They found that, using
a single specular lobe, the He et al. [15], Cook-Torrance [14]
and Ashikhmin-Shirley [16] models reached smaller errors for
most of the 100 isotropic BRDFs. A supplemental document
(Ngan et al. [19]) presents the formulations used and the



minimized parameters and errors for each one of the 100
rendered materials.

Bilgili et al. conducted a similar experiment using MERL
BRDFs with a few different models, including a new formu-
lation [20]. Their supplemental document (Bilgili et al. [21])
contains the parameters of the 100 rendered materials with 3
specular lobes and the PSNR for each rendered material.

Lensch [5] introduced the idea that the reflectance of a
material can be represented by a combination of a basis of
BRDFs. In his work, reflection properties were obtained by
fitting BRDF models to clustered samples from a 3D model.
A linear combination of the resulting set of BRDFs were then
used to represent the 3D model appearance.

Häußler [22] and Andrade [7] used clustering to group
BRDFs in order to find a basis. This approach assumes that
the basis is composed by the most representative elements at
each cluster. The basis depends basically on the original set of
BRDFs and its expressiveness is improved by the choice of an
element per cluster. Both works use on k-means, a technique
that requires the number of clusters as input. This way, the
decision about how many elements the basis of BRDFs must
have is not based on the original set of BRDFs, but on a search
for a number of clusters that reduces an error metric.

IV. REPRESENTING A NEW MATERIAL FROM A BASIS OF
BRDFS

Once the basis of BRDFs is obtained, it is possible to
reproduce the appearance of a new material as a linear
combination of this basis (Figure 1). To this end, the basis
of BRDFs and samples of this material are used to estimate
the coefficients of the linear equation.

An implementation of NNLS algorithm [23] was used to
find non-negative values for each coefficient in the linear
combination given by Equation 1. This combination represents
how material B is approximated by the basis of BRDFs.
The non-negative restriction is important when dealing with
BRDFs, once light is always additive.

a0 + a1M1 + a2M2 + ...+ akMk = B. (1)

In this combination, each BRDF Mi with i ∈ [1, k]
represents the reflectance of each material in the basis and a0 is
a diffuse Lambertian term coefficient. Each ai with i ∈ [1, k]
represents the contribution of material Mi to approximate the
desired material B. The number of terms k is the quantity of
BRDFs present in the basis.

The optimization process is performed one time for each
RGB channel, once they are independent. The final result is
described in Equation 2:

B =

 a0r + a1rM1r + a2rM2r + ...+ akrMkr.

a0g + a1gM1g + a2gM2g + ...+ akgMkg.

a0b + a1bM1b + a2bM2b + ...+ akbMkb.

 (2)

It is possible that one or more materials in the basis do not
contribute to approximate the appearance of the material B in

one or more RGB channels. In this case, the coefficients of
those materials are 0 in the respective channels.

V. HOW TO DEFINE A BASIS OF BRDFS?

This section explores this question in order to present new
techniques to define a basis of BDRFs from a set of known
BRDFs. As detailed in Section I, the goal is to obtain a
expressive and compact basis of BRDFs.

This paper develops two approaches to perform this task.
The first one is based on a systematic evaluation of the data set
and it is presented in Subsection V-A. The second approach is
based on clustering algorithms and assumes that the basis is
composed of the most representative elements of each cluster.
Subsection V-B compares two different clustering algorithms
and present a new fitness function, designed specially to
measure similarity between two BRDFs.

A. Empirical Selection of a Basis

An empirical approach was developed to select the materials
for a basis using a systematic criteria. Rather than choosing
the representative member of a cluster to be in the basis,
this approach computes the number of contributions that each
material in the data set presents during the approximation of
other materials. The procedure can be seen as a leave-one-out
method and is described in Algorithm 1.

Data: MERL BRDFs data set.
Result: Histogram of contributions of each material.
begin

Create a histogram contribution array;
Initialize all positions with value 0;
foreach element in the data set do

desired element := element;
basis := data set – desired element;
Estimate desired element using basis;
foreach element in the basis do

if element contributed to approximate
desired element then

histogram[element] += 1;
end

end
end

end
Algorithm 1: Empirical Selection

The resulting histogram can be sorted to easily identify the
materials most frequently used in combinations, which are the
best candidates to generate a basis of BRDFs. This approach is
simple to implement, but it looses performance as the number
of elements in the input data set increases.

B. Using clustering techniques

1) K-medoids: K-medoids is a classical hard partitional
clustering algorithm based on k-means. Its operation consists
of finding k clusters that minimize the distance between
members of the same cluster. In contrast with k-means, the



representative element of each cluster is the most centrally
located one, being called medoid [8]. A medoid is an actual
element of the data set while a k-means’ centroid often does
not exist, once it is the average of the elements in a cluster.

This algorithm operates on the relation between an overall
cost and the distances of elements inside a cluster. The cost
is defined as the distance between an element and its cluster’s
medoid. The overall cost is the sum of all distances calculated.

K-medoids repeatedly exchanges a non-medoid element
with its cluster’s medoid in order to verify if the overall cost
decreases. If so, this modification is saved, otherwise it is
reverted. The algorithm stops when the overall cost does not
decrease.

The main drawback of k-medoids is the obligation of giving
the value of k as input. In many data sets, like the one used in
this work, the number of clusters is not known a priori. One
strategy to use this algorithm is to variate the value of k and
to compare the results.

2) Genetic Clustering for Unknown K: GCUK is an evolu-
tionary clustering algorithm, proposed by Bandyopadhyay and
Maulik [9], capable of finding the optimum quantity of clusters
in a given data set. The implementation used in this work
receives as input the data set and five parameters: the mini-
mum and maximum number of clusters in one solution, the
population size, the number of generations and the crossover
probability. They are represented, respectively, by kmin, kmax,
P , Gmax and Probc.

Each individual in the population represents a possible solu-
tion with kmax chromosomes. Each chromosome represents a
cluster that can be valid if one or more elements are assigned to
it, or invalid otherwise. One individual must have at least kmin
valid chromosomes to be considered valid. If an individual do
not meet this restriction, it is discarded.

Crossover operation is performed in two individuals of the
population to generate two sons. This step increases the variety
of individuals by mixing two different cluster sets to cover a
higher space of solutions. Invalid individuals can be generated
in this step, as well as sub-optimum solutions.

In selection phase, solutions are sorted by DBindex and
selected by roulette to survive for the next generation. Good
solutions have higher chances to survive, while sub-optimum
individuals have lower chances. All invalid solutions (possibly)
generated by crossover are discarded by this operation.

Both genetic operations are applied in the population for
Gmax generations. In the end of the process, the best solu-
tion, i. e. with lower value of DBindex, is chosen as the
result of GCUK. The most centrally located element of each
valid chromosome is elected to be its representative.

One important modification from original algorithm is that
the mutation step is not performed. The new similarity mea-
sure described in Subsection V-B3 expects values referent to
real materials. Since mutation operation modifies the original
values of materials, it is not suited to the proposed metric.
For the same reason k-means algorithm is not indicated to be
used, once centroids are not real elements of the data set.

3) A BRDF-oriented Fitness Function – BRDFit: Cluster-
ing algorithms generally use Euclidean distance as similarity
measure. This metric is fast to compute and works well in
many general cases, but it tends to generate hyper spherical
clusters [8]. There are other fitness functions that can be used
in clustering, like Manhattan and Minkowski distance [8], each
one with its advantages and disadvantages. Nevertheless, for
some data sets the best approach is to develop a specific
problem-oriented metric to serve as fitness function.

To deal with BRDF clustering, this paper proposes a new
BRDF-oriented fitness function called BRDFit to overcome
this issue. The reflectance of a material can be defined using
Equation 3, where ρd[i] and ρs[i] are, respectively, the diffuse
and specular terms of a material i. The incoming and outgoing
light directions are represented by ωin and ωout in polar
coordinates, respectively.

M[i] = ρd[i](ωin, ωout) + ρs[i](ωin, ωout, p[i]). (3)

The last parameter p[i] in ρs[i] represents the list of pa-
rameters requested by the specular reflectance model of a
material i. If raw measured BRDF data is used, the actual
reflectance values are given only by ωin and ωout. In this case,
it is important to remember that some sampling ranges can be
invalid. These ranges represent effects that are not possible to
measure due to limitations of the acquisition setup, such as
retro-reflection [3].

In many practical applications the diffuse term is assumed
to be Lambertian (Equation 4). Once the most relevant
differences between BRDFs are generally in their specular
reflectances, BRDFit focus only in specular terms.

ρd(ωin, ωout) =
1

π
. (4)

The proposed BRDF-oriented fitness function is based on
the mean difference between specular reflectance terms of two
materials for each one of q samples of (ωin, ωout). Equation 5
defines this metric for two materials i and j. This metric was
designed to be independent from the analytical BRDF model
used and also to support measured BRDFs.

BRDF it[i][j] =
θin=

π
2∑

θin=0

φin=2π∑
φin=0

θout=
π
2∑

θout=0

φout=2π∑
φout=0

√
(ρs[i] − ρs[j])2

q
.

(5)

Equation 6 presents the formulation of the specular term of
isotropic Ashikhmin-Shirley model [16] adopted in this work.
In this equation, H is the halfway angle between L and V , N
is the normal vector, L = ωin, and V = ωout.

ρs(L, V, F0, n) =
(n+ 1)× (N ·H)n × f(F0, V,H)

8π × (V ·H)×max((N · L), (N · V ))
.

(6)



This formulation defines an isotropic exponent n and
Schlick’s approximation for the Fresnel term, presented in
Equation 7. Parameter F0 represents the reflectance of the
material at normal incidence. For this model, the list of
parameters p[i] of Equation 3 is composed of F0 and n.

f(F0, V,H) = F0 + (1− F0)× (1− (V ·H))5. (7)

VI. EXPERIMENTS AND RESULTS

A series of experiments were performed in both clustering
and optimization steps. The data set used in this work is
described in Subsection VI-A, followed by the empirical selec-
tion experiment in Subsection VI-B. The clustering algorithms
executions and their results are presented in Subsection VI-C
as well as the selected bases of BRDFs in Subsection VI-D.
Finally, Subsection VI-E contains the results of optimization
process and renderings.

A. Data set
The experiments performed in this paper use analytical

models generated by Ngan et al. [18], [19] for the 100
materials in the MERL data set. As the Ashikhmin-Shirley
model consistently outperformed most models regarding fitting
quality and representation of real data [18], [20], it is used in
the following experiments.

Ngan et al. [18] obtained eight parameters for the
Ashikhmin-Shirley model through a least squares optimiza-
tion. They are: the diffuse RGB values (dr, dg , db); the
specular RGB values (sr, sg , sb); the Fresnel factor (F0); and
an isotropic exponent (n). Only the last two parameters F0

and n were used in clustering, once the colors of materials
can be approximated by a constant Lambertian factor (term
a0 in Equation 1).

B. Empirical Selection – Optimization without Clustering
This experiment uses Algorithm 1 to estimate each of the

100 materials present in MERL data set through a combination
of the other 99 materials, using Ashikhmin-Shirley model. The
main goals of this experiment are to check the expressiveness
of the data set elements and also to estimate the minimum
number of elements needed in a basis of BRDFs obtained
from MERL data set.

It was observed that all but one material could be approx-
imated through a combination of other 4 or less materials.
Polyethylene was the only element that needed 5 materials to
be represented, establishing this value as a lower boundary for
a basis size. Thus, the minimum number of clusters obtained
in the clustering algorithms must be 5.

Figure 2 contains the histogram of contributions observed in
this experiment. Each value in the Y-axis represents how many
materials contribute to approximate the number of materials
in the X-axis. Thus, of all 100 materials in MERL data set,
five did not contribute to approximate any other material and
most of them were present in five or less combinations. Only
14 contributed to approximate more than five other materials,
being the best candidates to be in the basis, once they were
more often used in approximations.

Fig. 2. Histogram of materials contributions in NNLS without clustering.

C. Clustering Algorithms Executions

To overcome the drawback of choosing a fixed value for
k as input of k-medoids, an experiment based on the works
of Häußler [22] and Carvalho [7] was performed: choosing a
range for k. As stated in Section I, a basis of BRDFs must be
expressive and yet have few elements. Aiming this end, the
lower boundary was established as 5, once it was the number
of elements needed to approximate the Polyethylene (VI-B).
The maximum value for k was set to 12. This value has been
chosen because the clustering quality started to decrease for
higher values. These executions were also confronted to the
results of GCUK.

K-medoids was executed 30 times for each k ∈ [5, 12].
Also, 30 executions of GCUK were performed with kmin = 5
and kmax = 20. The population consisted of 20 individuals
tested for 10 generations with 100% of crossover probability
to enforce covering a higher solution space. Euclidean distance
between the parameters (F0, n) of each material and BRDFit
were compared as fitness functions for each method.

Figure 3 contains two box-plots with DBindex values
obtained with the clustering algorithms. Figure 3a shows the
results using Euclidean distance, while the values achieved
with BRDFit are presented in Figure 3b.

To compare the results of each set of experiments, the
Friedman test at 95% significance level was performed. This
test indicates if there is any statistical difference between
each analyzed data set. Then, the median values and a post-
hoc procedure are used to identify which algorithm has the
best results. According to the analysis of the statistical test,
GCUK obtained the best results among all algorithms, for both
Euclidean distance and BRDFit.

Furthermore, both versions of GCUK, with Euclidean dis-
tance and BRDFit, were confronted using Wilcoxon test,
again with 95% significance level. For this comparison, the
p-value of the test was smaller than 2.2e−16, which indicates
that there is a significant difference between the samples.



(a) Executions using Euclidean distance (b) Executions using BRDFit.

Fig. 3. Box-plot of DBindex values for k-medoids and GCUK executions.

Observing Figure 3, executions with BRDFit reached smaller
DBindex values than the ones with Euclidean distance,
implying a better clustering in terms of DBindex. Thus, it
can be inferred that BRDFit is a better fitness function than
Euclidean distance for clustering BRDFs.

D. Novel basis of BRDFs

Five novel basis were selected from previous experiments.
Table I contains Ashikhmin-Shirley renderings (taken from
Ngan et al. supplemental document [19]) of all materials in
each basis. The first one consists of the 14 materials that
contributed in more than five combinations in the experiment
described in Subsection VI-B. Two bases were generated using
k-medoids with BRDFit: kmedoids5, yielded by the best
configuration among all values of k based on DBindex, and
kmedoids12, selected from an execution with k = 12,
aiming to increase the expressiveness. The last two bases were
obtained through GCUK executions, again using BRDFit:
gcuk5 is the result of the best GCUK execution based on
DBindex and gcuk10 was obtained in the execution with the
higher number of clusters founded.

E. NNLS Optimization

To verify the expressiveness of each one of the five bases
presented in Subsection VI-D, NNLS algorithm was used to
estimate coefficients for these bases in order to approximate
a subset of the MERL BRDFs. Only materials that are not
present in any basis were included in this subset, totalizing
62 materials. Disney’s BRDF Explorer tool [24] was used to
render the original materials and their combinations.

Two Mean Absolute Error (MAE) analysis were performed
for all 62 materials approximated by each basis. The first one
compared reflectance data measurements of each material and

their approximations. Data with incident or outgoing angles
larger than 80 degrees and samples within 3 degrees from
the retroreflection direction were ignored. The second analysis
computed the normalized MAE between the images of a
rendered material and its’ approximations. Figure 4 contains
plots of both analysis. Errors are sorted by gcuk10 basis.

It can be observed in Figures 4a and 4b that kmedoids5
and kmedoids12 reached good error values in both analysis.
The empirical basis presented an unstable behaviour in the
numerical analysis, but had a good performance in render-
ization analysis. GCUK’s bases did not achieve the same
success, but still reached acceptable values. Figure 5 contains
renderings and heatmap images of Alum Bronze material.
In this example empirical basis outperformed the others,
reaching better visual results.

VII. CONCLUSION

This paper presented new ways of choosing bases of BRDFs
capable of approximating diverse materials. An empirical
method based on the systematic analysis of which materials
most appear in a set of possible combinations was proposed
to accomplish this goal.

Two clustering techniques were also proposed for selecting
a basis of BRDFs: k-medoids and Genetic Clustering for
Unknown K – GCUK. A new BRDF-oriented similarity mea-
sure, BRDFit, was proposed to improve the clustering results
of BRDFs sets. BRDFit is independent of the analytical
BRDF model chosen and also works with measured data. It
is also capable of reducing the DBindex values of both k-
medoids and GCUK executions in comparison with the use of
Euclidean distance.

Numerical comparisons among five novel bases showed that
k-medoids bases outperformed the other ones. Meanwhile,



TABLE I
NOVEL BRDFS-BASES

Bases Materials

Acr. White B. O. Steel B. P. Soft Blue Rubber G. Metallic R. Metallic Col. Mappleempirical

Fab. Beige Natural 209 Nickel Pickled Oak Pink Plas. R. F. Wax R. Quartz

kmedoids5

Acr. Blue Acr. Yellow Alu. Oxide Cherry 235 Steel

Acr. Blue Acr. Yellow Black Obsi. B. O. Steel Chrome Gray Plas. Green BB.
kmedoids12

Green Plas. Maroon BB. Sil. Nitrade Steel Sugar

gcuk5

Copper Green BB. Hematite Pink Plas. Red. P. Spc.

Acr. Green Acr. Violet Black Ph. Fab. Beige Fab. Black Fruit. 241 Ph. Yellow
gcuk10

Pink Jasper PVC Sil. Nitrade

it was observed that the empirical basis also yields good
rendering results.

The use of different clustering validation metrics and genetic
optimization techniques are proposed as future work. The
first aims the confirmation of the clustering results, while the
second can improve the approximation step.

Other directions are: plot the BRDFs specular lobes as
addition to MAE analysis, rerun experiments with measured
raw data and improve BRDFit to observe the Jacobian change
of variables from directions to spherical coordinates.
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