
An evaluation of the Volume on Surface (VoS)

approach

Rafael Silva Santos, Danilo Medeiros Eler, Rogério Eduardo Garcia, Ronaldo Celso Messias Correia

UNESP - Univ Estadual Paulista, Faculdade de Ciências e Tecnologia

Presidente Prudente - SP, Brazil

rafael.silva.sts@gmail.com, {daniloeler, rogerio, ronaldo}@fct.unesp.br

Abstract—Hybrid volume rendering algorithms combine tech-
niques of different categories of volume visualization. Volume
on Surface (VoS) is a hybrid volume rendering technique that
maps volume information to isosurfaces, intending to accelerate
the volume rendering process. In this paper, we introduce an
improved version of the VoS technique. Furthermore, we conduct
an evaluation of CUDA-based versions of both the original and
the improved approach, comparing them with the conventional
Ray Casting algorithm. In some results, our technique is more
than eight times faster than Ray Casting and thirty times than
original version. In addition to the main discussion, we investigate
how a surface simplification influences the performance and the
quality of the images rendered by our approach.

Keywords-Volume on Surface (VoS); hybrid volume rendering;
volume rendering

I. INTRODUCTION

Volume visualization consists of a set of computer graphics

techniques that allows exploring the interior of volumes [1].

These techniques provide working tools for different areas of

science, such as Chemistry, Geology and Medicine [2].

A great challenge in volume visualization is the high com-

putational cost of the volume rendering process [3]. Since the

last two decades, new hardware technologies are increasingly

used to cope with such issue [4]. However, even before the

hardware advances, researchers have looked for alternatives

to reduce the execution time in volume rendering. A set of

these alternatives is the Hybrid Volume Rendering (HVR)

techniques [5]. An HVR technique combines two or more

approaches of volume visualization, in order to achieve a

performance increase [5, 6] or to group any advantages of

the approaches [3].

An example of HVR technique is the Volume on Surface

(VoS) approach [3]. VoS combines Ray Casting with an iso-

surface, affording the visualization of volume details through

this structure. The technique aims to accelerate the rendering

process.

In this paper, we evaluate the VoS approach. First of all, we

present an improved version of the VoS technique. Compared

to the original technique, our approach has the following

advantages: higher quality images, less memory usage and a

performance increase when the transfer functions are adjusted.

In this document, we use the term VoSM to refer to the original

technique and the term VoSM∗ to our version. Moreover,

whenever we mention the term VoS, we are referring to both

techniques.

For the evaluation, we implement CUDA versions of both

VoS approaches and compare these techniques with a CUDA-

based Ray Casting. Our comparison focuses on the following

aspects: quality of the rendered images and computational

cost (execution time and memory usage). In some results,

the VoSM∗ spends 81.61% less runtime than Ray Casting.

Apart from the comparison, we investigate how a surface

simplification influences the performance and the quality of

the images generated by the VoSM∗ approach. We use a filter

available in the Kitware ParaView software to simplify the

isosurfaces that are used to perform our experiment.

Besides this introduction, the reminder of this paper is

organized into other five sections. Related works are presented

in Section II. We present the VoSM approach and introduce our

improvement in Section III. Our strategy of implementation is

discussed in Section IV. The results are reported in Section V.

Finally, Section VI concludes this paper.

II. RELATED WORKS

A. Ray Casting

Ray Casting is probably the most popular and adapted

Direct Volume Rendering (DVR) algorithm in the literature

[1, 7]. Briefly, the algorithm consists of a rays shooting from

the image plane toward the volume. Initially, it is defined an

image plane between the observer and the volume. Next, one

ray is shot from each pixel of the image plane. The algorithm

accumulates contributions of color and opacity of each volume

element (cell or voxel) along a ray path. When a ray targets

the end of the volume, or the accumulated opacity reaches

a maximum value, the path is interrupted. At last, the color

accumulated in the ray is assigned to the source pixel.

Levoy [8] proposed a typical model that describes the color

and opacity accumulations along a ray path. This model is

presented below:

αout = αin + αs(1− αin)

Cout = Cin + Csαs(1− αin)
, (1)

where, Cin is the accumulated color and αin, accumulated

opacity. Cs and αs are results of the transfer functions applied

to the sample. Finally, Cout is the accumulated color and αout,

the accumulated opacity after the accumulation.

Over the years, different approaches of the Ray Casting

algorithm have been proposed. Weinlich et al. [9] compared a

CUDA-based Ray Casting with the OpenGL implementation



of this algorithm. Maršálek et al. [10] developed a CUDA-

based approach that uses interpolation and texture memory to

improve the performance of the algorithm. Zhao et al. [11]

proposed another approach that also uses interpolation and

texture memory on CUDA. However, this approach use Sobel

filter to calculate gradients and provides a better quality and

performance. Later, Bethel and Howison [12] introduced a

technique that focuses on the memory access scheme for to

improve the performance of the parallel Ray Casting on CPU

and GPU.

B. Hybrid volume rendering

The term “hybrid volume rendering” (HVR) describes a vol-

ume visualization strategy that integrates different approaches

of rendering, aiming to group advantages of each approach.

Typically, an HVR technique combines two or more tech-

niques of Direct Volume Rendering (DVR) and Surface-Fitting

(SF) [3, 5].

Levoy [13] proposed one of the first HVR techniques. The

approach combines Ray Casting and SF, providing simulta-

neous display of both volume and surface data. Tost et al.

[14] introduced another approach with the same goal, but that

uses the Splatting algorithm. Later, two techniques [15, 16],

quite similar to VoS, were proposed. The techniques integrate

a texture mapping and isosurfaces to afford the visualization

of volume details.

Marroquim et al. [17] introduced the Projected Tetrahedra

with a partial pre-integration (PTINT) algorithm. PTINT mixes

DVR with SF and is divided into four steps. In the first

step, PTINT projects the tetrahedrons in fragment shaders.

Next, a volume rendering process is associated with each

primitive, i.e., a vertex of the tetrahedron surface (composed

of tetrahedrons). In the third step, a final color is estimated by

a partial pre-integration. The last step renders the final images

and ends the algorithm. Later, Maximo et al. [18] introduced

an adaptation of the PTINT, which uses rasterization to allow

that the entire algorithm is performed on GPU. Therefore, the

adapted version [18] decrease the execution time.

Most recently, Liang et al. [6] proposed an HVR GPU-based

Ray Casting framework that combines DVR with spherical

texture maps. This framework focuses on an acceleration of

the volume rendering process with large atmospheric datasets.

The approach limits the data, using only a part of the original

dataset. Moreover, this portion of data is even interpolated to

accelerate the rendering process.

III. VOLUME ON SURFACE

A. VoSM

VoSM (Volume on Surface) [3] is an HVR technique,

which allows the visualization of volume details through

an isosurface extracted from this volume. In high-level, the

approach can be described as a combination of the Ray

Casting algorithm with a surface rendering process. So it is

important to note that VoSM is not a DVR technique, but an

approximation that aims to accelerate the visualization process.

In the VoSM algorithm, the volume data is arranged in a

regular grid. The isosurface is a polygon mesh. A pipeline of

the VoSM is shown in Fig. 1. The algorithm is divided into

four steps: cones construction, pre-visualization, vertex color

assignment and lighting & projection.

Fig. 1: VoSM pipeline.

In the first step, the algorithm constructs a set of cones, with

different opening angles, on each vertex of the isosurface. Each

cone has a set of rays that are equally spaced. Fig. 2 shows

an example of virtual cones attached to a vertex. The normal

vector (e.g., see the blue arrow in Fig. 2) of each vertex is the

central axis of its cones. After the cones construction step,

there are n rays associated with each vertex, where n = cones

per vertex × rays per cone.

Fig. 2: Example of cones structure in the VoSM algorithm.

Three virtual cones attached to an isosurface vertex (Adapted

from [3]).

The previsualization step comprehends a volume rendering

process. This step is similar to the Ray Casting algorithm. The

rays are shot from each vertex toward the volume. Color and

opacity contributions of each reached voxel are accumulated

along a ray path, as defined in Equation 1. At the end of the

process, a final color is assigned to the ray. Thus, there are n

colors associated with a vertex.

The last two steps constitute a surface rendering process. In

the vertex color assignment step, a single ray is chosen to

assign a color to a vertex that is visible from the observer’s

position. The algorithm selects the ray that is the closest to the

observation line (e.g., see the dashed green line in Fig. 2). A

dot product computation may solve the problem of finding the

closest ray. Initially, it is considered R = {r1, ..., rn} as a set

of unit vectors that represents the rays associated with a vertex



and l as the unit vector that represents the observation line.

The selected ray is one that the dot product, ri · l, produces

the largest positive value [3]. At last, any traditional rendering

algorithms may perform the lighting & projection step.

The VoSM technique assumes that a user may interact in

two different ways during the visualization. If the observer’s

position is modified, it is necessary to perform again just

the surface rendering process (vertex color assignment and

lighting & projection). On the other hand, if the transfer

function is adjusted, the previsualization and surface rendering

process must be performed again.

B. VoSM∗

VoSM∗ is an improvement of the VoSM technique. Our

approach has the following goals: to improve the quality of the

rendered images, to decrease the memory usage and to reduce

the execution time when a transfer function is adjusted.

The VoSM∗ algorithm does not use cones to guide the rays

shooting. A single ray is shot from the observer’s position

toward the vertex. The direction of this ray coincides with the

observation line, as shown in Fig. 3.

Fig. 3: Example of a ray shot from an isosurface vertex in the

VoSM∗ algorithm (Adapted from [3]).

Fig. 4 shows the VoSM∗ pipeline. The volume and isosur-

face have the same structures as those used by the VoSM .

Nonetheless, the VoSM∗ algorithm comprises just two steps.

In the previsualization step, a single ray is shot from each

vertex. At the end of this step, the color accumulated in the

ray is assigned to the source vertex. Similarly to VoSM , any

traditional lighting & projection algorithms may render the

final image. Regardless of the user interaction, it is always

necessary to perform the two steps again.

Fig. 4: VoSM∗ pipeline.

IV. IMPLEMENTATION

It is not difficult to note that the VoS techniques, as the Ray

Casting [8], are intrinsically parallel. Thus, we use C/C++,

CUDA and OpenGL to parallelize these algorithms.

Before introducing the implementation of techniques, we

describe the data structures. The volume is a regular grid

of intensity values that is implemented as an array of bytes.

The isosurface is a triangle mesh. Four arrays constitute the

isosurface structure. A floating-point array stores the vertices,

and another array stores the normal vectors of such vertices.

Both vertices and their normal vectors are 3D coordinates. A

third array stores indexes to positions of the array of vertices.

Each three consecutive positions in this array represent a

triangle. At last, a byte array stores an RGB color for each

vertex. In the cones structure, a ray consists of a 3D coordinate

and an RGB color. Thereby, the cones structure is composed

by two arrays: a floating-point array for 3D coordinates, and

byte array for colors (RGB color).

A. VoS techniques

The VoSM algorithm is organized into four steps. A first

CUDA kernel implements the cones construction step. This

kernel has as input parameters: the surface, the number of

rays per cone and the opening angles. In this kernel, each

thread build a virtual ray, still a color assigned. A second

CUDA kernel performs the previsualization step. Each thread

shot one ray from the vertex toward the volume. After the

end of a ray path, the accumulated color is assigned to the

ray. Besides the volume and the cones, the kernel also has the

transfer functions as input parameters. The last CUDA kernel

implements the vertex color assignment. Each thread finds the

nearest ray to the observation line and thereby, the color that

must be assigned to each vertex. The lighting & projection

step is implemented in OpenGL. The algoritms of this library

are also implemented on GPU. Therefore, both CUDA and

OpenGL must access the same data. To afford this, we use

CUDA-OpenGL interoperability. Thus, the surface structure

is implemented using Vertex Buffer Object (VBO) [19].

In the implementation, we consider two situations of user

interaction, as described in Section III. In VoSM , if the

transfer functions are adjusted, the first and the second kernels

must be performed again. On the other hand, if the user

modifies the position of the observer, only the third kernel

is performed. Still regarding the user interaction, a GUI, on

the host (CPU), handles the transfer function adjustments and

migrates this data to the device (GPU). The transfer functions

are implemented in Look-Up-Tables (LUTs).

A single CUDA kernel implements the parallel part of the

VoSM∗ algorithm. This kernel performs the previsualization

step and has the following input parameters: surface, volume,

transfer functions and observer’s position. In contrast to the

VoSM algorithm, a same thread performs the ray shot and

assigns the final color to the isosurface vertex. The lighting

& projection step is implemented in the same way that in

the VoSM . The implementation of the GUI and the transfer

functions are also the same. In the VoSM∗ approach, the kernel

must always be performed for any user interaction,.

B. Ray Casting

We implement the conventional back-to-front Ray Casting

in a single CUDA kernel. In such kernel, each thread shoots

one ray from each image plane pixel toward the volume. The

composition model is established in Equation 1.



Similarly to the VoS techniques, the transfer functions

are implemented as LUTs. Beyond this, the Ray Casting

implementation also takes advantage of the CUDA-OpenGL

interoperability. The image plane (matrix of pixels) is stored

in a Pixel Buffer Object (PBO) that is shared between CUDA

and OpenGL.

V. RESULTS

A. Experimental Design

In the tests, we use four volume datasets. The human head

and chest datasets are available at the University of Erlangen-

Nuremberg Datasets Repository1. The stented abdominal aorta

is provide by the VolVis Repository2. Finally the foot is

available with the VolView software. The specification of the

volume datasets is presented in Table I.

TABLE I: Datasets specification.

Datasets Dimensions

Chest 384× 384× 240

Foot 102× 247× 200

Head 128× 256× 256

Stented abdominal aorta 512× 512× 174

Table II presents the specification of the isosurface extracted

from each volume dataset.

TABLE II: Isosurface meshes specification.

Source datasets Vertices Polygons

Chest 732158 1452730

Foot 120720 238816

Head 274896 544624

Stented abdominal aorta 1331004 2641370

We run all tests on a computer with the following configu-

ration: Intel Core 2 Quad Q6700 CPU, 4 GB RAM, Windows

8.1 64 bits, CUDA 7.5 SDK and NVIDIA GeForce GT 740

GPU with 1 GB RAM. Moreover, the observer’s position and

any scene parameters are the same for the each dataset.

The isosurfaces are extracted by Kitware VolView 2.0 soft-

ware and converted into a VTK file (vtkPolyData file format)

by Kitware ParaView 5.0 software. Unless otherwise specified,

the display window for all tests has the size of 800×600 pixels.

In the VoSM technique, all tests are performed with the

following settings: four rays per cones and three cones per

vertex. Besides the following opening angles of the cones:

20◦, 45◦ and 70◦.

B. Image quality comparison

Fig. 5 shows images of a human chest, foot and head. From

this figure, we can observe that the quality of the images

produced by VoSM are not satisfactory. In these images, there

1University of Erlangen-Nuremberg Datasets Repository. Available at:
http://www9.informatik.uni-erlangen.de/External/vollib/. Accessed: July 10
2015.

2VolVis Repository, University of Tübingen. Available at: http://volvis.org/.
Accessed: July 10 2015.

is a great loss of volume details. On the other hand, the images

rendered by VoSM∗, despite a little loss of detail, are similar

to those rendered by the Ray Casting algorithm. However, it

can be observed some distortions of the volume structures in

our technique as well in VoSM . These distortions are results

of the visualization trough the isosurface, since the observer’s

position is the same for each test. We emphasize that the VoS

approaches are not DVR techniques, but approximations to

them.

Fig. 5: Images rendered by Ray Casting (first column), VoSM

(second column) and VoSM∗ (third column). From top to

bottom: datasets of a human chest, foot and head.

In the tests presented here, we do not change the setting

of rays and cones by the VoSM technique. Nevertheless, it is

important to mention that an increase in the number of rays

per vertex can improve the quality of the images rendered by

this technique [3]. In a hypothetical best case, at least one

ray at each vertex coincides with the observation line. In this

case, the images rendered by VoSM would be like than those

generated by our technique.

C. Memory usage comparison

Table III shows the estimated memory usage of each tech-

nique. We estimate the memory usage regarding structures de-

scribed in Section IV. The storage of additional structures, such

isosurfaces, becomes the memory usage in the VoS techniques

higher than in Ray Casting. Moreover, VoSM presents a higher

memory usage than VoSM∗, since this technique also stores a

structure of cones. The memory usage of VoSM is, on average,

534% higher than in Ray Casting. In turn, VoSM∗ consumes

176.23% more memory than reported by Ray Casting.



TABLE III: Estimated memory usage in MB.

Datasets
VoSM VoSM∗ Ray Casting

Volume Isosurface Cones Total Volume Isosurface Total Volume

Chest 33.8 35.5 126.9 196.2 33.8 35.5 69.3 33.8

Foot 4.8 5.8 20.9 31.5 4.8 5.8 10.6 4.8

Head 8 13.3 47.7 69 8 13.3 21.3 8

Stented abdominal aorta 43.5 64.5 230.7 338.7 43.5 64.5 108 43.5

From the Tables I and II, it is easy to realize that the memory

usage is proportional to the volume dimension and the size of

the isosurface mesh. In VoSM , the number of rays and cones

also increases this usage.

D. Performance comparison

We establish two situations of user interaction to evaluate

the execution time of the techniques. In the first situation,

we rotate the position of the observer around the y-axis,

simulating a modification of the observer’s position. In the

second situation the transfer functions are adjusted during this

rotation.

Fig. 6 shows the performance results for the first situa-

tion. Both VoS techniques have better performance than Ray

Casting for all datasets. Among the two techniques, VoSM is

the fastest. On average, VoSM spends 93.26% less runtime

than Ray Casting. In turn, VoSM spends 81.61% less runtime

than Ray Casting. On regards the frame rate (FPS), VoSM

is, on average, 1452.08% higher than Ray Casting, VoSM∗ is

725.27% higher.

Fig. 6: Runtime and frame rate (FPS), both in log10 scale, of

the Ray Casting, VoSM and VoSM∗ during a rotation of the

observer position around the y-axis.

We highlight that the results presented in Fig. 6 correspond

to the best case of VoSM technique. Whereas just the vertex

color assignment and lighting & projection are performed,

which explain the results obtained.

The instructions performed on the kernels of both Ray

Casting and VoSM∗ are very similar. However, there is a

discrepancy in the performance of these approaches. We tend

to think that this variation is related to the number of rays shot.

This number corresponds to the size of the display window

in the Ray Casting ore the number of visible vertices in the

VoSM∗. To better investigate this discrepancy, we conducted

a further comparison among the techniques, varying the size

of the display window.

Fig. 7 reports the runtime and frame rate of the techniques

when the transfer functions are adjusted. Ray Casting and our

technique have the same runtimes and frame rates than the

presented in Fig. 6. In contrast, VoSM has a great performance

decrease. This situation represents the worst case of the tech-

nique. In this case the steps of previsualization, vertex color

assignment and lighting & projections must be performed. On

average, VoSM spends 585.44% more time than Ray Casting

and the its frame rate (FPS) is 71.02% lower.

Fig. 7: Runtime and frame rate, both in log10 scale, of the

Ray Casting, VoSM and VoSM∗ during an adjustment of

the transfer functions and a rotation of the observer position

around the y-axis.

E. Discussion and an additional comparison among VoSM∗

and Ray Casting

Based on results so far, we can assert that is not feasible to

use the VoSM technique. Although VoSM to be faster when

just the position of the observer is modified, the technique



becomes much slow if the transfer functions are adjusted.

Moreover, the quality of the images rendered by VoSM is not

satisfactory and the memory usage is large. Regarding the VoS

techniques, we point out that the performance and the quality

of images are not dependent on the window resolution.

On the other hand, VoSM∗ showed promise. The technique

proved that the isosurface extracted from a volume can be used

as a resource to accelerate the rendering process. Although

in comparison to the Ray Casting, the VoSM∗ has a larger

memory usage and renders images with a little loss of detail.

We have already mentioned that it is a good guess to assume

that the number of rays is responsible for the performance

difference among Ray Casting and VoSM∗. Thereat, it is also

important to think that Ray Casting can be the fastest in any

particular case. To bring out this discussion, we perform an

additional test with a larger volume dataset, the human stented

abdominal aorta. In this test, we also resize the display window

of the Ray Casting to 600×300 to reduce the number of rays

shot and thus to increase the Ray Casting performance.

Fig. 8 shows the runtime and frame rate of the VoSM∗ and

Ray Casting with display windows resized to 800×600 (RC-1)

and 400 × 300 (RC-2) pixels. In this test, RC-2 has the best

performance. RC-2 spends, on average, 55.36% less runtime

than VoSM∗ and 87.3% than RC-1. Regarding the frame rate,

the FPS obtained by RC-2 is, on average, 117.38% higher than

VoSM∗ and 640.59% than RC-1.

Fig. 8: Runtime and frame rate, both in log10 scale, of the

VoSM∗, Ray Casting with display window size of 800× 600
(RC-1) and 400× 300 pixels (RC-2) during a rotation of the

observer position around the y-axis.

The images generated by VoSM∗ and Ray Casting is shown

in Fig. 9. Despite the performance gain, we can observe that

the quality of the image rendered by RC-2 is lower those

generated by VoSM∗ and RC-1.

We will not show any results, but it is impractical to use

VoSM technique to render the dataset of the human stented

abdominal aorta. If there is an adjustment of transfer functions,

we estimate that the approach would spend more than 10

minutes during each user interaction.

F. Simplification of surfaces

In the last tests, we investigated how a surface simplification

influences the performance of the VoSM∗ technique. The

surfaces are simplified using the decimate filter of the Kitware

(a) Ray Casting with
800× 600 pixels

(b) Ray Casting with
600× 300 pixels

(c) VoSM∗

Fig. 9: Images of a human stented abdominal aorta rendered

by VoSM∗ and Ray Casting with the following display window

sizes: 800× 600 and 600× 300.

Paraview Software with the following targets of reduction:

25%, 50%, 75% and 90%.

The decimation filter can produce holes in the surfaces3.

So, to cope with this issue, the software provides a “preserve

topology” option. This setting does not guarantee that the pre-

set value of reduction is achieved, but decreases the possibility

of generation of holes in the surface.

The memory usage for the decimated isosurfaces is pre-

sented in Table IV. On average, a decimation of 25% reduces

the memory usage by 25%; the decimation of 50%, by 49.9%;

the decimation of 75%, by 74.9% and the decimation of 90%,

by 79.6%.

TABLE IV: Estimated memory usage (MB) of the decimated

isosurfaces in the VoSM∗ technique.

Datasets
Decimation factor

0% 25% 50% 75% 90%

Chest 35.5 26.6 17.8 8.9 6.1

Foot 5.8 4.4 2.9 1.5 1.3

Head 13.3 10 6.7 3.3 3.2

Stented abdominal aorta 64.5 48.4 32.3 16.1 11.7

Fig. 10 reports the runtime and frame rate of the VoSM∗ for

the isosurfaces without any reduction and with the following

decimation factors: 25%, 50%, 75% and 90%. From this

figure, it is possible to note that the decimation of isosurface

provides a performance increase of the VoSM∗. On average,

a decimation of 25% afford a reduction of 22.24% in the

runtime; a decimation of 50%, 45.77%; a decimation of 75%,

71.80% and a decimation of 90%, 76.72%. Regards the frame

rate, a decimation of 25% produces an increase of 26.67%;

a decimation of 50%, 77.40%; a decimation of 75%, 220.1%
and a decimation of 90%, 297.35%.

In spite of a performance increase and less memory usage,

the simplification of a surface can decrease the quality of

3Information obtained from the documentation of the Paraview 5.0 soft-
ware. Available at: http://www.paraview.org/ParaView/Doc/Nightly/www/py-
doc/paraview.simple.Decimate.html. Acessed: 10 March 2016.



Fig. 10: Runtime and frame rate, both in log10 scale, of the

VoSM∗ for the isosurfaces without any reduction (0%) and

with the following decimation factors: 25%, 50%, 75% and

90%.

the images rendered by VoSM∗. Fig. 11 shows the images

generated with decimated surfaces. The images generated from

an isosurface with the reduction factor of 25% are comparable

to the images obtained from the isosurfaces without any sim-

plification. However, the images rendered from the isosurfaces

with reductions of 75% and 90% have a much lower quality.

Although, we can confirm that the surface simplification is

a promissory resource to increase the performance of the

VoSM∗.

VI. CONCLUSION

In this paper, we presented an improved version of the VoS

technique [3]. Moreover, we evaluate the behavior of both

the original version of VoS and our approach in a CUDA

implementation. From the results, we can assert that is not

feasible to adopt the VoSM technique. On the other hand,

our approach shows promise. Besides all, we can also affirm

that the performance of VoSM∗ can be increased by a surface

simplification. Although, we emphasize that the VoSM∗ is

not a substitute for Direct Volume Rendering techniques. Our

technique is an alternative to situations in which a performance

increase is preferable over the generation of high-quality im-

ages. For example, when VoSM∗ can be adopted for rendering

previews during a user interaction.

Different reasons justify the choice of the Ray Casting

technique as a comparison parameter. First, the Ray Casting al-

gorithm is relatively simple to implement. Second, the images

rendered by such technique have a high-quality. Finally, the

Ray Casting is the volume rendering algorithm most used and

discussed in the literature. However, the use of other hybrid

volume rendering techniques as comparison parameters is a

limitation of our research and a potential future work.

ACKNOWLEDGMENT

This work was partially supported by FAPESP (State of São

Paulo Research Foundation) grants (2015/00622-7).

REFERENCES

[1] T. T. Elvins, “A survey of algorithms for volume

visualization,” SIGGRAPH Comput. Graph., vol. 26,

no. 3, pp. 194–201, Aug. 1992. [Online]. Available:

http://doi.acm.org/10.1145/142413.142427

[2] A. E. Kaufman, “Volume visualization: Principles and

advances,” 2003.

[3] D. M. Eler, P. S. H. Cateriano, L. G. Nonato, M. C. F.

Oliveira, and H. Levkowitz, “Empowering iso-surfaces

with volume data,” Proceedings of GRAPP International

Conference on Computer Graphics Theory and Applica-

tions, 2006.

[4] J. Beyer, M. Hadwiger, and H. Pfister, “A survey of gpu-

based large-scale volume visualization,” Eurographics

Conference on Visualization (EuroVis), 2014.

[5] J. Xiang, F. Deng, and T. Ning, “The research of the

hybrid volume rendering algorithm based on gpu tech-

nology.” Applied Mechanics & Materials, no. 610, 2014.

[6] J. Liang, J. Gong, W. Li, and A. N. Ibrahim, “Visualizing

3d atmospheric data with spherical volume texture on

virtual globes,” Computers & Geosciences, vol. 68, pp.

81–91, 2014.

[7] P. Kumar and A. Agrawal, Intelligent Interactive

Technologies and Multimedia: Second International

Conference, IITM 2013, Allahabad, India, March

9-11, 2013. Proceedings. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, ch. CUDA

Based Interactive Volume Rendering of 3D

Medical Data, pp. 123–132. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-37463-0 11

[8] M. Levoy, “Display of surfaces from volume data,” IEEE

Comput. Graph. Appl., vol. 8, no. 3, pp. 29–37, May

1988. [Online]. Available: http://dx.doi.org/10.1109/38.

511

[9] A. Weinlich, B. Keck, H. Scherl, M. Kowarschik, and

J. Hornegger, “Comparison of high-speed ray casting

on gpu using cuda and opengl,” in Proceedings of the

First International Workshop on New Frontiers in High-

performance and Hardware-aware Computing, vol. 1,

2008, pp. 25–30.

[10] L. Maršálek, A. Hauber, and P. Slusallek, “High-speed

volume ray casting with cuda,” in Interactive Ray Trac-

ing, 2008. RT 2008. IEEE Symposium on. IEEE, 2008,

pp. 185–185.

[11] Y. Zhao, X. Cui, and Y. Cheng, “High-performance

and real-time volume rendering in cuda,” in 2009 2nd

International Conference on Biomedical Engineering and

Informatics, Oct 2009, pp. 1–4.

[12] E. W. Bethel and M. Howison, “Multi-core and many-

core shared-memory parallel raycasting volume ren-

dering optimization and tuning,” International Jour-



Fig. 11: Images rendered by VoSM∗. Isosurfaces decimated with the following decimation factors: 0% (first column), 25%
(second column), 50% (third column), 75% (fourth column) and 90% (fifth column). From top to bottom: datasets of human

chest, foot, head and stented abdominal aorta.

nal of High Performance Computing Applications, p.

1094342012440466, 2012.

[13] M. Levoy, “Efficient ray tracing of volume data,”

ACM Trans. Graph., vol. 9, no. 3, pp. 245–261, Jul.

1990. [Online]. Available: http://doi.acm.org/10.1145/

78964.78965

[14] D. Tost, A. Puig, and I. Navazo, “Visualization of mixed

scenes based on volume and surface,” in Proc. European

Workshop on Rendering, 1993, pp. 281–294.

[15] R. Westermann and B. Sevenich, “Accelerated volume

ray-casting using texture mapping,” in Proceedings

of the Conference on Visualization ’01, ser. VIS

’01. Washington, DC, USA: IEEE Computer Society,

2001, pp. 271–278. [Online]. Available: http://dl.acm.

org/citation.cfm?id=601671.601713

[16] B. Chen, A. Kaufman, and Q. Tang, Volume Graphics

2001: Proceedings of the Joint IEEE TCVG and

Eurographics Workshop in Stony Brook, New York,

USA, June 21–22, 2001. Vienna: Springer Vienna,

2001, ch. Image-Based Rendering of Surfaces from

Volume Data, pp. 279–295. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-7091-6756-4 19

[17] R. Marroquim, A. Maximo, R. Farias, and C. Esperança,

“Volume and isosurface rendering with gpu-accelerated

cell projection,” in Computer Graphics Forum, vol. 27,

no. 1. Wiley Online Library, 2008, pp. 24–35.

[18] A. Maximo, R. Marroquim, and R. Farias, “Hardware-

assisted projected tetrahedra,” in Computer Graphics

Forum, vol. 29, no. 3. Wiley Online Library, 2010,

pp. 903–912.

[19] NVIDIA. (2015) CUDA C Best Practices Guide.

NVIDIA. [Online]. Available: http://docs.nvidia.com/

cuda/cuda-c-best-practices-guide/


