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Abstract—Designing image operators is a hard task usually
tackled by specialists in image processing. An alternative ap-
proach is to use machine learning to estimate local transfor-
mations, that characterize the image operators, from pairs of
input-output images. The main challenge of this approach, called
W -operator learning, is estimating operators over large windows
without overfitting. Current techniques require the determination
of a large number of parameters to maximize the performance of
the trained operators. Support Vector Machines are known for
their generalization performance and their ability to estimate
nonlinear decision surfaces using kernels. However, training
kernelized SVMs in the dual is not feasible when the training set
is large. We estimate the local transformations employing kernel
approximations to train SVMs, thus with no need to compute the
full Gram matrix. We also select appropriate kernels to process
binary and gray level inputs. Experiments show that operators
trained using kernel approximation achieve comparable results
with state-of-the-art methods in 4 public datasets.

Keywords-Kernel approximation, W-operator learning, Ma-
chine learning, Image Processing

I. INTRODUCTION

Image processing techniques are used to extract useful
information from images for many different tasks, such as
document analysis and medical imaging. However, techniques
used in a domain may not be useful or relevant when
processing images from other domains, since they exploit
characteristics specific to their domain of application. An
alternative approach is to use Machine Learning to estimate a
transformation between images.

The most general way of expressing image processing tasks
is by forming pairs of input-output images like the ones in
Figures 1 and 2. Although this formulation completely defines
a task, it does not contain information about how to represent
the transformation of the input image into the output.

There has been much progress in estimating image operators
from input-output pairs for W -operators [3], [4], [5]. These
are translation invariant image transformations restricted to a
finite neighborhood called window. They can also be seen as
pixel classifiers that take as input the pixel values inside the
window and output a pixel value.

The main challenge in W -operator learning is to balance
window size and generalization performance. Small windows
lack the representative power to discriminate complex or large
patterns, resulting in poor performance. On the other hand,
large windows are able to discriminate complex patterns but
also require much more training data to avoid overfitting.

In earlier works [6], [7], [5], [8] W -operators have been
trained using Decision Trees or the ISI algorithm [9] (for the
minimization of Boolean functions). Both algorithms do not
perform well when using large numbers of features. Although
more advanced techniques, such as two-level operators [5],
were developed to mitigate this problem, they also require the
determination of a much bigger set of parameters.

Support Vector Machines (SVM) are known to generalize
well even in high-dimensional problems due to the maximiza-
tion of the classification margin [10], [11]. Also, they can
estimate nonlinear decision surfaces by applying the kernel
trick, which makes them powerful tools for classification.
Thus, SVMs and kernels are adequate tools to estimate W -
operators. However, typical problems in W -operator learning
involve hundreds of thousands, sometimes millions, of training
examples. This makes the use of kernel methods difficult, since
for a given training set with N samples it is usually necessary
to compute the full N ×N Gram matrix.

An approach that has been gaining momentum in the last
years is kernel approximation [12], [13], [14]. Instead of
computing the full Gram matrix for a kernel k, these works
focus on computing a feature map ϕ such that k(x, x′) ≈
ϕ(x)Tϕ(x′) and on optimizing a linear classifier in the trans-
formed space. These techniques have been successfully used
in large scale learning scenarios [15], [16], where they have
obtained results competitive with state-of-the-art Deep Neural
Networks.

The objective of this work is to investigate the use of kernel
methods in the estimation of W -operators by approximating

(a) Example of input

(b) Expected output

Fig. 1: Input-output pair for the staff removal task (staffs
dataset [1]).
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(a) Example of input (b) Expected output

Fig. 2: Input-output pair for the eye vessel segmentation task
(DRIVE dataset [2]).

ϕ from data. The approximation is computed by the Nyström
method [12] and can be used to process both binary and gray
level inputs. We also chose adequate kernels for each case
based on their visual properties.

The two most widely known methods of kernel approxima-
tion are the Nyström method and Random Fourrier features.
The Nyström method [12] approximates ϕ from a subset of the
data. Random Fourrier features [13] estimate ϕ by sampling
from a random distribution. It is faster than Nyström, but it
can only be used for shift-invariant kernels (i.e. k(x, x′) =
k(x − x′)). A comparison between these methods reported
in [14] indicates that data dependent approximations (such
as Nyström) achieve better results. Since we also work with
polynomial kernels, we opted for using the Nyström method.

We compare our work with earlier methods in W -operator
learning [17], [8], [7], [6] and heuristic algorithms using
4 public datasets. Results show that our approach achieves
performance comparable with both state-of-the art learned
operators and specialized algorithms, beating them in some
cases.

This paper is organized as follows. In Section II we review
the Nyström method and explain how it can be used to estimate
ϕ from data. In Section III we present the basic formulation of
W -operator learning. In Section IV we describe our method
and justify the choices of kernels for binary and gray level
inputs. We present comparisons with other algorithms in Sec-
tion V and discuss advantages and limitations of our method in
Section V-C. Finally, we present our conclusions in Section VI.

II. KERNEL APPROXIMATION USING THE NYSTRÖM
METHOD

Williams and Seeger [12] propose a method to approximate
the eigenvalues and eigenfunctions of a kernel given a sample
of N points. Then they show how to use this result to build an
approximation K̃ of the Gram matrix K of these points using
only a subset of size m. Finally, we find an approximation of
ϕ by a careful analysis of the K̃ matrix.

The authors call this kernel approximation technique the
“Nyström method”.

A. Approximating the eigenfunctions of a kernel

Let k : X ,X → R be a positive definite kernel. We know
from Mercer’s theorem[11] that k has an expansion in terms
of eigenvalues/vectors

k(x, x′) =

∞∑
j=1

λjφj(x)φj(x′), (1)

where λj ∈ R and φj is continuous in X , such that∫
X
k(x′, x)φj(x)p(x)dx = λjφj(x′) (2)

where p(x) is the probability density of input pattern x ∈ X .
This integral can be estimated from a sample {xi ∈ X}, i =
1, . . . , N , taken according to p(x), as

1

N

N∑
i=1

k(x′, xi)φj(xi) ≈ λjφj(x′) (3)

Let K(N) ∈ RN×N be the Gram matrix of k w.r.t the
examples xi, i = 1, . . . , N . Its eigendecomposition is

K(N)U (N) = U (N)Λ(N), (4)

where U (N) is orthonormal and Λ = diag(λ
(N)
i ). By evalu-

ating equation (3) in points xj and comparing the result with
equation (4) we obtain the following approximations:

φj(xi) ≈
√
NUi,j (5a)

λj ≈
λ
(N)
j

N
(5b)

Combining equations (5) and (3) again, we obtain the
following expression for φj(x), x ∈ X , j = 1, . . . , N .

φj(x) ≈
√
N

λ(N)

N∑
k=1

k(x, xk)Uk,j (6)

Thus, we can approximate the eigenvalues λj and their
corresponding eigenfunctions φj up to j = N from a sample
of X of size N .

B. Approximating the Gram matrix

The results above can be used to approximate the Gram
matrix K ∈ RN×N of points {xi} using only a subset of m
examples. For convenience, we select the first m examples.
Let K be partitioned as below.

K =

[
K(m,m) K(m,N−m)

K(N−m,m) K(N−m,N−m)

]
(7)

Williams and Seeger [12] show that, by applying the
Nyström method to approximate the eigenvalues and eigen-
vectors of K we obtain an approximated Gram matrix K̃ such
that



K̃ = K(N,m)K
−1
(m,m)K(N,m)

T (8)

and, more specifically,

K̃(N−m,N−m) = K(N−m,n)K
−1
(m,m)K(m,N−m). (9)

This implies that to compute a Gram matrix for the unused
N − m points we just need to evaluate the kernel between
the new points and the selected m points. Thus, given the
eigendecomposition K−1(m,m) = U (m)diag(λ(m))U (m)T , we
can define the feature map ϕ : X → Rm [14]

ϕ(x) = diag(
1√
λj

)U (m)TKx, (10)

with Kx = (k(x, x1), . . . , k(x, xm)). From Eq. (9), we verify
that k(x, x′) ≈ ϕ(x)Tϕ(x′).

III. FUNDAMENTALS OF W -OPERATOR LEARNING

Let E be an image definition domain. Then, the set of all
images defined on E with gray-scales in a set L is denoted
LE . If L = {0, 1} then the images are binary. Given two sets
L1 and L2, a mapping from LE1 to LE2 is called an image
operator.

Image operators that are translation-invariant and locally
defined with respect to a non-empty window W are called
W -operators [18]. An important property of a W -operator Ψ
is its local characterization by a function ψ : LW1 → L2, i.e.,
given any image f ∈ LE1 and p in E,

[Ψ(f)](p) = ψ(f−p|W ) (11)

where f−p|W is the subimage of f around p, or image pattern,
constrained within W [19].

Thanks to this property, the problem of learning W -
operators can be reduced to the problem of learning its local
function [18], [5]. For each image pattern x, the aim is to
estimate ψ(x). If image patterns are vectorized, they can
be understood as elements in LM1 where M is the window
size (M = |W |). Therefore, the problem of image operator
learning can be reduced to the problem of learning a classifier
ψ : LM1 → L2 and L1 and L2 can be understood, respectively,
as the set of feature values and the set of class labels.

In order to learn ψ, pairs of input-output images, that
exemplifies the desired processing (as the ones shown in
Figures 1 and 2), are used to extract the training samples.
A scheme that illustrates the process is shown in Figure 3.
Patterns x in LW1 are collected at each pixel p of the input
images, together with the corresponding expected output value
y (value of the output image at the same pixel). Then, patterns
are vectorized and used to learn ψ. Note that a large number
of training samples can be extracted from a single input-output
pair of images.

The majority of previous works deal with only binary W -
operators (i.e., L1 = L2 = {0, 1}) [18], [5], [17], due to
computational and statistical difficulties related to the number
of features and amount of training data. Two level operators [5]

are the most recent method designed to cope with large
windows. It proposes to train an ensemble of w-operators
using stacked generalization [20]. More recent works have
been concerned on selecting appropriate operators to compose
the ensemble [17], [21], [8]. Details of a standard learning
procedure for single or two-level operators can be found, for
instance, in [5].

With regard to gray-scale image operators, the class of
aperture operators has been proposed earlier to mitigate
computational and statistical issues [22], [4]. Aperture filters
assume locality with respect to the range of gray-levels in
addition to locality with respect to the spatial domain. The
size of the patterns is defined by W , and the intensities are
constrained within an interval [−a, a] (for a relatively small
a).

When the output images are binary, the performance of W -
operators can be expressed in terms of standard measures such
as accuracy, recall, precision and F1-measure, computed on the
pixels.

IV. KERNELIZED IMAGE OPERATOR LEARNING

Our method focuses on estimating local functions of the
form ψ(k)(x) = sign(wTϕ(x) + b) where ϕ : X → Rm is a
feature map that approximates the kernel k.

Let {xi, yi}, i = 1, . . . , N be the set of patterns extracted
from an image set as described in Section III and k : X×X →
R a kernel. Our method determines ψ(k) in three steps. First
we estimate ϕ from a set of m examples randomly selected
from {xi} according to Section II. Then let Z ∈ RN×m be a
matrix such that Zi• = ϕ(xi). We determine w by minimizing
the SVM loss, defined below, using the transformed features
Z. The operation [·]+ denotes max(0, ·).

min
w

N∑
i=1

[1− yi · (Zw + b)]+ +
1

2
||w||22, (12)

Since k(xi, xj) ≈ ϕ(xi)
Tϕ(xj), by solving the SVM using

the transformed features Z we are approximating the solution
of a SVM trained in the dual using kernel k and the original
features. However, there is no need to compute the Gram
matrix explicitly, since we can solve the SVM minimization
problem in the primal.

This approach has several advantages in comparison with
training standard kernelized SVMs. First of all, computing the
Gram matrix may not be feasible. Typical problems in image
operator learning have hundreds of thousands, sometimes
millions, of examples. The classification of a pattern is also
faster, since the decision surface has m components instead
of N (and m << N ).

The choice of an adequate kernel for each problem can
result in significant differences in the performance of the
trained image operator. Given the differences between binary
and gray level patterns we selected different kernels for each
case.

In the binary case we use the polynomial kernel, which
is defined as below. Parameter d controls the degree of the
polynomial and c ≥ 0 is a non-negative constant.
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Fig. 3: Feature extraction process.

kd(x, x′) = (xT x′ + c)d (13)

Its feature map ϕd contains all interaction terms
xe11 xe22 . . . xeMM such that

∑M
i=1 ei = d. An interaction term

acts as a visual binary pattern recognition, since it evaluates
to 1 iff all its variables are 1. The decision surface wTϕd(x)
is, thus, a linear combination of pattern detectors. It also bears
resemblance with the disjunctive normal form of Boolean
functions. Note that there is some redundancy in ϕ, since all
interaction terms that contain the same variables are equal no
matter the exponent of the individual variables.

Although ϕd can be computed directly, its dimension grows
exponentially on the degree d and polynomially in M . To
avoid this, we approximate ϕd using the Nyström method.

One of the challenges when dealing with gray level input
images is that frequently the extracted patterns are visually
similar but differ in most, if not all, variables. The same pattern
can also appear with different brightness, making this even
harder. A Gaussian kernel (defined below) may address these
challenges.

kγ(x, x′) = e−γ||x−x′||2 (14)

It can be seen as a soft threshold of the visual similarity
between x and x′. If both patterns are visually similar the
norm of x − x′ will be small, since the small differences
in the variables will maintain the norm relatively small. On
the other hand, when patterns are visually different most, if
not all, variables will have significant differences, making the
norm comparatively much larger. By tuning the γ parameter
we can control the tolerance of the similarity measure. A
“big” γ emphasizes differences, while a small one allows more
patterns to be considered similar.

An interesting visual property of the Gaussian kernel is
that as long as the relative brightness between x and x′
does not change much, the Gaussian kernel will output the
similar values. Thus, this kernel is robust to global changes in
brightness.

V. EXPERIMENTS

We trained kernelized image operators on 4 publicly avail-
able datasets: CharS [5] (character segmentation), TexRev [5]

Dataset Domain Degree m
CharS 9× 7 3 2000
CharS 11× 9 5 2000
TexRev 9× 7 5 2000
TexRev 11× 11 7 2000
Staffs 11× 11 3 2000

TABLE I: Chosen parameters for the binary datasets CharS,
TexRev and Staffs.

(text segmentation), staffs [1] (music score staff removal) and
DRIVE [2] (retina vessel segmentation). Both the input and
output images in CharS, TexRev and staffs are binary. In
DRIVE the inputs are gray level and the outputs are binary.

A. Binary datasets and the polynomial kernel

The CharS and TexRev datasets were first published in [5].
Their images were divided into three parts: T1 and T2 were
used for training image operators and T3 was used as a test
set. Later in [8] a fourth part T4 was added, which used T3 as
validation and T4 as test. In this work we train the kernelized
operators in T1 ∪ T2 and test in T3 and T4.

We compared our method with four earlier works in operator
learning: IT [17], WER [8], Manual [5] and NILC [6]. We
determined the parameters of the polynomial kernel (de-
gree d and number of components m) using a validation
set and the parameter grid d = {3, 5, 7, 9} and m =
{100, 500, 1000, 2000}. The chosen parameters are shown in
Table I. We set the penalty parameter C = 1 for the SVMs.

IT, WER, Manual and NILC are based on the two level
approach [5] for image operator learning. Two level operators
combine the results of various image operators trained with
different windows. This technique was shown to improve the
performance when compared to individual operators trained
using large windows.

The staffs dataset is a subset of the CVC-MUSCIMA dataset
published in [1]. We chose the subset of images deformed
by both adding ink splots and the 3D surface deformation
and used its corresponding test set as described in [1]. The
objective is to remove the stafflines from digitized music
scores, as shown in Figure 1.

We compared our method with both earlier two-level oper-
ators (FS [7], Manual [21] and NILC) and heuristic methods



Domain Method CharS TexRev
T3 T4 T3 T4

9× 7
NILC 0.0040 0.0045 0.029 0.017
KA 0.0039 0.0042 0.034 0.024
IT 0.0073 – – –

WER 0.00412 0.00462 0.0372 0.0222

Manual 0.0061 0.0052 0.0461 0.0262

11× 9
NILC 0.0037 0.0040 - -
KA 0.0035 0.0043 - -

Manual 0.0041 - - -

11× 11
NILC - - 0.024 0.013

IT - - 0.0313 -
KA - - 0.021 0.014

Manual - - 0.0311 -

TABLE II: Comparative test errors for datasets CharS and
TexRev. A “-” indicates that the authors of the method did not
test a certain combination of window size and training set.

Method Acc (%) Rec (%) Spec (%) F1
LTC 87.58 64.66 99.53 80.40
Skeleton 94.50 86.97 99.03 92.24
LRDE 97.03 94.02 98.84 95.97
FS 97.34 95.87 98.22 95.90
Manual 96.89 94.37 98.41 95.51
NILC 97.10 94.58 98.61 96.07
KA 96.23 92.85 98.26 94.88

TABLE III: Comparative results, accuracy (Acc), recall (Rec),
specificity (Spec) and F1-measure (F1), for the staffs dataset.

(LRDE [23], Skeleton and LTC [24]). All methods were
reexecuted with their default parameters. The authors of all
algorithms have published implementations of their methods
in the corresponding articles.

We present our results in Table III. KA achieved better
results than Skeleton and LTC, but was inferior to the two
level methods and LRDE. It is worth noting that (i) we used a
smaller window (11×11) than FS, Manual and NILC (11×17);
(ii) these methods are the result of a combination of many
individual operators; and (iii) due to size of the representation
(m = 2000), KA was trained using only a fraction of the
examples available to FS, Manual and NILC. Taking these
into account, KA performed surprisingly well for an individual
image operator trained with only a small amount of data.

B. Gray level images and the Gaussian Kernel

The task of interest in the DRIVE dataset is the segmentation
of blood vessels in retinal images. An example of input-output
is shown in Figure 2. This dataset contains 20 images for
training and another 20 for testing. Images contain different
brightness and contrast.

To process these images we trained a kernelized version of
the Aperture operator [4] with a = 10 and a 9×9 window. We
determined the gaussian kernel parameters using a validation
set and the parameter grid γ ∈ {0.001, 0.01, 0.1} and m ∈
{100, 200, 500, 1000, 2000}.

We compared our technique with 3 heuristic methods in
the literature: Staal [2], Niemeijer [25] and Zana [26]. The
results are shown in Table IV. KA achieved accuracy close
to the tested methods, beating Zana and scoring just 0.5%

Method Accuracy (%)
Staal 94.42
Niemeijer 94.16
Zana [26] 93.77
KA 93.91

TABLE IV: Results for the DRIVE dataset.

less than the best method (Staal). As we can see in Fig-
ure 4, our method correctly identifies most of the larger
vessels and even some of the smallest ones. However, it
produced noisier images than the other methods. Both Staal
and Niemeijer produce clean images, although Staal seems to
recognize small vessels better. Zana failed to identify many
small vessels and also missed their width. In general, all
methods were unable to segment the smallest vessels. The
presence of noise in the outputs of KA accounted for most
of the differences between our method and the heuristic ones.
Result images for Staal, Niemeijer and Zana were obtained in
http://www.isi.uu.nl/Research/Databases/DRIVE/browser.php.

C. Discussion of the results

The KA operators achieved promising results in all four
datasets. In the case of staffs and DRIVE, its results were
comparable to complicated heuristic methods designed to
process only images of their specific domain.

Due to the size of the computed features, training a SVM
using the KA approach requires more memory than other non
linear methods such as Decision Trees or Neural Networks.
However, it still requires much less memory than solving
the dual SVM problem using the original features. Memory
requirement was the main bottleneck when training operators
in DRIVE and staffs. We were only able to use a fraction of
the available data. Thus, we should be able to improve our
results if we reduce the memory footprint of the method.

Another point of improvement could be the combination
of the two level and KA approaches. Although a set of KA
operators can be readily combined into a two level operator,
there are still many question regarding the parameters and
number of operators necessary.

Finally, the determination of the parameters of the approx-
imated kernel also reveals interesting information about KA.
We show in Figure 5 the validation error of all tested parameter
sets. In all cases, increasing the number of components m
offers diminishing gains in accuracy. When using the poly-
nomial kernel, the degree seems to be less important than
the number of components used in the approximation. Also,
for approximations of polynomials with higher degrees the
difference between training and accuracy grew considerably,
which may be a sign that they are more prone to overfitting.
Using polynomials with low degrees is also computationally
advantageous, since it is cheaper to compute Kx in these cases.

In the Gaussian kernel case, we see in Figure 5 that the
correct estimation of this parameter is essential to obtain good
performance.

http://www.isi.uu.nl/Research/Databases/DRIVE/browser.php


(a) Input (b) Expected output (c) Our method (KA)

(d) Staal (e) Niemeijer (f) Zana

Fig. 4: Result images for the DRIVE dataset.

VI. CONCLUSION

We presented a method to train kernelized SVMs for image
operator learning by approximating their feature maps. We
have also selected appropriate kernels to process binary and
gray level inputs and have discussed their visual interpre-
tations. Experiments have shown encouraging results. Our
method achieved comparable results with most state-of-the-art
techniques.

In the future we plan to train combinations of kernelized
operators and study how to build them effectively. Also, we
plan to apply large scale optimization techniques to be able to
use the training set fully in the bigger datasets (DRIVE and
staffs). Finally, we may study using GPUs to accelerate both
training and classification steps.
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[23] T. Géraud, “A morphological method for music score staff removal,” in
Proceedings of the 21st International Conference on Image Processing
(ICIP), Paris, France, 2014, pp. 2599–2603.

[24] C. Dalitz, M. Droettboom, B. Pranzas, and I. Fujinaga, “A comparative
study of staff removal algorithms,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 5, pp. 753–766, 2008.

[25] M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. Abramoff,
“Comparative study of retinal vessel segmentation methods on a new
publicly available database,” in SPIE Medical Imaging, J. M. Fitzpatrick



and M. Sonka, Eds., vol. 5370, SPIE. SPIE, 2004, pp. 648–656.
[26] F. Zana and J.-C. Klein, “Segmentation of vessel-like patterns using

mathematical morphology and curvature evaluation,” IEEE Transactions
on Image Processing, vol. 10, no. 7, pp. 1010–1019, 2001.


