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Abstract—Despite the consistent advances in visual features
and other Content-Based Image Retrieval techniques, measuring
the similarity among images is still a challenging task for effective
image retrieval. In this scenario, similarity learning approaches
capable of improving the effectiveness of retrieval in an unsuper-
vised way are indispensable. A novel method, called Cartesian
Product of Ranking References (CPRR), is proposed with this
objective in this paper. The proposed method uses Cartesian
product operations based on rank information for exploiting the
underlying structure of datasets. Only subsets of ranked lists
are required, demanding low computational efforts. An exten-
sive experimental evaluation was conducted considering various
aspects, four public datasets and several image features. Besides
effectiveness, experiments were also conducted to assess the
efficiency of the method, considering parallel and heterogeneous
computing on CPU and GPU devices. The proposed method
achieved significant effectiveness gains, including competitive
state-of-the-art results on popular benchmarks.

Keywords-content-based image retrieval; unsupervised learn-
ing; Cartesian product; effectiveness; efficiency;

I. INTRODUCTION

The evolution of technologies for acquisition and sharing

digital visual contents has triggered a tremendous growth

of image collections. With huge amounts of imagery being

accumulated daily from a wide variety of sources [1], Content-

Based Image Retrieval (CBIR) systems are considered a

central solution for searching and indexing images through

their visual content.

Mainly supported by the creation of several visual features

and distance measures, the CBIR systems have established

itself as an essential tool in many fields. However, despite

of the consistent development of image retrieval approaches,

effectively measuring the similarity among images remains a

challenging task. Thus, more recent approaches have been put

efforts on other stages of the retrieval process, not directly

related to low-level feature extraction procedures [2].

Several post-processing methods have been proposed to

improve the effectiveness of image retrieval tasks in an

unsupervised way [3–5]. In general, the main objective of

such methods is to replace pairwise distances by more global

affinity measures capable of considering the dataset struc-

ture [4]. Although effective, approaches based on diffusion

processes [3] and graphs [6] require high computational ef-

forts.

In this scenario, rank-based approaches have been attracted

a lot of attention lately, considering both effectiveness and

efficiency aspects. Various recent methods demonstrated [7–

9] that rank analysis can provide a rich and reliable source

of information for context-based measures. Rank information

have been analyzed through different models, as similarity of

ranked lists [7] or sets [8], rank-based recommendations [9],

and rank consistency verifications [10]. Regarding efficiency,

once the most relevant information is located at top posi-

tions of the ranked lists, the computation efforts required

can be substantially reduced. Additionally, the rank modeling

of similarity information allows an uniform representation,

independent of distance or similarity measures.

In this paper, a novel unsupervised similarity learning

method is proposed to improve the effectiveness of image

retrieval tasks. The main objective of the proposed Cartesian

Product of Ranking References (CPRR) is to maximize the

similarity information encoded in rankings through Cartesian

product operations. While the CPRR algorithm only considers

a subset of ranked lists for reducing computational costs,

the Cartesian product is used for expanding the similarity

relationships. The central idea consists in the use of kNN

and reverse kNN queries for computing sets of images, which

are used for Cartesian product operations. To the best of our

knowledge, this is the first unsupervised similarity learning

approach which models the rank information in terms of

Cartesian product of neighborhood and reverse neighborhood

sets. In addition, the proposed method can be used in rank

aggregation tasks and can be efficiently computed through

parallel computing.

An extensive experimental evaluation was conducted, con-

sidering various aspects. Four public datasets and several dif-

ferent image descriptors are considered. Experimental results

confirm the effectiveness of the proposed method, consistently

improving the retrieval precision and achieving relative gains

up to +32.57%. Besides to the effectiveness, the efficiency

of the proposed method was also evaluated. Experiments

conducted in parallel and heterogeneous environments (CPUs

and GPUs) demonstrated that the algorithm presents very

small run times for image collections of different sizes. The

CPRR algorithm also compares favorably with recent retrieval

methods and state-of-the-art approaches, considering both ef-



fectiveness and efficiency aspects. The algorithm achieves a

N-S score of 3.93 on the popular UKBench [11] dataset.

The paper is organized as follows: Section II describes the

image retrieval model considered; Section III presents the

proposed algorithm; Section IV discusses the experimental

evaluation; finally, Section V draws the conclusions.

II. IMAGE RETRIEVAL MODEL

The image retrieval notation used along the paper is for-

mally defined in this section. Let C={img1, img2, . . . , imgn}
be an image collection, where n denotes the size of the

collection. Let ρ: C × C → R be a similarity function, such

that ρ(imgi, imgj) denotes the similarity between two images

imgi, imgj ∈ C. For simplicity and readability purposes, the

notation ρ(i, j) is used in the remainder of the paper.

The similarity among all images imgi, imgj ∈ C defined by

the function ρ(i, j) can be applied for computing an affinity

matrix W . The matrix W , in turn, is commonly used as

an adjacency matrix by various graph and diffusion-based

methods. However, this approach often leads to storage and

time complexity of at least O(n2), so that scalability and

efficiency requirements are not met for large image collections.

A rank-based modeling of similarity information represents

an effective and efficient solution in this scenario. Different

from similarity functions which establish relationships only

between pairs of images, the ranked lists encode similarity

information among a query image and all other collection

images. In addition, although a ranked list can encode infor-

mation from the entire collection, the most similar images are

expected to be located at top positions. Therefore, a constant

L ≪ n can be used such that only a subset composed of

top-L positions of the ranked list are considered, reducing the

computational efforts required.

Formally, the ranked list τq=(img1, img2, . . . , imgL) can

be defined as a permutation of the image collection Cs ⊂ C,

which contains the most similar images to query image imgq ,

such that and |CL| = L. A permutation τq is a bijection from

the set CL onto the set [L] = {1, 2, . . . , L}. The notation τq(i)
can be interpreted as the position (or rank) of image imgi in

the ranked list τq . If imgi is ranked before imgj in the ranked

list of imgq , that is, τq(i) < τq(j), then ρ(q, i) ≥ ρ(q, j).
Every image in the collection can be taken as a query image

imgq and a respective ranked list can be computed. In this way,

the set of ranked lists {τ1, τ2, . . . , τn} provides a compact

and effective rank-based modeling of similarity information.

In this work, an unsupervised method is proposed aiming at

exploiting the information encoded in the set of ranked lists

for computing new and more effective retrieval results.

III. CARTESIAN PRODUCT OF RANKING REFERENCES

(CPRR)

The rank analysis have been established as a rich and

reliable source of information for context-based measures.

The main objective of the proposed Cartesian Product of

Ranking References (CPRR) is to maximize the available rank

information through the use of Cartesian product operations.

The Cartesian product over neighborhood sets establishes

new pairwise relationships, which are used to discovering

underlying similarity information. The proposed approach can

broadly divided in two main steps:

• Rank Normalization: the reciprocal rank references are

analyzed aiming at improving the symmetry of neighborhoods

and, consequently, the effectiveness of the ranked lists;

• Cartesian Product of Ranking References: the Cartesian

product is computed considering the top-k neighborhood and

the reverse neighborhood sets. The obtained results are used

to define an iterative similarity measure.

Each step of the proposed approach is discussed in the

following subsections.

A. Rank Similarity Score

This section defines a rank similarity score, which is used

for both rank normalization and Cartesian product procedures.

Since the most relevant information about similarity among

images is encoded at top positions of ranked lists, neighbor-

hood sets can be defined at different depths. When considering

a given depth d, only the similarity information of top-d ranked

images is considered, avoiding noisy information contained in

the remainder of ranked lists.

Aiming at considering only the top-d most similar images,

a neighborhood set N is defined. Let d denote the depth

of ranked lists considered, and therefore the size of the

neighborhood set. Let N (i, d) be the neighborhood set, which

is formally defined as follows:

N (q, d) = {R ⊆ C, |R| = d ∧ ∀x ∈ R, y ∈ C −R :

ρ(q, x) ≥ ρ(q, y)}.
(1)

Taking into account the neighborhood set, a similarity score

is defined based on rank information. The rank similarity score

rd(q, i) represents the similarity between images imgq and

imgi based on the ranked list of image imgq at a depth d.

The score ranges linearly according to the position of imgi in

the ranked list τq and can be defined as:

rd(q, i) =

{

d− τq(i) + 1 if imgi ∈ N (q, d)
0 otherwise.

(2)

In this work, two different depths are considered: L, which

defines a broader neighborhood used by the rank normalization

step; and k, which defines a local neighborhood used by

Cartesian product operations. A sparse matrix structure [9]

can be used for storage of scores, once both k and L values

are much smaller than n.

B. Reciprocal Rank Normalization

Different from most of distance or similarity measures,

the k-neighborhood relationships and rank measures are not

symmetric. However, the benefits of improving the symmetry

of the k-neighborhood relationship are remarkable in image re-

trieval applications [12]. In this way, various approaches have

been proposed for exploiting the reciprocal neighborhood [13].



In this work, a simple rank normalization based on the

reciprocal neighborhood is employed as a pre-processing step

for the Cartesian product operations. A normalized similarity

function ρr(i, j) is defined as the sum of reciprocal rank

similarity score at a depth L:

ρr(i, j) = rL(i, j) + rL(j, i). (3)

In the following, all the ranked lists are updated according

to the similarity function, using a stable sorting algorithm. The

update gives rise to a new set of ranked lists, which is used as

input for the Cartesian product operations. Notice that a low

computational cost algorithm can be derived for computing the

rank normalization procedure, once only the top-L positions

of ranked lists are considered.

C. Cartesian Product of Neighborhood Sets

The ranked lists and the neighborhood sets represents a

relevant source of information for context-based similarity

functions. While a pairwise measure defines a similarity re-

lation between only two images, a ranked list establishes a

broader relationship among a query image and its most similar

images. Additionally, the neighborhood and rank analysis can

be exploited for discovering underlying similarity information

among neighbors of a same query image.

In this way, Cartesian product operations of neighborhood

sets and rank information are employed for computing a new

and more effective similarity measure. The objective is to

consider the pairwise relations computed by the Cartesian

product weighted by rank information.

The Cartesian product can be defined as the set of all

possible pairs of elements whose components are members

of two sets. Let N (i, k) and N (j, k) be k-neighborhood sets

of images imgi and imgj , respectively. The Cartesian product

of N (i, k) and N (j, k) is defined as:

N (i, k)×N (j, k) = {(ni, nj) | ni ∈ N (i, k), nj ∈ N (j, k)}.
(4)

Given a query image imgq and its respective neighborhood

set N (q, k), we denote N (q, k) × N (q, k) = N (q, k)2. The

pairs of images contained in N (q, k)2 define all possible

similarity relationships among the neighbors of imgq . This

information is exploited for computing a new similarity score

wc(i, j), between imgi and imgj , with imgi, imgj ∈ N (q, k).
The similarity score wc(i, j) is computed considering every

query image imgq ∈ C which have imgi and imgj as

neighbors. In addition, the score is weighted according to their

rank score, by the term rk(q, i)× rk(q, j). Formally, the score

wc(i, j) can be defined as:

wc(i, j) =
∑

q∈C

∑

i∈N (q,k)2

∑

j∈N (q,k)2

rk(q, i)× rk(q, j). (5)

Algorithmically, the similarity score can be computed with

complexity of only O(n), once k is a constant. Algorithm 1

outlines our proposed approach. The main idea consists in per-

forming only top-k rank analysis for computing the Cartesian

product for each neighborhood set.

Algorithm 1 Cartesian Product of Neighborhood Sets.

Require: Set of Ranked Lists R
Ensure: Similarity score wc(·, ·)

1: for all imgq ∈ C do

2: for all imgi ∈ N (q, k) do

3: for all imgj ∈ N (q, k) do

4: wc(i, j)← wc(i, j) + rk(q, i)× rk(q, j)
5: wc(j, i)← wc(j, i) + rk(q, i)× rk(q, j)
6: end for

7: end for

8: end for

D. Cartesian Product of Reverse Neighborhood Sets

The Cartesian product of ranked lists defines similarity

relationships among neighbors of the same query image. On

the other hand, information from different queries with a

common neighbor is ignored. In other words, the set of images

which have an image among its neighbors also encodes a

relevant similarity information, which can be exploited for

improving the effectiveness of retrieval.

With this objective, the Cartesian product of reverse neigh-

borhood sets is considered. Let Nr(q) be a reverse neighbor-

hood set computed for an image imgq , which is compose by

all images whose neighborhood sets contains imgq . Formally,

the set Nr(q) can be defined as follows:

Nr(x) = {R ⊆ C, ∀q ∈ R : imgx ∈ N (q, k)}. (6)

The Cartesian product of the reverse neighborhood set

Nr(i)
2 is used for analysing underlying similarity information.

In this way, a similarity score wr(i, j) is defined for increasing

the similarity between any given images imgi and imgj
contained in reverse neighborhood sets. Formally, the score

is defined as follows:

wr(i, j) =
∑

x∈C

∑

i∈Nr(x)2

∑

j∈Nr(x)2

rk(i, x)× rk(j, x). (7)

An algorithmic solution for computing the similarity score

based on reverse neighborhood is presented in Algorithm 2.

The reverse neighborhood sets are computed on lines 1-5,

while the Cartesian product is computed on lines 6-13.

E. Iterative Similarity Measure

The similarity scores based on the Cartesian product of

neighborhood and reverse neighborhood sets are used for

computing a new and iterative similarity measure. Let the

superscript (t) denote the current iteration, the similarity

measure ρ(t+1) can be defined as:

ρ(t+1) = wc(i, j) + wr(i, j). (8)

The similarity measure ρ(t+1) is used as input for a sorting

step, which gives rise to a new set of ranked lists. Once the

input of algorithm is also a set of ranked lists, it can be

iteratively executed until a certain number of T iterations.



Algorithm 2 Cartesian Product of Reverse Neighborhood Sets.

Require: Set of Ranked Lists R
Ensure: Similarity score wr(·, ·)

1: for all imgq ∈ C do

2: for all imgx ∈ N (q, k) do

3: Nr(x)← Nr(x) ∪ imgq
4: end for

5: end for

6: for all imgx ∈ C do

7: for all imgi ∈ Nr(x) do

8: for all imgj ∈ Nr(x) do

9: wr(i, j)← wc(i, j) + rk(i, x)× rk(j, x)
10: wr(j, i)← wc(j, i) + rk(i, x)× rk(j, x)
11: end for

12: end for

13: end for

Only the Cartesian product operations are considered for the

iterative measure, e.g., the rank normalization is executed only

before the first iteration. The method also requires a very small

number of iterations for reaching high effectiveness results (as

discussed in Section IV).

F. Rank Aggregation

Different features often provide distinct visual information

about images. In this scenario, different rankings computed

for each feature also encode distinct and complementary

information. In fact, most of recent retrieval approaches com-

monly consider various features [14]. Our goal is to use the

proposed CPRR algorithm for rank aggregation tasks, aiming

at combining rank information computed for different features.

Since the most significant effectiveness gains are obtained

at the first iteration, the CPRR algorithm is computed inde-

pendently for each descriptor and the similarity measure is

combined before the next iterations. Let ρ
(1)
a be the similarity

measure computed at the first iteration for a given feature fa.

Let a be defined in the interval [1,m], where m denotes num-

ber of features considered. The combined similarity measure

is computed as follows:

ρ(1)(i, j) =

m
∑

a=1

ρ(1)a (i, j). (9)

Based on similarity score, a new set of ranked lists is

generated. Subsequently, the next iterations are computed in

the same way as the similarity learning algorithm.

G. Parallel Design

The CPRR algorithm can be widely parallelized, specially

regarding its Cartesian product operations. This section dis-

cusses the parallel design of the CPRR algorithm, using the

OpenCL standard. The OpenCL is a low-level API for task-

parallel and data-parallel heterogeneous computing. A kernel

is the name given for pieces of code that can be executed in

parallel. Each kernel is executed in parallel by a given number

of work-items.

The parallel design of the CPRR algorithm is illustrated in

Figure 1. Each main step of the algorithm defines a different

kernel, which runs in an OpenCL device (CPU or GPU). Each

kernel, in turn, is parallelized in n work-items. Two transfer

models were used: Writer Buffer, which requires the transfer

of the data to the device memory; and Map Buffer, which

requires only the transfer of data pointers.

Reciprocal Rank Normalization

Sort Ranked Lists

Cartesian Product of Neighborhood Sets

Cartesian Product of Reverse Neighborhood Sets

Clean Reverse Neighborhood Sets

Serial (C/C++)

Sort Ranked Lists

execute T

iterations

Parallel (OpenCL)

Fig. 1: Design of the Parallel CPRR Algorithm.

Since the Cartesian product operations are processed in

parallel and the similarity measure is stored using a global

memory, concurrent access can cause loss of updates. How-

ever, the overhead associated to atomic operations in OpenCL

is high. Therefore, direct updates of similarity score are

allowed due to the very low impact on the effectiveness of

the algorithm (as discussed in the experimental section).

Notice that almost all the steps are executed in parallel.

However, the “Clean Reverse Neighborhood Sets” can either

be serial or parallel. When using Write Buffer, this step is exe-

cuted in parallel to avoid the transfer to device memory, which

causes efficiency loss. For the Map Buffer, this operation can

be executed serially without any transfer before and after the

operation.

In the end of each iteration, a sorting procedure is executed

to update the top positions of ranked lists according to the

new similarity measure. The insertion sort algorithm is used,

once it tends to be linear when input is almost sorted.

IV. EXPERIMENTAL EVALUATION

Several aspects are considered to assess the effectiveness

and efficiency of the proposed method. Section IV-A describes

the experimental setup. Section IV-B discusses the algorithm

settings. Section IV-C presents the results of the effectiveness

evaluation, while Section IV-D presents the efficiency eval-

uation. Section IV-E presents a comparison of the proposed

method with other state-of-the-art unsupervised learning meth-

ods and recent retrieval approaches.

A. Experimental Setup

Four distinct and public datasets are considered in the

experiments, with size ranging from 280 to 10,200 images.

In order to exploit the different dataset characteristics, several

global descriptors are used, considering shape, color, and

texture properties. Convolution Neural Network features are

extracted using the Caffe framework [37] and different layers



TABLE I: Datasets and images descriptors used in the experimental evaluation.

Dataset Size Type General Descriptors Effectiv.
Description Measure

Soccer [15] 280 Color
Scenes

Dataset composed of images from 7 soccer
teams, containing 40 images per class.

Border/Interior Pixel Classification (BIC) [16], Auto Color Correlograms (ACC) [17], and
Global Color Histogram (GCH) [18]

MAP (%)

MPEG-7 [19] 1,400 Shape A well-known dataset composed of 1400
shapes divided in 70 classes. Commonly
used for evaluation of unsupervised learning
approaches.

Segment Saliences (SS) [20], Beam Angle Statistics (BAS) [21], Inner Distance Shape
Context (IDSC) [22], Contour Features Descriptor (CFD) [23], Aspect Shape Context
(ASC) [24], and Articulation-Invariant Representation (AIR) [25]

MAP (%),
Recall@40

Brodatz [26] 1,776 Texture A popular dataset for texture descriptors
evaluation composed of 111 different tex-
tures divided into 16 blocks.

Local Binary Patterns (LBP) [27], Color Co-Occurrence Matrix (CCOM) [28], and Local
Activity Spectrum (LAS) [29]

MAP (%)

UKBench [11] 10,200 Objects/
Scenes

Composed of 2,550 objects or scenes. Each
object/scene is captured 4 times from differ-
ent viewpoints, distances, and illumination
conditions.

ACC [17], ACC Spatial Pyramid (ACC-SPy) [17, 30], BIC [16], Color and Edge Directivity
Descriptor (CEED) [31], Fuzzy Color and Texture Histogram (FCTH) [32], FCTH Spatial
Pyramid (FCTH-SPy) [30, 32], Joint Composite Descriptor (JCD) [33], Scale-Invariant
Feature Transform (SIFT) [34], Scalable Color Descriptor (SCD) [35], Vocabulary Tree
(VOC) [36], and Convolutional Neural Network by Caffe [37] framework (CNN-Caffe)

N-S Score

(FC6, FC7, FC8). Regarding local descriptors, SIFT [34]

features are used considering a variant of vocabulary tree based

retrieval (VOC) [36]. The datasets and descriptors are briefly

described in Table I.

The effectiveness evaluation considers all images of each

dataset as query images. As effectiveness measure, the Mean

Average Precision (MAP) is used for most of the datasets,

except for the UKBench dataset [11] which uses the N-

S Score. For the MPEG-7 [19] dataset, the Recall@40 is

also considered in addition to MAP. Most of experiments

also report the effectiveness gains: let Sb and Sa be the

effectiveness scores before and after the algorithm execution,

the gain is defined as: (Sa − Sb)/Sb.

For the efficiency evaluation experiments, the average run

time of 10 executions and 95% confidence intervals are

considered. The hardware environment is composed of a CPU

Intel Xeon CPU E3-1240 and a GPU AMD Radeon HD 7900.

The software environment is given by the operating system

Linux 3.11.0-15 - Ubuntu 12.04 and OpenCL 1.2 AMD-APP.

The code was compiled using g++ 4.6.3 using the flag “-O3”.

B. Parameter Settings

Two parameters are considered in the proposed algorithm:

(i) k: the number of nearest neighbors; and (ii) T : the number

of iterations. Additionally, the constant L defines a trade-off

between effectiveness and efficiency. A set of experiments

were conducted for evaluating the impact of different param-

eter settings on the retrieval scores.

The first experiment aims at analyzing the impact of dif-

ferent combination of parameters k and T . The MAP scores

are computed ranging the parameter k in the interval [0, 30]
and the parameter T from 1 to 5. This experiment considers

the MPEG-7 [19] dataset and the CFD [23] shape descriptor.

Figure 2 shows the variation of the MAP according to k and T .

The joined growth of k and MAP scores can be observed until

a stabilization, with values of k near 20. For the parameter T ,

the most significant effectiveness gains are obtained for the

first iteration. Considering these results, the parameter values

of k = 20 and T = 2 were used for most of the remaining

experiments. Only the UKBench [11] dataset used k = 4. This

is due to the very distinct size of classes: the dataset has a very

small number of images per class.

Since the CPRR algorithm does not require the use of the

entire ranked list, the second experiment analyzes the impact

Fig. 2: Impact of parameters k and T on effectiveness.

of the size of ranked lists on the effectiveness results. The

higher the L value, the greater the effectiveness but also the

greater the run time required. The experiment conducted on

the MPEG-7 [19] dataset analyzed the MAP scores according

to different values of L ranging in the interval [50, 1400]. The

results for four different descriptors are shown in Figure 3.

As it can be observed, the most significant gains are obtained

for small values of L. In addition, for higher values of L,

the MAP scores reach an asymptote. In this way, the value of

L = 400 was used for most of the experiments.1

C. Effectiveness Evaluation

Various experiments were conducted aiming at evaluating

the effectiveness of the proposed CPRR algorithm. Diverse

public datasets, several descriptors and various baselines were

considered.

Firstly, the proposed algorithm is evaluated in generic image

retrieval tasks, considering three datasets and different global

features (shape, color, and texture). The MAP results are

shown in Table II, considering both serial and parallel im-

plementations of CPRR algorithm. As it can be observed, the

effectiveness results for serial and parallel implementations are

very similar. The relative effectiveness gains, computed based

on serial execution, achieve very high values up to +32.57%.

The results of recent unsupervised learning approaches [9, 38]

are reported as baselines. We can observe that the proposed

CPRR algorithm yields the best scores for most of descriptors.

1The value of L used for the Soccer [15] dataset is limited by the dataset size (L =
280). For the UKBench [11] dataset we used L = 200.
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Fig. 3: Impact of L on effectiveness.

TABLE II: Effectiveness evaluation of the proposed CPRR algorithm considering various
datasets, descriptors, and baselines (MAP as effectiveness measure).

Descriptor Dataset Original Pairwise RL- CPRR CPRR Gain
MAP Rec. [38] Rec. [9] Serial Parallel

SS [20] MPEG-7 37.67% 39.90% 48.68% 49.94% 49.947 % ± 0.009 +32.57%
BAS [21] MPEG-7 71.52% 77.65% 79.58% 80.60% 80.611 % ± 0.006 +12.70%
IDSC [22] MPEG-7 81.70% 86.83% 88.80% 89.42% 89.432 % ± 0.004 +9.45%
CFD [23] MPEG-7 80.71% 91.38% 91.39% 92.15% 92.157 % ± 0.005 +14.17%
ASC [24] MPEG-7 85.28% 91.80% 91.34% 92.32% 92.323 % ± 0.005 +8.26%
AIR [25] MPEG-7 89.39% 95.50% 96.12% 97.80% 97.796 % ± 0.007 +9.41%

GCH [18] Soccer 32.24% 32.35% 34.38% 35.47% 35.307 % ± 0.054 +10.02%
ACC [17] Soccer 37.23% 40.31% 41.23% 47.14% 46.965 % ± 0.072 +26.62%
BIC [16] Soccer 39.26% 42.64% 45.15% 47.29% 47.172 % ± 0.095 +20.45%

LBP [27] Brodatz 48.40% 51.92% 51.26% 49.07% 49.073 % ± 0.006 +1.38%
CCOM [28] Brodatz 57.57% 66.46% 64.34% 64.81% 64.816 % ± 0.007 +12.58%

LAS [29] Brodatz 75.15% 80.73% 79.71% 79.34% 79.346 % ± 0.004 +5.58%

TABLE III: Effectiveness evaluation of the CPRR algorithm on the
UKBench [11] dataset, considering the N-S score.

Descriptor Type Original RL- CPRR Gain

Score Rec. [9]

SIFT [34] Local 2.54 2.88 2.99 +17.72%
CEED [31] Color/Text. 2.61 2.72 2.83 +8.43%
FCTH [32] Color/Text. 2.73 2.80 2.90 +6.23%
JCD [33] Color/Text. 2.79 2.88 3.00 +7.53%

FCTH-Spy [30, 32] Color/Text. 2.91 3.05 3.21 +10.31%
BIC [16] Color 3.04 3.15 3.28 +7.89%

Caffe-FC6 [37] CNN 3.05 3.30 3.40 +11.48%
Caffe-FC8 [37] CNN 3.18 3.30 3.47 +9.12%

ACC-Spy [17, 30] Color 3.25 3.38 3.52 +8.31%
Caffe-FC7 [37] CNN 3.31 3.46 3.61 +9.06%

ACC [17] Color 3.36 3.53 3.62 +7.74%
SCOLOR [34] Color 3.15 3.24 3.37 +6.98%

VOC [36] BoW 3.54 3.65 3.72 +5.08% Fig. 4: Impact of the CPRR on the UKBench [11] dataset.

An experiment considering natural image retrieval tasks

and a very distinct set of descriptors was conducted on the

UKBench [11] dataset. Table III presents the effectiveness

results given by the N-S score. The N-S score corresponds

to the number of relevant images among the first four images

returned, defined in the interval [1,4] (the highest achievable

score is 4). The small number of images per class (only 4)

makes this dataset a very challenging one for unsupervised

learning algorithms. Despite this fact, the CPRR achieved high

gains ranging from +5.08% to +17.72% and superior to recent

baseline [9].

Figure 4 illustrates four visual examples of the impact

of the CPRR algorithm on retrieval results obtained for the

UKBench [11] dataset and the ACC [17] descriptor. The query

images are presented in green borders and wrong results in red

borders. The first line represents the original retrieval results

and the second line, the results after the algorithm execution.

The proposed algorithm was also evaluated in rank aggre-

gation tasks, considering the best descriptors for each dataset.

Table IV presents the effectiveness scores for various datasets.

A slightly different parameter settings2 were used due to the

possibility of relevant images do not appear in the top-L
positions of all combined descriptors. We can observe that all

aggregated results are superior to isolated descriptors, reaching

very high scores for all datasets.

An experiment analyzing both effectiveness and efficiency

aspects was conducted on the MPEG-7 [19] dataset. Fig-

2We used L = 600 for the MPEG-7 [19] and Brodatz [26]. For the UKBench [11]

dataset, we used L = 100 and k = 6.

TABLE IV: Effectiveness evaluation of rank aggregation tasks.

Dataset Descriptors Score Metric

MPEG-7 CFD+AIR 99.95% MAP
MPEG-7 CFD+ASC 98.83% MAP
Brodatz CCOM+LAS 83.26% MAP
Soccer ACC+BIC 48.25% MAP

UKBench VOC+CNN-FC7 3.88 N-S score
UKBench ACC+CNN-FC7 3.88 N-S score
UKBench ACC+CNN-FC7+VOC 3.93 N-S score

ure 5 presents the results of CPRR and recent baselines

(Pairwise Recommendation [38], RL-Sim [7, 39] and RL-

Recommendation [9]). The MAP score and the run time deter-

mines the position of the algorithms in the graph. Therefore,

an ideal algorithm, with high effectiveness and low run time,

is positioned at the top-left corner of the graph. Notice that

the best positions are occupied by the CPRR Algorithm (serial

and parallel).

D. Efficiency Evaluation

Experiments were conducted for evaluating the efficiency of

the proposed method, considering several aspects, as: different

datasets, serial and parallel3 implementations, different devices

(CPU, GPU), and memory transfer models.

Table V presents the average run time and confidence inter-

vals for the CPRR algorithm considering different criteria. For

comparison purposes, the run time of two recent baselines [9,

38] are reported. The best performance for each dataset is

3The OpenCL build and environment time are not considered in the reported results,

since the build can be executed once off-line and the environment time is constant

independently of dataset sizes.
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Fig. 5: Effectiveness and efficiency analysis. Fig. 6: Run time comparison on the MPEG-7 [19] dataset.

TABLE V: Efficiency evaluation: runtime (in seconds) of the CPRR for different devices and datasets.
Algorithm Exec. Device Soccer [15] MPEG-7 [19] Brodatz [26] UKBench [11]

Pairwise Rec. [38] Serial CPU 0.1149 ± 0.00018 0.3663 ± 0.00094 0.6672 ± 0.00140 14.802 ± 0.11059
RL-Rec. [9] Serial CPU 0.0607 ± 0.00000 0.1462 ± 0.00021 0.1108 ± 0.00102 0.1868 ± 0.00018
CPRR Serial CPU 0.0058 ± 0.00021 0.0381 ± 0.00041 0.0501 ± 0.00077 0.1767 ± 0.00102
CPRR Parallel GPU1 0.0711 ± 0.00463 0.1640 ± 0.00781 0.1560 ± 0.00570 0.2038 ± 0.00874
CPRR Parallel CPU1 0.0032 ± 0.00015 0.0164 ± 0.00031 0.0214 ± 0.00054 0.1834 ± 0.00052
CPRR Parallel CPU2 0.0027 ± 0.00000 0.0131 ± 0.00018 0.0143 ± 0.00075 0.1082 ± 0.00051

Memory Transfer Model: 1Write Buffer; 2Map Buffer.

highlighted in bold. As we can observe, the CPRR algorithm

requires very low run times for all datasets, smaller than

baselines even for the serial implementation.

A more general comparison of the CPRR (both serial and

parallel) is presented in Figure 6. The run time of the RL-

Sim [7, 39] (serial and parallel), RL-Recommendation [9]

(serial and parallel) and Pairwise Recommendation [38] (se-

rial), are reported as baselines. The MPEG-7 [19] dataset

is considered for the experiment. Notice that, even using a

logarithmic scale, the run time of the proposed CPRR (in

red) algorithm is significant smaller than other considered

approaches.

E. Comparison with Other Approaches

Finally, the CPRR algorithm was also evaluated in compar-

ison with other state-of-the-art unsupervised learning meth-

ods and recently proposed retrieval approaches. Experiments

were conducted on two image datasets: UKBench [11] and

MPEG-7 [19], which are popular datasets commonly used as

benchmark for image retrieval and post-processing methods.

Table VI presents the effectiveness results of CPRR al-

gorithm in comparison with recent retrieval approaches on

the UKBench [11] dataset. We can observe that the CPRR

algorithm achieves the best results, reaching a N-S score of

3.93 for the aggregation of VOC+ACC+CNN-FC7 features.

A comparison of the proposed method with other state-of-

the-art unsupervised methods on the MPEG-7 [19] dataset is

shown in Table VII. The effectiveness results obtained by the

CPRR algorithm are also comparable or superior to various

other approaches.

TABLE VI: Effectiveness comparison among recent retrieval meth-
ods on the UKBench [11] dataset.

N-S scores for recent retrieval methods

Zheng Qin Wang Zhang Zheng Xie
et al. [40] et al. [13] et al. [41] et al. [14] et al. [42] et al. [43]

3.57 3.67 3.68 3.83 3.84 3.89

N-S scores for the CPRR method

ACC+CNN-FC7 VOC+CNN-FC7 VOC+ACC+CNN-FC7

3.88 3.88 3.93

TABLE VII: Comparison of post-processing methods on the MPEG-
7 [19] dataset - Bull’s Eye Score (Recall@40).

Shape Descriptors

CFD [23] - 84.43%
IDSC [22] - 85.40%

SC [44] - 86.80%
ASC [24] - 88.39%
AIR [25] - 93.67%

Post-Processing Methods

Algorithm Descriptor(s) Score

Graph Transduction [45] IDSC 91.00%
Shortest Path Propagation [6] IDSC 93.35%

RL-Sim [7] CFD 94.13%
CPRR CFD 94.77%

Locally C. Diffusion Process [3] ASC 95.96%
RL-Recommendation [9] ASC 94.40%

CPRR ASC 95.07%
Tensor Product Graph [4] ASC 96.47%

Self-Smoothing Operator [5] SC+IDSC 97.64%
Self-Smoothing Operator [5] SC+IDSC+DDGM 99.20%

CPRR CFD+ASC 99.51%

Pairwise Recommendation [38] CFD+IDSC 99.52%
RL-Recommendation [9] AIR 99.78%

CPRR AIR 99.93%

Tensor Product Graph [4] AIR 99.99%
Neighbor Set Similarity [8] AIR 100%

CPRR CFD+AIR 100%



V. CONCLUSIONS

In this paper, we presented a novel unsupervised similarity

learning algorithm for image retrieval tasks. The proposed

approach employs Cartesian product operations for analyzing

rank information and exploiting the underlying structure of

the datasets. Extensive experiments were conducted consider-

ing public datasets and several descriptors. The experimental

results and comparisons with other recent state-of-the-art ap-

proaches demonstrate the effectiveness and efficiency of the

proposed method. As future work, we intend to investigate

the use of the proposed method in semi-supervised learning

tasks, considering interactive image retrieval scenarios. We

also intend to investigate its use in scenarios where the query

image is not part of the dataset.
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