
Reducing the number of points on the convex hull

calculation using the polar space subdivision in 𝐸2

Vaclav Skala, Michal Smolik, Zuzana Majdisova

Department of Computer Science and Engineering, Faculty of Applied Sciences

University of West Bohemia

Plzen, Czech Republic

Email: {skala, smolik, majdisz}@kiv.zcu.cz

Abstract—A convex hull of points in 𝑬𝟐 is used in many

applications. In spite of low computational complexity 𝑶(𝒉 𝐥𝐨𝐠 𝒏)
it takes considerable time if large data processing is needed. We
present a new algorithm to speed-up any planar convex hull
calculation. It is based on a polar space subdivision and speed-up
known convex hull algorithms of 𝟑, 𝟕 times and more. The

algorithm estimates the central point using 𝟏𝟎% of the data; this
point is taken as the origin for the polar subdivision. The space
subdivision enables a fast and very efficient reduction of the
given points, which cannot contribute to the final convex hull.
The proposed algorithm iteratively approximates the convex hull,
leaving only a small number of points for the final processing,
which is performed using a “standard” algorithm. Non-
eliminated points are then processed by a selected standard
convex hull algorithm. The algorithm is simple and easy to
implement. Experiments proved numerical robustness as well.

Keywords—Convex hull; iterative approximation; space
subdivision; reduction of points;

I. INTRODUCTION

A convex hull was one of the first sophisticated geometry
algorithms to be computed and there are many variations of it.
The most common form of this algorithm involves the
determination of the smallest convex set, called the "convex
hull", containing a discrete set of points. There are numerous
applications for convex hulls: collision avoidance, maximum
distance using convex hull diameter for large data sets
(Skala, 2013), (Skala and Majdisova, 2015), hidden object
determination, and shape analysis, point inside polygon (Skala
and Smolik, 2015), to name a few.

A subset 𝑆 ⊆ ℝ2 is convex if and only if for any two points
𝒑, 𝒒 ∈ 𝑆 the line segment with endpoints 𝒑 and 𝒒 is
completely contained in 𝑆. The convex hull 𝒞ℋ(𝑆) of a set 𝑆
is the smallest convex set that contains 𝑆. To be more precise,
it is the intersection of all convex sets that contain S. The
convex hull of a set of points 𝑃 is a convex polygon with
vertices in 𝑃.

A. Time Complexity

The search for the fastest algorithm is a pursuit which has
been preoccupying many authors for many years now. Many
have found excellent algorithms. Lately performance reached
𝑂(𝑛 log ℎ) complexity where ℎ is the number of points
forming the convex hull and 𝑛 is the number of input points.

There are many well-known algorithms used for the
calculation of convex hull in 2𝐷. A comparison of the time
complexity for some of them can be seen in Table 1.
(Graham, 1972) gave a complex hull algorithm with
𝑂(𝑛 log 𝑛), the worst-case running time. Later it was shown
that, in any model of computation where sorting has an

𝑂(𝑛 log 𝑛) lower bound, every convex hull algorithm must
require 𝑂(𝑛 log 𝑛) time for some inputs. Despite these
matching upper and lower bounds, and probably due to the
many applications of convex hulls, a number of other planar
convex hull algorithms have been published since Graham’s
algorithm. Moreover, the Marriage before Conquest algorithm
(Kirkpatrick and Seidel, 1986) computes the convex hull in
𝑂(𝑛 log ℎ) time, where ℎ is the number of vertices of the final
convex hull. The same authors showed that, on algebraic
decision trees of any fixed order, 𝑂(𝑛 log ℎ) is a lower bound
for computing convex hulls of a set of 𝑛 points, having a
convex hull with ℎ vertices.

Table 1. Comparison of 2D convex hull algorithms and their time complexity.
The number of input points is 𝑛 and ℎ is the number of vertices of the final
convex hull. Note that ℎ < 𝑛, so 𝑛ℎ < 𝑛2.

Algorithm
Expected time

complexity
Reference

Gift Wrapping 𝑂(𝑛ℎ) (Chand and Kapur, 1970)

Graham Scan 𝑂(𝑛 log 𝑛) (Graham, 1972)

Jarvis March 𝑂(𝑛ℎ) (Jarvis, 1973)

QuickHull 𝑂(𝑛ℎ) (Eddy, 1977), (Bykat, 1978)

Divide & Conquer 𝑂(𝑛 log 𝑛) (Preparata and Hong, 1977)

Monotone Chain 𝑂(𝑛 log 𝑛) (Andrew, 1979)

Incremental 𝑂(𝑛 log 𝑛) (Kallay, 1984)

Marriage before
Conquest

𝑂(𝑛 log ℎ) (Kirkpatrick and Seidel, 1986)

Chan's algorithm 𝑂(𝑛 log ℎ) (Chan, 1996)

Ordered hull 𝑂(𝑛 log ℎ) (Liu and Chen, 2007)

II. PROPOSED ALGORITHM

In the following section, we will introduce a new approach
to speeding any convex hull computation in 𝐸2. The main idea
of this algorithm is to discard as many points as possible
before the actual convex hull calculation takes place. The
technique used in this algorithm is based on division of space
into several polar sectors.

In section 2.A, we will show the first step of the algorithm
proposed which is the location of points inside the created
initial polygon. In section 2.B, we will show how to divide
points into polar shaped sectors. In section 2.C, we will show
how to reduce the suspicious points. And finally, in section
2.D, we will show a algorithm for calculation of the convex
hull from the selected divided points.

A. Location of Points inside Polygon

An important property of input points is that the most
extreme point on any axis is part of a convex hull. This fact is
apparent if we consider an example in which an extreme point
is not in the convex hull. This would mean the perimeter of

the convex hull passes through a point less extreme than that
point. However, it is then obvious that the extreme point
would not be included in the enclosed set, thus breaking a
fundamental characteristic of convex hulls. This property is
used in our algorithm for speeding-up the creation of the
convex hull.

The first step is finding the axis aligned bounding box
(AABB) of the input points, which is of 𝑂(𝑛) time
complexity. For the future described polar space subdivision
we do not need the exact extremal point, close enough
extremal points are sufficient for our purpose. Therefore we
do not have to search for them through all the input points, i.e.
we can search only approximately 10% of all points. This
simplification can save us some time and will not cause any
disadvantage in future calculations. So we get four distinct
points or, in some cases, only three or even just two.

Using these points we can create a convex polygon, see
Fig. 1. One important property of this polygon is that any of
the points lying inside cannot be the points of the final convex
hull. Keeping this in mind, we can create the initial test for
determining whether the point is inside/outside the polygon
and dismiss a lot of points by using this easy initial test.

a) b) c)

Fig. 1. Location of initial inner testing polygon inside the convex hull for 104

points (10% of points used for finding AABB box): a) uniform points in
circle, b) uniform points in square, c) Gauss points.

The location test of a point inside a polygon can be
determined using the following steps. Each side of the
polygon is an oriented line and thus we can calculate 𝐹𝑖(𝒙),
where 𝒙 is the point and 𝐹𝑖(𝒙) = 0 is the implicit formula for
a side with index 𝑖:

𝐹𝑖(𝒙) = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖 = 0 . (1)

If 𝐹𝑖(𝒙) < 0 for at least one 𝑖 ∈ {1, … ,4} then the point 𝒙 lies
outside of the polygon and has to be used for further
processing. Thus if for all 𝑖 ∈ {1, … ,4} is 𝐹𝑖(𝒙) ≥ 0 then the
point 𝒙 lies inside of the polygon and can be discarded.

B. Division of Points into Sectors

Some points were discarded because of their location inside
the inner polygon. Other points have to be further processed.
The 2𝐷 space can be divided into several non-overlapping
polar shaped sectors. This division uses a center point and
angular division. Center point 𝑪 is calculated as the average of
all corners of the inner initial polygon.

One way to divide the space is to use a uniform division of
an angle from 0 to 2𝜋. Using this, we have to calculate the
exact angle between the vector 𝒙′ = [0, 1]𝑇 and the vector
𝒗 = 𝒙 − 𝑪, and such a calculation uses the following formula:

𝜑 = arctg2(𝒗𝑥, 𝒗𝑦) . (2)

Calculation of the function arctg2(𝒗𝑥 , 𝒗𝑦) takes a lot of time

and we therefore use a simplified calculation of the
approximated angle. The simplified angle is not uniformly
distributed on a circle, but it is uniformly distributed on the

border of a square 〈−1, −1〉 × 〈1,1〉 . When calculating the
angle, we have to locate the exact half of quadrant, i.e. octant,
where the point is located, and then calculate the intersection
with the given side. The intersection with a side is simple, as
all sides of the box’s axis are aligned and intersect with the
main axes at 𝑦 or 𝑥 = 1 or − 1. The distribution of a
simplified angle can be seen on Fig. 2.

Fig. 2. Uniform distribution of a simplified angle on a unit square. Angle 𝜑 ∈
〈0,8〉 instead of 〈0,2𝜋〉.

Calculation of a simplified angle is faster than the formula (2)
and gives almost the same results, as can be seen in Fig. 3.

a) b) c)

Fig. 3. Division of space into 32 (a), 64 (b) and 128 (c) non-overlapping

sectors using uniform distribution of a simplified angle.

Now we have a simple calculation of the simplified angle
and therefore we are able to determine the index of the sector
to which the point belongs.

Each sector with the index 𝑖 contains one maximum point
𝑹𝑖

𝑚𝑎𝑥 . This point has the maximum (from all points in a
sector) distance from the center point 𝑪. The initial points
𝑹𝑖

𝑚𝑎𝑥 lies on the sides of the initial polygon, (see Fig. 4). We

can calculate 𝑹𝑖
𝑚𝑎𝑥 as an intersection point of the middle axis

of a sector and the polygon side.

All maximum points 𝑹𝑖
𝑚𝑎𝑥 form a polygon with vertices

𝑹1
𝑚𝑎𝑥 , …, 𝑹𝐾

𝑚𝑎𝑥 , where 𝐾 is count of all sectors (i.e. space
division count).

For each new point we have to check whether the distance
from the center 𝑪 is greater than the distance for 𝑹𝑖

𝑚𝑎𝑥 from
the center 𝑪. If it is true, then we have to replace the
maximum point 𝑹𝑖

𝑚𝑎𝑥 with the actual point, recalculate lines
𝑙+ and 𝑙−, (see Fig. 5) and add this point into the sector with
index 𝑖. Otherwise, we have to continue with the next step.

Fig. 4. Visualization of initial 𝑅𝑖
𝑚𝑎𝑥 points (red dots on the sides of the initial

polygon).

The next step is to check whether the point lies over or
under line segments 𝑙+ and 𝑙−, (see Fig. 5). We can compare
the angle of the point with the angle of 𝑹𝑖

𝑚𝑎𝑥 . If the angle is
greater, then we have to use the line 𝑙+, otherwise we have to
use the line 𝑙−. If the point is under the line 𝑙+, or 𝑙−, we can
discarded it, because such a point cannot be part of the convex
hull. Otherwise we have to add that point into the list of points
associated with the segment with index 𝑖.

Fig. 5. Visualization of lines 𝑙− and 𝑙+.

C. Reduction of Suspicious Points

All suspicious points are already divided into sectors. In the
beginning of the division process we set up points 𝑹𝑖

𝑚𝑎𝑥 to
some initial values and used them to check whether it would
be necessary to add or discard the tested point. The points
𝑹𝑖

𝑚𝑎𝑥 have changed during the division process, therefore we
can recheck all the suspicious points using the final 𝑹𝑖

𝑚𝑎𝑥
points. This step will minimize the number of suspicious
points that can be part of the convex hull. All the final
suspicious points are connected with red straight lines,
see Fig. 8.

D. Convex Hull Calculation

Convex hull computation can be done using any convex
hull algorithm. The number of the input points compared to
the number of the original points before reduction is extremely
low, as can be seen Table 5. The time needed for convex hull

computation is therefore not significant compared to the time
required for the reduction of all the original input points. We
can therefore use any algorithm for convex hull creation and
not necessarily the fastest one. We chose to use the Graham
Scan algorithm.

The input set of points for convex hull computation is
subdivided into sectors. We can utilize the partial ordering of
points in order to speed-up the convex hull algorithm. The
first step of the Graham Scan is to sort all points in increasing
order of the angle between vector 𝒙′ = [0, 1]𝑇 and the vector
𝒗 = 𝒙 − 𝑪, where the point 𝑪 is the center point of the initial
polygon and 𝒙 is the point. All of these angles have already
been precomputed from the point division phase and we do
not have to compute them once more. The sorting process is
done for each sector separately and then only the sorted
groups of points are joined into one sorted array.

The Graham Scan needs one initial point which will be on
the convex hull. We have to find the point with the highest 𝑥
coordinate. This step takes 𝑂(𝑀), where 𝑀 is the number of
the suspicious points (the input points for this part of convex
hull creation).

The algorithm proceeds by considering each of the points
in the sorted array in sequence. For each point, it is
determined whether moving from the two previously
considered points to this point is a “left turn” or a “right turn”:

[(𝑩 − 𝑨) × (𝑪 − 𝑨)]𝑧 {
≥ 0 left turn
< 0 right turn

 , (3)

where points 𝑨, 𝑩 and 𝑪 are the three last points in that order
and their 𝑧 coordinate equals 0. The formula [(𝑩 − 𝑨) ×
(𝑪 − 𝑨)]𝑧 means only the 𝑧 coordinate from the cross product.
If it is the “right turn”, this means that the second point to the
last point is not part of the convex hull and should be removed
from consideration. This process continues as long as the set
of the last three points is a “right turn”. As soon as a “left
turn” is encountered, the algorithm moves on to the next point
in the sorted array. The algorithm ends when the last added
and positively tested point is the starting point.

III. EXPERIMENTAL RESULTS

The approach proposed has been implemented in C# using
.Net Framework 4.5 and tested on data sets using PC with the
configuration:

 CPU: Intel® Core™ i7 920 (4 × 2,67GHz),

 memory: 12 GB RAM,

 operating system Microsoft Windows 8 64bits

A. Distribution of Points

The proposed approach has been tested using several types
of point distribution in 2𝐷. Some of the distributions were
well known, randomly distributed uniform points inside a unit
square and inside a unit circle. Another distribution used were
points with Gaussian distribution and points lying on a unit
circle. All of these distributions are well known. The last two
distributions used are Halton points and Gauss Ring points.
Both of these distributions are described in the following
subchapters.

1. Halton Points
Halton sequence is a deterministic sequence of numbers

that produces well-spaced “draws” from the unit interval. The
sequence is based on a particular prime number and is
constructed based on finer and finer prime-based divisions of
sub-intervals of unit interval. An example of a Halton
sequences based on prime numbers 2 and 3 start with the
following numbers:

𝐻𝑎𝑙𝑡𝑜𝑛(2) =
1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8
,

1

16
,

9

16
, …

𝐻𝑎𝑙𝑡𝑜𝑛(3) =
1

3
,
2

3
,
1

9
,
4

9
,
7

9
,
2

9
,
5

9
,
8

9
,

1

27
, …

(4)

When we pair the Halton sequences in (4) up, we get a sequence

of points in 2𝐷 in a unit square:

𝐻𝑎𝑙𝑡𝑜𝑛(2,3) = (
1

2
,
1

3
) , (

1

4
,
2

3
) , (

3

4
,
1

9
) , (

1

8
,
4

9
) , (

5

8
,
7

9
) ,

= (
3

8
,
2

9
) , (

7

8
,
5

9
) , (

1

16
,
8

9
) , (

9

16
,

1

27
) , …

(5)

It can be seen that a Halton sequence covers the space more
evenly than randomly generated uniform points, (see Fig. 6)
(Halton, 1964).

Fig. 6. 103 2𝐷 Halton points generated by 𝐻𝑎𝑙𝑡𝑜𝑛(2,3) (left) and 103 2𝐷
random points with uniform distribution (right).

2. Gauss Ring Points

This refers to a distribution of points in 2𝐷. The generation
of such points is realized according to the following equation:

𝑃𝑜𝑖𝑛𝑡𝐺𝑎𝑢𝑠𝑠𝑅𝑖𝑛𝑔 = [𝜑, 𝑟]

 = [𝑟𝑎𝑛𝑑(0,2𝜋), 1 + 𝑠𝑖𝑔𝑛
∙ 𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑎𝑢𝑠𝑠]

(6)

where 𝑟𝑎𝑛𝑑(0,2𝜋) is a random number from 〈0, 2𝜋〉, 𝑠𝑖𝑔𝑛 is

randomly generated either number 1 or number (−1) and

𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑎𝑢𝑠𝑠 is randomly generated number with Gauss

distribution from interval ⟨0, ∞). A visualization of 103 Gauss

Ring points can be seen in the Fig. 7.

Fig. 7. 103 2𝐷 Gauss Ring points.

It can be seen that most of the points are relatively close to the

unit circle and only a few points are far from that unit circle.

a)

b)

c)

d)

e)

f)

Fig. 8. Convex hulls of points with different distributions: a) uniform points in

circle, b) uniform points in square, c) Halton points, d) Gauss points, e) Gauss
Ring points and f) points on circle.

B. Examples of Convex Hull

We tested the algorithm proposed on datasets with different
distribution of points. The results for 104 points are shown in
Fig. 8. The grey polygon is the initial polygon, light green
lines visualize the sectors of divided space, the red cross in the
middle is the right center of all points, i.e. calculated from all
input points, and the red straight lines are connected points
that are the output of our reducing algorithm, i.e. the input
for the convex hull calculation part.

C. Optimal Number of Divisions

One of the first parts of the approach proposed is the
division of input points into non-overlapping sectors. We need
to know what the optimal number of divisions is. The optimal
number of divisions should depend on the distribution of
points, therefore we have to measure it for each type of
distribution separately.

We measured the time complexity of the convex hull
construction, when using our algorithm for reducing input
points, for a different number of input points and for different
types of point distributions and a different number of
subdivisions. Examples of measured times for 108 points can
be seen in Graph 1. The graph demonstrates that for uniform
points in a circle or a square, as well as for Halton points,
Gauss points and Gauss Ring points, the time complexity
decreases with an increasing number of divisions. This
happens up to an optimal number of sectors where the time
complexity is minimal. From this number of divisions
onwards, the time complexity increases with an increasing
number of points per domain. A question which needs to be
answered is: what is the optimal number of divisions for
which the time performance is the best? For the last type of
distribution, i.e. points on a circle, the situation is a bit
different. As can be seen in Graph 1-f, the time complexity of
convex hull decreases with a higher number of divisions. The
reason for this is that all points, or most of them because of the
float precision, are a part of the convex hull. Therefore a finer
division means less points in each sector and a faster sorting
procedure.

Using results from Graph 1 and other results for different

number of input points, i.e. 106, √10 ∙ 106, 107, √10 ∙ 107
and 108, we end up with the following result. The optimal
number of divisions is almost the same for all the number of
input points.

D. Initial polygon creation

The initial polygon does not have to be created using all
input points. We can randomly select only some points and
find the initial polygon. We measured the number of points
inside the initial polygon, when the polygon is created using
some percentage of input points, (see Graph 2). It can be seen
that when using more than 10% of the input points, the size of
the initial polygon no longer changes.

a)

b)

c)

d)

e)

f)

Graph 1. The time performance of a convex hull algorithm, when using our
algorithm for reducing input points, for different point distributions and

different division counts. The number of input points is 108. Distribution of
points are: a) uniform points in circle, b) uniform points in square, c) Halton

points, d) Gauss points, e) Gauss Ring points and f) points on circle.

Graph 2. The percentage of points inside the initial polygon when using only

some percentage of points to create the initial polygon.

E. Number of Points Processed at each Step

The main idea of the algorithm proposed is to remove as
many points as possible before the convex hull construction
calculation. The first step of the algorithm is to remove points
inside the initial polygon. The percentage of points eliminated
by the initial polygon can be seen in Table 2.

4,40

4,55

4,70

4,85

5,00

 16 512 16 384

ti
m

e
[s

]

Divisions count

5,25

5,30

5,35

5,40

5,45

 16 512 16 384

ti
m

e
[s

]

Divisions count

5,30

5,35

5,40

5,45

5,50

 16 512 16 384

ti
m

e
[s

]

Divisions count

2,20

2,25

2,30

2,35

2,40

 16 512 16 384

ti
m

e
[s

]

Divisions count

2,05

2,10

2,15

2,20

 16 512 16 384

ti
m

e
[s

]

Divisions count

 48

 50

 52

 54

 56

 58

 16 512 16 384

ti
m

e
[s

]

Divisions count

0%

20%

40%

60%

80%

100%

0,0001% 0,01% 1,0% 100,0%

P
o
in

ts
 i

n
si

d
e

p
o
ly

g
o
n

Points used to create the initial polygon

Uniform ○

Uniform □

Halton

Gauss

GaussRing

Circle

Table 2. The percentage of eliminated points by the initial polygon.

 Number of eliminated points [%]

Number

of points

Uniform

○

Uniform

□
Halton Gauss

Gauss

Ring
Circle

1E+6 63,590 48,881 49,934 96,741 96,488 0,000

√10E+6 63,626 48,839 48,469 96,938 97,446 0,000

1E+7 63,644 50,070 48,941 97,093 98,795 0,000

√10E+7 63,653 49,967 49,693 97,153 99,128 0,000

1E+8 63,657 49,342 49,452 97,196 99,305 0,000

The second step of the algorithm is to remove points inside
𝑹

𝑚𝑎𝑥 polygon, see Table 3. The number of removed points is,
together with Table 2, always higher than 99,6%, except of
the points on a circle, where the number of eliminated points
is 0.

Table 3. The percentage of eliminated points by the 𝑹
𝑚𝑎𝑥 polygon.

 Number of eliminated points [%]

Number

of points

Uniform

○

Uniform

□
Halton Gauss

Gauss

Ring
Circle

1E+6 36,170 50,723 49,718 3,114 3,399 0,000

√10E+6 36,276 50,962 51,358 3,006 2,511 0,000

1E+7 36,310 49,825 50,969 2,886 1,190 0,000

√10E+7 36,320 49,976 50,258 2,840 0,866 0,000

1E+8 36,324 50,626 50,521 2,802 0,693 0,000

The next step is to recheck all suspicious points against the
final 𝑹

𝑚𝑎𝑥 polygon. The percentage of points eliminated by
this step is already small, as the number of suspicious points is
low, as can be seen in Table 4.

Table 4. The percentage of eliminated points after recalculating all points
using the final 𝑹

𝑚𝑎𝑥 polygon.

 Number of eliminated points [%]

Number

of points

Uniform

○

Uniform

□
Halton Gauss

Gauss

Ring
Circle

1E+6 0,194 0,251 0,218 0,116 0,085 0,000

√10E+6 0,072 0,119 0,105 0,047 0,033 0,000

1E+7 0,028 0,059 0,052 0,018 0,013 0,000

√10E+7 0,012 0,031 0,026 0,007 0,005 0,000

1E+8 0,006 0,017 0,014 0,002 0,002 0,000

The number of input points for the final convex hull
creation is really small, (see Table 5), because most of the
points were discarded, as they cannot be the part of the convex
hull. The only exception are points on a circle, because all of
them are the input for convex hull.

Table 5. The percentage of points as the input for convex hull.

 Number of input points [%]

Number

of points

Uniform

○

Uniform

□
Halton Gauss

Gauss

Ring
Circle

1E+6 0,046 0,145 0,129 0,029 0,028 100,000

√10E+6 0,026 0,080 0,068 0,009 0,009 100,000

1E+7 0,019 0,045 0,039 0,003 0,003 100,000

√10E+7 0,015 0,026 0,023 0,001 0,001 100,000

1E+8 0,014 0,015 0,013 0,000 0,000 100,000

The number of points on the convex hull can be seen in
Table 6. Comparing this table to the Table 5, we can see that
at least one third of points from Table 5 are on the convex
hull. This is true for all distributions except for points on a
circle. The number of points lying on the convex hull for
points on a circle is less than 50%. The reason for this is the
calculation which uses float precision and resulting in the
impossibility of the generated points cannot lying on the exact
circle with radius one; but it is a very untypical case anyway.

Table 6. The percentage of points on the convex hull.

 Number of points [%]

Number

of points

Uniform

○

Uniform

□
Halton Gauss

Gauss

Ring
Circle

1E+6 0,034 0,005 0,004 0,006 0,004 46,646

√10E+6 0,016 0,004 0,001 0,002 0,001 46,359

1E+7 0,008 0,007 0,002 0,001 0,000 45,788

√10E+7 0,006 0,008 0,006 0,000 0,000 44,834

1E+8 0,005 0,006 0,005 0,000 0,000 43,836

F. Time Performance

In some applications, time performance is one of the most
important criteria. We measured running times for the convex
hull, for different numbers of input points and for different
distributions of points, when using our algorithm for reducing
input points. The running times were measured many times
and the average times for each number of points and each type
of distribution are presented in Table 7.

Table 7. The time performance of convex hull for different numbers of input
points and different distributions of points, when using our algorithm for
reducing input points. Time is in milliseconds [ms].

 Time [ms]

Number

of points

Uniform

○

Uniform

□
Halton Gauss

Gauss

Ring
Circle

1E+6 48,3 49,3 51,8 22,3 26,8 406,1

√10E+6 155,2 154,3 167,6 71,9 76,6 1 357,4

1E+7 457,5 496,4 538,3 222,7 218,9 4 547,1

√10E+7 1 460,6 1 662,7 1 843,2 719,2 662,5 15 272,2

1E+8 4 540,7 5 266,7 5 352,0 2 237,7 2 090,2 49 851,7

It can be seen that the fastest running times are for the
Gauss Ring and Gauss distributions. This is because most of
the points in Gauss distribution lie inside the initial polygon
and moreover, the number of points on the convex hull is very
small for the Gauss Ring and Gauss distribution. The worse
time performance is for points on a circle. Because of the float
precision, all points, or almost all of them, are on the convex
hull and no points can be discarded. The running times for
uniform distribution inside a square and for a Halton
distribution are almost the same. The times for points with
uniform distribution inside a circle are a bit faster than the
times for points with uniform distribution inside a square,
because the number of points inside the initial polygon is
higher for uniform points inside a circle than inside a square.
The times from Table 7 can be seen for better comparison in
Graph 3.

Graph 3. The time performance of convex hull, using our speed-up algorithm,

for different number of input points and different distribution of these points
(note that both axes have a logarithmical scaling).

Convex hull algorithm consists of several steps. We can
measure these steps and see the percentage proportion
between them. The first measured step is to divide the points
into segments and discard some of them. The second step is to
reduce the suspicious points and the last step is the calculation
of the convex hull from the selected points. The comparison of
the perceptual time performance of these three steps can be
seen in Graph 4.

It can be seen that the most time consuming part of the
approach proposed is the step in which the points are divided
into sectors (lower part in a graph). This step takes from
almost 100% to at least 97% of the total time of the convex
hull creation. The second most time consuming part is the
reduction of suspicious points, which takes up to 3% of the
total time. The step of convex hull calculation itself takes
almost no time, i.e. ≪ 𝟏% of the total time (the top black
part of the diagram) compared to the total time of the
proposed algorithm.

Graph 4. The time needed on average for each step of the convex hull. Note,

that the vertical axis values are from 97% to 100%.

G. Comparison with Other Algorithms

There are many algorithms for convex hull calculation. We
compared our reducing algorithm using Graham Scan with
three more known algorithm. One algorithm, i.e. the Graham
Scan, is of the 𝑂(𝑛 log 𝑛) time complexity, where 𝑛 is the
number of input points. The two other algorithm, i.e., Chan’s
algorithm and Ordered hull, are of the 𝑂(𝑛 log ℎ) time
complexity, where ℎ is the number of points lying on the
convex hull. The results can be seen in Graph 5 and were
measured for a different number of points with uniform
distribution inside a square. It should be noted that all
algorithms are implemented using the same programming
language, i.e. in C# using .Net Framework 4.5.

Graph 5. The speed-up of Graham Scan algorithm using our reducing

algorithm compared to other convex hull algorithms for points in square with

uniform distribution.

According to the results from Graph 5 our algorithm is on
average:

 3,6 times faster than Ordered hull,

 7,4 times faster than Chan’s algorithm,

 more than 20 times faster than Graham Scan.

The proposed convex hull algorithm was tested on real
datasets as well. Two datasets were derived from 3𝐷 mesh
models by projecting the vertices of each 3𝐷 model onto the

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6 1E+7 1E+8

T
im

e
[m

s]

Points count

Uniform ○

Uniform □

Halton

Gauss

GaussRing

Circle

97%

98%

99%

100%

1,00E+6 3,16E+6 1,00E+7 3,16E+7 1,00E+8

T
h

e
ti

m
e

n
ee

d
ed

Number of points

Convex hull

Reduction of

suspicious

points

Division of

points into

sectors

0

5

10

15

20

25

30

1E+5 1E+6 1E+7

S
p

ee
d

-u
p

Number of points

Graham

scan

Chan's

algorithm

Ordered

hull

Proposed

algorithm

𝑋𝑌 plane. These mesh models presented in Fig. 9 are directly
obtained from the Stanford 3𝐷 Scanning Repository1.

a)

b)

Fig. 9. Convex hull of two real datasets. The bunny contains 35 947 points (a)

and the dragon contains 437 645 points (b).

The proposed algorithm was compared with other 2𝐷
convex hull algorithms and the speed-up of our algorithm can
be seen in Graph 6. It can be seen, that the speed-up is similar
to the speed-up of convex hull on points with uniform
distribution inside a square.

Graph 6. The speed-up of the proposed reducing algorithm compared to other

convex hull algorithms for real points datasets.

1 http://www.graphics.stanford.edu/data/3Dscanrep/

IV. CONCLUSION

A new fast and easy way to implement algorithm for
reducing points for convex hull calculation in 𝐸2 has been
presented. It uses the polar space division technique to speed
up computation. The proposed algorithm proved robustness
for different point distributions. The algorithm proposed is
convenient for large data sets.

In the future, the algorithm will be modified to enable the
parallel processing as many steps are independent and can
easily be parallelized. The algorithm was be extended to 3𝐷,
see (Skala et al, 2016).

ACKNOWLEDGMENTS.

The authors would like to thank their colleagues at the
University of West Bohemia, Plzen, for their comments and
suggestions, and anonymous reviewers for their valuable
comments and hints provided. The research was supported by
MSMT CR projects LH12181 and SGS 2016-013.

REFERENCES

Andrew, Alex M.: Another efficient algorithm for convex hulls in two

dimensions, Inf. Processing Letters, Vol.9, No.5, pp.216-219, 1979

Bykat, A.: Convex hull of a finite set of points in two dimensions, Information

Processing Letters, Vol.7, No.6, pp.296-298, 1978

Eddy, William F.: A new convex hull algorithm for planar sets, ACM

Transactions on Mathematical Software, Vol.3, No.4, pp.398-403, 1977

Graham, Ronald L.: An efficient algorithm for determining the convex hull of

a finite planar set, Inf. processing letters, Vol.1, No.4, pp.132-133, 1972

Halton, J.: Algorithm 247: Radical-inverse quasi-random point sequence.

ACM, 1964, Vol. 7, No. 12, pp. 701-702

Chan, Timothy M.: Optimal output-sensitive convex hull algorithms in two

and three dimensions, Discrete & Computational Geometry, Vol.16, No.4,

pp.361-368, 1996

Chand, Donald R. and Kapur, Sham S.: An Algorithm for Convex Polytopes,

Journal of the ACM, Vol.17, No.1, pp.78-86, http://dx.doi.org/

10.1145/321556.321564, 1970

Jarvis, Ray A.: On the identification of the convex hull of a finite set of points

in the plane, Information Processing Letters, Vol.2, No.1, pp.18-21, 1973

Kallay, M.: The complexity of incremental convex hull algorithms in R d,

Information Processing Letters, Vol.19, No.4, pp.197, 1984

Kirkpatrick, David G. and Seidel, R.: The ultimate planar convex hull

algorithm?, SIAM journal on computing, Vol.15, No.1, pp.287-299, 1986

Liu, G. and Chen, Ch.: A new algorithm for computing the convex hull of a

planar point set, Journal of Zhejiang University SCIENCE A, Vol.8, No.8,

pp.1210-1217, 2007

Preparata, Franco P. and Hong, Se J.: Convex hulls of finite sets of points in

two and three dimensions, CACM, Vol.20, No.2, pp.87-93, 1977

Skala,V.: Fast Oexpected(N) Algorithm for Finding Exact Maximum Distance in

E2 Instead of O(N2) or O(N logN), ICNAAM 2013, AIP

Conf.Proceedings No.1558, pp.2496-2499, AIP Publishing, 2013

Skala,V., Majdisova,Z.: Fast Algorithm for Finding Maximum Distance with

Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218,

China, pp.261-274, ISSN 0302-9743, Springer, 2015

Skala,V., Majdisova,Z., Smolik,M.: Space Subdivision to Speed-up Convex

Hull Construction in E3, Advances in Software Engineering, Vol.91,

pp.12-22, Elsevier, ISSN 0965-9978, 2016

Skala,V., Smolik,M.: A Point in Non-Convex Polygon Location Problem

Using the Polar Space Subdivision in E2, ICIG 2015 proceedings Part I,

LNCS 9217, China, pp.394-404, ISSN 0302-9743, Springer, 2015

0

2

4

6

8

10

12

14

Graham scan Chan's algorithm Ordered hull

S
p

ee
d

-u
p

 o
f

p
ro

p
o
se

d

al
g
o
ri

th
m

 t
o
 o

th
er

 a
lg

.

Bunny

Dragon

