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Abstract—A convex hull of points in 𝑬𝟐 is used in many 

applications. In spite of low computational complexity 𝑶(𝒉 𝐥𝐨𝐠 𝒏) 
it takes considerable time if large data processing is needed. We 
present a new algorithm to speed-up any planar convex hull 
calculation. It is based on a polar space subdivision and speed-up 
known convex hull algorithms of  𝟑, 𝟕 times and more. The 

algorithm estimates the central point using 𝟏𝟎% of the data; this 
point is taken as the origin for the polar subdivision. The space 
subdivision enables a fast and very efficient reduction of the 
given points, which cannot contribute to the final convex hull. 
The proposed algorithm iteratively approximates the convex hull, 
leaving only a small number of points for the final processing, 
which is performed using a “standard” algorithm. Non-
eliminated points are then processed by a selected standard 
convex hull algorithm. The algorithm is simple and easy to 
implement. Experiments proved numerical robustness as well.  

Keywords—Convex hull; iterative approximation; space 
subdivision; reduction of points; 

I. INTRODUCTION 

A convex hull was one of the first sophisticated geometry 
algorithms to be computed and there are many variations of it. 
The most common form of this algorithm involves the 
determination of the smallest convex set, called the "convex 
hull", containing a discrete set of points. There are numerous 
applications for convex hulls: collision avoidance, maximum 
distance using convex hull diameter for large data sets 
(Skala, 2013), (Skala and Majdisova, 2015), hidden object 
determination, and shape analysis, point inside polygon (Skala 
and Smolik, 2015), to name a few. 

A subset 𝑆 ⊆ ℝ2 is convex if and only if for any two points 
𝒑, 𝒒 ∈ 𝑆 the line segment with endpoints 𝒑 and 𝒒 is 
completely contained in 𝑆. The convex hull 𝒞ℋ(𝑆) of a set 𝑆 
is the smallest convex set that contains 𝑆. To be more precise, 
it is the intersection of all convex sets that contain S. The 
convex hull of a set of points 𝑃 is a convex polygon with 
vertices in 𝑃. 

A. Time Complexity 

The search for the fastest algorithm is a pursuit which has 
been preoccupying many authors for many years now. Many 
have found excellent algorithms. Lately performance reached 
𝑂(𝑛 log ℎ) complexity where ℎ is the number of points 
forming the convex hull and 𝑛 is the number of input points. 

There are many well-known algorithms used for the 
calculation of convex hull in 2𝐷. A comparison of the time 
complexity for some of them can be seen in Table 1. 
(Graham, 1972) gave a complex hull algorithm with 
𝑂(𝑛 log 𝑛), the worst-case running time. Later it was shown 
that, in any model of computation where sorting has an 

𝑂(𝑛 log 𝑛) lower bound, every convex hull algorithm must 
require 𝑂(𝑛 log 𝑛) time for some inputs. Despite these 
matching upper and lower bounds, and probably due to the 
many applications of convex hulls, a number of other planar 
convex hull algorithms have been published since Graham’s 
algorithm. Moreover, the Marriage before Conquest algorithm 
(Kirkpatrick and Seidel, 1986) computes the convex hull in 
𝑂(𝑛 log ℎ) time, where ℎ is the number of vertices of the final 
convex hull. The same authors showed that, on algebraic 
decision trees of any fixed order, 𝑂(𝑛 log ℎ) is a lower bound 
for computing convex hulls of a set of 𝑛 points,  having a 
convex hull with ℎ vertices.  

Table 1. Comparison of 2D convex hull algorithms and their time complexity. 
The number of input points is 𝑛 and ℎ is the number of vertices of the final 
convex hull. Note that ℎ < 𝑛, so 𝑛ℎ < 𝑛2. 

Algorithm 
Expected time 

complexity 
Reference 

Gift Wrapping 𝑂(𝑛ℎ) (Chand and Kapur, 1970) 

Graham Scan 𝑂(𝑛 log 𝑛) (Graham, 1972) 

Jarvis March 𝑂(𝑛ℎ) (Jarvis, 1973) 

QuickHull 𝑂(𝑛ℎ) (Eddy, 1977), (Bykat, 1978) 

Divide & Conquer 𝑂(𝑛 log 𝑛) (Preparata and Hong, 1977) 

Monotone Chain 𝑂(𝑛 log 𝑛) (Andrew, 1979) 

Incremental 𝑂(𝑛 log 𝑛) (Kallay, 1984) 

Marriage before 
Conquest 

𝑂(𝑛 log ℎ) (Kirkpatrick and Seidel, 1986) 

Chan's algorithm 𝑂(𝑛 log ℎ) (Chan, 1996) 

Ordered hull 𝑂(𝑛 log ℎ) (Liu and Chen, 2007) 
 

II. PROPOSED ALGORITHM 

In the following section, we will introduce a new approach 
to speeding any convex hull computation in 𝐸2. The main idea 
of this algorithm is to discard as many points as possible 
before the actual convex hull calculation takes place. The 
technique used in this algorithm is based on division of space 
into several polar sectors.  

In section 2.A, we will show the first step of the algorithm 
proposed which is the location of points inside the created 
initial polygon. In section 2.B, we will show how to divide 
points into polar shaped sectors. In section 2.C, we will show 
how to reduce the suspicious points. And finally, in section 
2.D, we will show a algorithm for calculation of the convex 
hull from the selected divided points. 

A. Location of Points inside Polygon 

An important property of input points is that the most 
extreme point on any axis is part of a convex hull. This fact is 
apparent if we consider an example in which an extreme point 
is not in the convex hull. This would mean the perimeter of 



the convex hull passes through a point less extreme than that 
point. However, it is then obvious that the extreme point 
would not be included in the enclosed set, thus breaking a 
fundamental characteristic of convex hulls. This property is 
used in our algorithm for speeding-up the creation of the 
convex hull. 

The first step is finding the axis aligned bounding box 
(AABB) of the input points, which is of 𝑂(𝑛) time 
complexity. For the future described polar space subdivision 
we do not need the exact extremal point, close enough 
extremal points are sufficient for our purpose. Therefore we 
do not have to search for them through all the input points, i.e. 
we can search only approximately 10% of all points. This 
simplification can save us some time and will not cause any 
disadvantage in future calculations. So we get four distinct 
points or, in some cases, only three or even just two.  

Using these points we can create a convex polygon, see 
Fig. 1. One important property of this polygon is that any of 
the points lying inside cannot be the points of the final convex 
hull. Keeping this in mind, we can create the initial test for 
determining whether the point is inside/outside the polygon 
and dismiss a lot of points by using this easy initial test.   

a) b) c) 

Fig. 1. Location of initial inner testing polygon inside the convex hull for 104 

points (10% of points used for finding AABB box): a) uniform points in 
circle, b) uniform points in square, c) Gauss points. 

 

The location test of a point inside a polygon can be 
determined using the following steps. Each side of the 
polygon is an oriented line and thus we can calculate 𝐹𝑖(𝒙), 
where 𝒙 is the point and 𝐹𝑖(𝒙) = 0 is the implicit formula for 
a side with index 𝑖:  

𝐹𝑖(𝒙) = 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖 = 0 . (1) 

If 𝐹𝑖(𝒙) < 0 for at least one 𝑖 ∈ {1, … ,4} then the point 𝒙 lies 
outside of the polygon and has to be used for further 
processing. Thus if for all 𝑖 ∈ {1, … ,4} is 𝐹𝑖(𝒙) ≥ 0 then the 
point 𝒙 lies inside of the polygon and can be discarded.  

B. Division of Points into Sectors 

Some points were discarded because of their location inside 
the inner polygon. Other points have to be further processed. 
The 2𝐷 space can be divided into several non-overlapping 
polar shaped sectors. This division uses a center point and 
angular division. Center point 𝑪 is calculated as the average of 
all corners of the inner initial polygon.  

One way to divide the space is to use a uniform division of 
an angle from 0 to 2𝜋. Using this, we have to calculate the 
exact angle between the vector 𝒙′ = [0, 1]𝑇 and the vector 
𝒗 = 𝒙 − 𝑪, and such a calculation uses the following formula: 

𝜑 = arctg2(𝒗𝑥, 𝒗𝑦) . (2) 

Calculation of the function arctg2(𝒗𝑥 , 𝒗𝑦) takes a lot of time 

and we therefore use a simplified calculation of the 
approximated angle. The simplified angle is not uniformly 
distributed on a circle, but it is uniformly distributed on the 

border of a square 〈−1, −1〉 ×  〈1,1〉 . When calculating the 
angle, we have to locate the exact half of quadrant, i.e. octant, 
where the point is located, and then calculate the intersection 
with the given side. The intersection with a side is simple, as 
all sides of the box’s axis are aligned and intersect with the 
main axes at 𝑦 or 𝑥 = 1 or − 1. The distribution of a 
simplified angle can be seen on Fig. 2.  

 

Fig. 2. Uniform distribution of a simplified angle on a unit square. Angle 𝜑 ∈
〈0,8〉 instead of 〈0,2𝜋〉. 

 

Calculation of a simplified angle is faster than the formula (2) 
and gives almost the same results, as can be seen in Fig. 3. 

a) b) c) 

Fig. 3. Division of space into 32 (a), 64 (b) and 128 (c) non-overlapping 

sectors using uniform distribution of a simplified angle. 

 

Now we have a simple calculation of the simplified angle 
and therefore we are able to determine the index of the sector 
to which the point belongs.  

Each sector with the index 𝑖 contains one maximum point 
𝑹𝑖

𝑚𝑎𝑥 . This point has the maximum (from all points in a 
sector) distance from the center point 𝑪. The initial points 
𝑹𝑖

𝑚𝑎𝑥  lies on the sides of the initial polygon, (see Fig. 4). We 

can calculate 𝑹𝑖
𝑚𝑎𝑥  as an intersection point of the middle axis 

of a sector and the polygon side.  



All maximum points 𝑹𝑖
𝑚𝑎𝑥  form a polygon with vertices 

𝑹1
𝑚𝑎𝑥 , …, 𝑹𝐾

𝑚𝑎𝑥 , where 𝐾 is count of all sectors (i.e. space 
division count). 

For each new point we have to check whether the distance 
from the center 𝑪 is greater than the distance for 𝑹𝑖

𝑚𝑎𝑥  from 
the center 𝑪. If it is true, then we have to replace the 
maximum point 𝑹𝑖

𝑚𝑎𝑥  with the actual point, recalculate lines 
𝑙+ and 𝑙−, (see Fig. 5) and add this point into the sector with 
index 𝑖. Otherwise, we have to continue with the next step.  

 

Fig. 4. Visualization of initial 𝑅𝑖
𝑚𝑎𝑥 points (red dots on the sides of the initial 

polygon). 

 

The next step is to check whether the point lies over or 
under line segments 𝑙+ and 𝑙−, (see Fig. 5). We can compare 
the angle of the point with the angle of 𝑹𝑖

𝑚𝑎𝑥 . If the angle is 
greater, then we have to use the line 𝑙+, otherwise we have to 
use the line 𝑙−. If the point is under the line 𝑙+, or 𝑙−, we can 
discarded it, because such a point cannot be part of the convex 
hull. Otherwise we have to add that point into the list of points 
associated with the segment with index 𝑖. 

 

Fig. 5. Visualization of lines 𝑙− and 𝑙+. 

 

C. Reduction of Suspicious Points 

All suspicious points are already divided into sectors. In the 
beginning of the division process we set up points 𝑹𝑖

𝑚𝑎𝑥  to 
some initial values and used them to check whether it would 
be necessary to add or discard the tested point. The points 
𝑹𝑖

𝑚𝑎𝑥  have changed during the division process, therefore we 
can recheck all the suspicious points using the final  𝑹𝑖

𝑚𝑎𝑥  
points. This step will minimize the number of suspicious 
points that can be part of the convex hull. All the final 
suspicious points are connected with red straight lines, 
see Fig. 8. 

D. Convex Hull Calculation 

Convex hull computation can be done using any convex 
hull algorithm. The number of the input points compared to 
the number of the original points before reduction is extremely 
low, as can be seen Table 5. The time needed for convex hull 

computation is therefore not significant compared to the time 
required for the reduction of all the original input points. We 
can therefore use any algorithm for convex hull creation and 
not necessarily the fastest one. We chose to use the Graham 
Scan algorithm.  

The input set of points for convex hull computation is 
subdivided into sectors. We can utilize the partial ordering of 
points in order to speed-up the convex hull algorithm. The 
first step of the Graham Scan is to sort all points in increasing 
order of the angle between vector 𝒙′ = [0, 1]𝑇 and the vector 
𝒗 = 𝒙 − 𝑪, where the point 𝑪 is the center point of the initial 
polygon and 𝒙 is the point. All of these angles have already 
been precomputed from the point division phase and we do 
not have to compute them once more. The sorting process is 
done for each sector separately and then only the sorted 
groups of points are joined into one sorted array.  

The Graham Scan needs one initial point which will be on 
the convex hull. We have to find the point with the highest 𝑥 
coordinate. This step takes 𝑂(𝑀), where 𝑀 is the number of 
the suspicious points (the input points for this part of convex 
hull creation).  

The algorithm proceeds by considering each of the points 
in the sorted array in sequence. For each point, it is 
determined whether moving from the two previously 
considered points to this point is a “left turn” or a “right turn”:  

[(𝑩 − 𝑨) × (𝑪 − 𝑨)]𝑧  {
≥ 0 left turn
< 0 right turn

 , (3) 

where points 𝑨, 𝑩 and 𝑪 are the three last points in that order 
and their 𝑧 coordinate equals 0. The formula [(𝑩 − 𝑨) ×
(𝑪 − 𝑨)]𝑧 means only the 𝑧 coordinate from the cross product. 
If it is the “right turn”, this means that the second point to the 
last point is not part of the convex hull and should be removed 
from consideration. This process continues as long as the set 
of the last three points is a “right turn”. As soon as a “left 
turn” is encountered, the algorithm moves on to the next point 
in the sorted array. The algorithm ends when the last added 
and positively tested point is the starting point. 

III. EXPERIMENTAL RESULTS 

The approach proposed has been implemented in C# using 
.Net Framework 4.5 and tested on data sets using PC with the 
configuration:  

 CPU: Intel® Core™ i7 920 (4 × 2,67GHz),  

 memory: 12 GB RAM,  

 operating system Microsoft Windows 8 64bits 

A. Distribution of Points 

The proposed approach has been tested using several types 
of point distribution in 2𝐷. Some of the distributions were 
well known, randomly distributed uniform points inside a unit 
square and inside a unit circle. Another distribution used were 
points with Gaussian distribution and points lying on a unit 
circle. All of these distributions are well known. The last two 
distributions used are Halton points and Gauss Ring points. 
Both of these distributions are described in the following 
subchapters. 



1. Halton Points  
Halton sequence is a deterministic sequence of numbers 

that produces well-spaced “draws” from the unit interval. The 
sequence is based on a particular prime number and is 
constructed based on finer and finer prime-based divisions of 
sub-intervals of unit interval. An example of a Halton 
sequences based on prime numbers 2 and 3 start with the 
following numbers: 
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(4) 

When we pair the Halton sequences in (4) up, we get a sequence 

of points in 2𝐷 in a unit square: 

𝐻𝑎𝑙𝑡𝑜𝑛(2,3) = (
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(5) 

It can be seen that a Halton sequence covers the space more 
evenly than randomly generated uniform points, (see Fig. 6) 
(Halton, 1964). 

  

Fig. 6. 103 2𝐷 Halton points generated by 𝐻𝑎𝑙𝑡𝑜𝑛(2,3) (left) and 103 2𝐷 
random points with uniform distribution (right). 

 

2. Gauss Ring Points 

This refers to a distribution of points in 2𝐷. The generation 
of such points is realized according to the following equation:  

𝑃𝑜𝑖𝑛𝑡𝐺𝑎𝑢𝑠𝑠𝑅𝑖𝑛𝑔 = [𝜑, 𝑟] 

                             = [𝑟𝑎𝑛𝑑(0,2𝜋), 1 + 𝑠𝑖𝑔𝑛
∙ 𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑎𝑢𝑠𝑠] 

(6) 

where 𝑟𝑎𝑛𝑑(0,2𝜋) is a random number from 〈0, 2𝜋〉, 𝑠𝑖𝑔𝑛 is 

randomly generated either number 1 or number (−1) and 

𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑎𝑢𝑠𝑠 is randomly generated number with Gauss 

distribution from interval ⟨0, ∞). A visualization of 103 Gauss 

Ring points can be seen in the Fig. 7. 

 

Fig. 7. 103 2𝐷 Gauss Ring points. 

 

It can be seen that most of the points are relatively close to the 

unit circle and only a few points are far from that unit circle. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 8. Convex hulls of points with different distributions: a) uniform points in 

circle, b) uniform points in square, c) Halton points, d) Gauss points, e) Gauss 
Ring points and f) points on circle. 

 



B. Examples of Convex Hull 

We tested the algorithm proposed on datasets with different 
distribution of points. The results for 104 points are shown in 
Fig. 8. The grey polygon is the initial polygon, light green 
lines visualize the sectors of divided space, the red cross in the 
middle is the right center of all points, i.e. calculated from all 
input points, and the red straight lines are connected points 
that are the output of our reducing algorithm, i.e. the input 
for the convex hull calculation part. 

C. Optimal Number of Divisions 

One of the first parts of the approach proposed is the 
division of input points into non-overlapping sectors. We need 
to know what the optimal number of divisions is. The optimal 
number of divisions should depend on the distribution of 
points, therefore we have to measure it for each type of 
distribution separately.  

We measured the time complexity of the convex hull 
construction, when using our algorithm for reducing input 
points, for a different number of input points and for different 
types of point distributions and a different number of 
subdivisions. Examples of measured times for 108 points can 
be seen in Graph 1. The graph demonstrates that for uniform 
points in a circle or a square, as well as for Halton points, 
Gauss points and Gauss Ring points, the time complexity 
decreases with an increasing number of divisions. This 
happens up to an optimal number of sectors where the time 
complexity is minimal. From this number of divisions 
onwards, the time complexity increases with an increasing 
number of points per domain. A question which needs to be 
answered is: what is the optimal number of divisions for 
which the time performance is the best? For the last type of 
distribution, i.e. points on a circle, the situation is a bit 
different. As can be seen in Graph 1-f, the time complexity of 
convex hull decreases with a higher number of divisions. The 
reason for this is that all points, or most of them because of the 
float precision, are a part of the convex hull. Therefore a finer 
division means less points in each sector and a faster sorting 
procedure. 

Using results from Graph 1 and other results for different 

number of input points, i.e. 106, √10 ∙ 106, 107, √10 ∙ 107 
and 108, we end up with the following result. The optimal 
number of divisions is almost the same for all the number of 
input points. 

D. Initial polygon creation 

The initial polygon does not have to be created using all 
input points. We can randomly select only some points and 
find the initial polygon. We measured the number of points 
inside the initial polygon, when the polygon is created using 
some percentage of input points, (see Graph 2). It can be seen 
that when using more than 10% of the input points, the size of 
the initial polygon no longer changes.   

a) 
 

b) 

 
c) 

 
d) 

 
e) 

 
f) 

Graph 1. The time performance of a convex hull algorithm, when using our 
algorithm for reducing input points, for different point distributions and 

different division counts. The number of input points is 108. Distribution of 
points are: a) uniform points in circle, b) uniform points in square, c) Halton 

points, d) Gauss points, e) Gauss Ring points and f) points on circle. 

  

 

Graph 2. The percentage of points inside the initial polygon when using only 

some percentage of points to create the initial polygon. 

E. Number of Points Processed at each Step 

The main idea of the algorithm proposed is to remove as 
many points as possible before the convex hull construction 
calculation. The first step of the algorithm is to remove points 
inside the initial polygon. The percentage of points eliminated 
by the initial polygon can be seen in Table 2. 
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Table 2. The percentage of eliminated points by the initial polygon. 

 Number of eliminated points [%] 

Number 

of points 

Uniform 

○ 

Uniform 

□ 
Halton Gauss 

Gauss 

Ring 
Circle 

1E+6 63,590 48,881 49,934 96,741 96,488 0,000 

√10E+6 63,626 48,839 48,469 96,938 97,446 0,000 

1E+7 63,644 50,070 48,941 97,093 98,795 0,000 

√10E+7 63,653 49,967 49,693 97,153 99,128 0,000 

1E+8 63,657 49,342 49,452 97,196 99,305 0,000 
 

 

The second step of the algorithm is to remove points inside 
𝑹 

𝑚𝑎𝑥  polygon, see Table 3. The number of removed points is, 
together with Table 2, always higher than 99,6%, except of 
the points on a circle, where the number of eliminated points 
is 0. 

Table 3. The percentage of eliminated points by the 𝑹 
𝑚𝑎𝑥 polygon. 

 Number of eliminated points [%] 

Number 

of points 

Uniform 

○ 

Uniform 

□ 
Halton Gauss 

Gauss 

Ring 
Circle 

1E+6 36,170 50,723 49,718 3,114 3,399 0,000 

√10E+6 36,276 50,962 51,358 3,006 2,511 0,000 

1E+7 36,310 49,825 50,969 2,886 1,190 0,000 

√10E+7 36,320 49,976 50,258 2,840 0,866 0,000 

1E+8 36,324 50,626 50,521 2,802 0,693 0,000 
 

The next step is to recheck all suspicious points against the 
final 𝑹 

𝑚𝑎𝑥  polygon. The percentage of points eliminated by 
this step is already small, as the number of suspicious points is 
low, as can be seen in Table 4.  

Table 4. The percentage of eliminated points after recalculating all points 
using the final 𝑹 

𝑚𝑎𝑥 polygon. 

 Number of eliminated points [%] 

Number 

of points 

Uniform 

○ 

Uniform 

□ 
Halton Gauss 

Gauss 

Ring 
Circle 

1E+6 0,194 0,251 0,218 0,116 0,085 0,000 

√10E+6 0,072 0,119 0,105 0,047 0,033 0,000 

1E+7 0,028 0,059 0,052 0,018 0,013 0,000 

√10E+7 0,012 0,031 0,026 0,007 0,005 0,000 

1E+8 0,006 0,017 0,014 0,002 0,002 0,000 
 

 

The number of input points for the final convex hull 
creation is really small, (see Table 5), because most of the 
points were discarded, as they cannot be the part of the convex 
hull. The only exception are points on a circle, because all of 
them are the input for convex hull. 

Table 5. The percentage of points as the input for convex hull. 

 Number of input points [%] 

Number 

of points 

Uniform 

○ 

Uniform 

□ 
Halton Gauss 

Gauss 

Ring 
Circle 

1E+6 0,046 0,145 0,129 0,029 0,028 100,000 

√10E+6 0,026 0,080 0,068 0,009 0,009 100,000 

1E+7 0,019 0,045 0,039 0,003 0,003 100,000 

√10E+7 0,015 0,026 0,023 0,001 0,001 100,000 

1E+8 0,014 0,015 0,013 0,000 0,000 100,000 
 

 

The number of points on the convex hull can be seen in 
Table 6. Comparing this table to the Table 5, we can see that 
at least one third of points from Table 5 are on the convex 
hull. This is true for all distributions except for points on a 
circle. The number of points lying on the convex hull for 
points on a circle is less than 50%. The reason for this is the 
calculation which uses  float precision and resulting in the 
impossibility of the generated points cannot lying on the exact 
circle with radius one; but it is a very untypical case anyway. 

Table 6. The percentage of points on the convex hull. 

 Number of points [%] 

Number 

of points 

Uniform 

○ 

Uniform 

□ 
Halton Gauss 

Gauss 

Ring 
Circle 

1E+6 0,034 0,005 0,004 0,006 0,004 46,646 

√10E+6 0,016 0,004 0,001 0,002 0,001 46,359 

1E+7 0,008 0,007 0,002 0,001 0,000 45,788 

√10E+7 0,006 0,008 0,006 0,000 0,000 44,834 

1E+8 0,005 0,006 0,005 0,000 0,000 43,836 
 

 

F. Time Performance 

In some applications, time performance is one of the most 
important criteria. We measured running times for the convex 
hull, for different numbers of input points and for different 
distributions of points, when using our algorithm for reducing 
input points. The running times were measured many times 
and the average times for each number of points and each type 
of distribution are presented in Table 7. 

Table 7. The time performance of convex hull for different numbers of input 
points and different distributions of points, when using our algorithm for 
reducing input points. Time is in milliseconds [ms]. 

 Time [ms] 

Number 

of points 

Uniform 

○ 

Uniform 

□ 
Halton Gauss 

Gauss 

Ring 
Circle 

1E+6 48,3 49,3 51,8 22,3 26,8 406,1 

√10E+6 155,2 154,3 167,6 71,9 76,6 1 357,4 

1E+7 457,5 496,4 538,3 222,7 218,9 4 547,1 

√10E+7 1 460,6 1 662,7 1 843,2 719,2 662,5 15 272,2 

1E+8 4 540,7 5 266,7 5 352,0 2 237,7 2 090,2 49 851,7 
 



 

It can be seen that the fastest running times are for the 
Gauss Ring and Gauss distributions. This is because most of 
the points in Gauss distribution lie inside the initial polygon 
and moreover, the number of points on the convex hull is very 
small for the Gauss Ring and Gauss distribution. The worse 
time performance is for points on a circle. Because of the float 
precision, all points, or almost all of them, are on the convex 
hull and no points can be discarded. The running times for 
uniform distribution inside a square and for a Halton 
distribution are almost the same. The times for points with 
uniform distribution inside a circle are a bit faster than the 
times for points with uniform distribution inside a square, 
because the number of points inside the initial polygon is 
higher for uniform points inside a circle than inside a square. 
The times from Table 7 can be seen for better comparison in 
Graph 3. 

 

Graph 3. The time performance of convex hull, using our speed-up algorithm, 

for different number of input points and different distribution of these points 
(note that both axes have a logarithmical scaling). 

Convex hull algorithm consists of several steps. We can 
measure these steps and see the percentage proportion 
between them. The first measured step is to divide the points 
into segments and discard some of them. The second step is to 
reduce the suspicious points and the last step is the calculation 
of the convex hull from the selected points. The comparison of 
the perceptual time performance of these three steps can be 
seen in Graph 4.  

It can be seen that the most time consuming part of the 
approach proposed is the step in which the points are divided 
into sectors (lower part in a graph). This step takes from 
almost 100% to at least 97% of the total time of the convex 
hull creation. The second most time consuming part is the 
reduction of suspicious points, which takes up to 3% of the 
total time. The step of convex hull calculation itself takes 
almost no time,   i.e. ≪ 𝟏% of the total time (the top black 
part of the diagram) compared to the total time of the 
proposed algorithm. 

 

Graph 4. The time needed on average for each step of the convex hull. Note, 

that the vertical axis values are from 97% to 100%. 

G. Comparison with Other Algorithms 

There are many algorithms for convex hull calculation. We 
compared our reducing algorithm using Graham Scan with 
three more known algorithm. One algorithm, i.e. the Graham 
Scan, is of the 𝑂(𝑛 log 𝑛) time complexity, where 𝑛 is the 
number of input points. The two other algorithm, i.e., Chan’s 
algorithm and Ordered hull, are of the 𝑂(𝑛 log ℎ) time 
complexity, where ℎ is the number of points lying on the 
convex hull. The results can be seen in Graph 5 and were 
measured for a different number of points with uniform 
distribution inside a square. It should be noted that all 
algorithms are implemented using the same programming 
language, i.e. in C# using .Net Framework 4.5. 

 

Graph 5. The speed-up of Graham Scan algorithm using our reducing 

algorithm compared to other convex hull algorithms for points in square with 

uniform distribution. 

According to the results from Graph 5 our algorithm is on 
average:  

 3,6 times faster than Ordered hull,  

 7,4 times faster than Chan’s algorithm, 

 more than 20 times faster than Graham Scan.  

The proposed convex hull algorithm was tested on real 
datasets as well. Two datasets were derived from 3𝐷 mesh 
models by projecting the vertices of each 3𝐷 model onto the 
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𝑋𝑌 plane. These mesh models presented in Fig. 9 are directly 
obtained from the Stanford 3𝐷 Scanning Repository1. 

 
a) 

 
b) 

Fig. 9. Convex hull of two real datasets. The bunny contains 35 947 points (a) 

and the dragon contains 437 645 points (b). 

The proposed algorithm was compared with other 2𝐷 
convex hull algorithms and the speed-up of our algorithm can 
be seen in Graph 6. It can be seen, that the speed-up is similar 
to the speed-up of convex hull on points with uniform 
distribution inside a square.  

 

Graph 6. The speed-up of the proposed reducing algorithm compared to other 

convex hull algorithms for real points datasets. 

 

                                                             

1 http://www.graphics.stanford.edu/data/3Dscanrep/ 

IV. CONCLUSION 

A new fast and easy way to implement algorithm for 
reducing points for convex hull calculation in 𝐸2 has been 
presented. It uses the polar space division technique to speed 
up computation. The proposed algorithm proved robustness 
for different point distributions. The algorithm proposed is 
convenient for large data sets. 

In the future, the algorithm will be modified to enable the 
parallel processing as many steps are independent and can 
easily be parallelized. The algorithm was be extended to 3𝐷, 
see (Skala et al, 2016). 
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