
Learning to Classify Seismic Images with Deep

Optimum-Path Forest

Luis Afonso

Department of Computing

Federal University of São Carlos

São Carlos - SP, Brazil

sugi.luis@gmail.com

Alexandre Vidal, Michelle Kuroda

Institute of Geology

University of Campinas

Campinas - SP, Brazil

vidal@ige.unicamp.br

mckuroda@gmail.com

Alexandre Falcão

Institute of Computing

University of Campinas

Campinas - SP, Brazil

afalcao@ic.unicamp.br

João Papa

Department of Computing

São Paulo State University

Bauru - SP, Brazil

papa@fc.unesp.br

Abstract—Due to the lack of labeled information, clustering
techniques have been paramount in the last years once more.
In this paper, inspired by the deep learning phenomenon, we
presented a multi-scale approach to obtain more refined cluster
representations of the Optimum-Path Forest (OPF) classifier,
which has obtained promising results in a number of works
in the literature. Here, we propose to fill a gap in OPF-based
works by using a deep-driven representation of the feature
space. Additionally, we validated the work in the context of high
resolution seismic images aiming at petroleum exploration, as well
as in general-purpose applications. Quantitative and qualitative
analysis are conducted in order to assess the robustness of the
proposed approach.

Keywords-Optimum-Path Forest, Image Clustering, Deep Rep-
resentations, Seismic Images

I. INTRODUCTION

Image classification plays an important role in several

application domains, which range from medical image analysis

to remote sensing-driven tools. However, the lack of labeled

data has oriented researchers towards active learning-based

techniques, which consider the user feedback to improve the

classification process by labeling samples. Although promising

results have been obtained in the last years, labeling images is

time-consuming and it strongly depends on the human skills,

which can be prone to errors as well.

The Big Data era has made available tons of digital content

daily, making even more tedious the task of analyzing data

by hand. In this context, a foreseeable future can be drawn:

we shall not be in lockstep with the amount of data gener-

ated, thus paying the price of having important information

discarded and/or meaningless. One of the first waves towards

the lack of labeled data refers to the so-called deep learning,

which basically ends up learning features in an unsupervised

fashion [1].

Therefore, unsupervised learning has gained attention in the

last years once more, but still posing a tougher challenge than

supervised learning, since the notion of a cluster can somehow

be doubted and personally-driven. In this scenario, a number

of techniques can be highlighted, such as k-means [2], Mean-

Shift [3], Self-Organizing Maps (SOM) [4] and others [5], just

to name a few. The so-called k-means works surprisingly well

in many situations, despite its simplicity.

However, k-means has also some well-known shortcomings:

(i) first, the user is required to feed the technique with the

number of clusters, and (ii) the problem itself is essentially

an optimization task, in which the distance of each sample

to its nearest center is minimized. For the first statement,

although some scientists argue the parameter k can be seen as a

meta-parameter, in fact it requires us to have some knowledge

about the “unsupervised” problem, in which by definition we

should not have any information so far. The second statement

concerns with any non-convex optimization problem, which

may get trapped from local optima. Although a number of

works have focused on such drawbacks, there is still room

for improvements, since there is no “exact solution” to the

problem, which means approximations that may cost some

computational burden can be derived and thus employed by

researchers worldwide.

Graph-based clustering techniques have their appeal as well.

Roughly speaking, the idea is to encode each feature vector

as a graph node, and then to learn some connectivity function

that can group “similar” samples and turn others far apart.

Notice the notion of “similarity” also poses an interesting

problem, which can be of extremely importance to the success

of the technique. Some years ago, Rocha et al. [6] presented

the unsupervised version of the Optimum-Path Forest (OPF)

classifier, which basically models the problem of clustering

data as a competition process, in which some key samples

compete among themselves in order to gather others. OPF has

gained considerable attention in the last years, since its super-

vised version has been similarly accurate as Support Vector

Machines for some applications, but faster for training [7],

[8].

Unsupervised OPF, hereinafter called OPF, has one param-

eter only (i.e., kmax), which requires much less knowledge

than k-means with respect to the problem itself. Additionally,

OPF computes the number of clusters on-the-fly, which is an

interesting skill considering applications where one does not

know that information, and wants to find it out. Some examples

are related to data representation using bag-of-visual-words, in

which the size of dictionary (i.e., the number of visual words)

is of extremely importance to the success of the technique.

Usually, the user does not have such information, but is eager
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to discover it. Recently, Afonso et al. [9] have successfully

employed OPF for such task. Last but not least, OPF can

obtain similar clusters’ centers when compared to k-means,

which is an interesting property since the latter is undoubtedly

recognized to work well in several problems [10].

However, a weakness of OPF is directly related to its

strength: “what if one does know in advance the number of

clusters?” In fact, we have no information about any OPF-

related paper that deals with that problem. Actually, if one

needs to somehow control the number of clusters, we can play

with kmax until that desired number is reached. Moreover,

there is no guarantee about that. Roughly speaking, one can

deal with that by experimentally trying different values for

kmax within the range [1, kmax] that can reach or, at least,

to be close as to the desired number of clusters. Nonetheless,

to try out all possible values within that range, as proposed

by Rocha et al. [6], might be prohibitive. Recently, Costa

et al. [11] modeled this problem as a meta-heuristic-based

optimization task, being the results quite close to the ones

obtained by the optimal approach proposed by Rocha et al. [6],

but being faster. However, it is noteworthy to mention the

aforementioned works were proposed to find suitable values

for k∗ ∈ [1, kmax] to create the k∗-neighborhood, and not

to establish a proper number of classes1, although the design

of the neighborhood size directly influences the number of

clusters.

In this work, we propose to perform OPF clustering at

different levels of abstractions (i.e., scales) in a deep-driven

approach to be as closest as possible to the number of clusters

required by that specific application. By deep we mean we

are going to perform unsupervised learning using different

“views” of the data until we may reach some desirable result.

As aforementioned, OPF makes use of key samples, here-

inafter called prototypes, which compete among themselves

trying to offer the “best” reward (path-cost function) to the

remaining samples. By taking into account the prototypes

chosen at the very first (initial) step, we can thus use them

as the new (and only) samples to the next clustering step.

Since the number of prototypes is often much smaller than

the number of dataset samples, we have a more compressed

representation of the dataset at each level, and thus less clusters

(in fact, each cluster is represented by one prototype). In this

paper, we show it is possible to obtain the desired number

of clusters (or at lest to be close to that) using few scales of

representation. Such methodology is much faster than playing

around with the values of kmax, as proposed in the works by

Rocha et al. [6] and by Costa et al. [11].

A detailed look at the papers published in the last years

has revealed only one work similar to ours [12], but still

with a different purpose. This very recent work employed

the OPF clustering for automatic video summarization, using

the prototypes obtained in the first step as the shots and key

frames to represent a reduced version of the video. Soon after,

1In this context, k∗ stands for the neighborhood size that minimizes some
fitness function (i.e., the minimum graph cut in that case).

these key frames are clustered again to obtain more refined

representations of the video summary. But clearly, we are

interested into working on the problem of restricting OPF to a

predefined (desired) number of clusters. Another contribution

of this work is to evaluate OPF in the context of seismic-

based images concerning the task of hydrocarbon accumula-

tion detection, which are used to detect possible locations for

petroleum exploration. As far as we know, OPF has never

been used in this context so far. This work also explores the

proposed OPF clustering in a wider context by applying it

in three large labeled datasets. The remainder of this paper

is organized as follows. Sections II and III present a brief

theoretical background about OPF and the proposed deep-

based approach to obtain different levels of representations,

and thus less clusters, respectively. The methodology and

experiments are discussed in Section IV, and Section V states

conclusions and future works.

II. OPTIMUM-PATH FOREST CLUSTERING

Let N be a dataset such that for every sample s ∈ N there is

a feature vector ~v(s). Let d(s, t) be the distance between sam-

ples s and t in the feature space (e.g., d(s, t) = ‖~v(t)−~v(s)‖).

The fundamental problem in data clustering is to identify

natural groups in N .

A graph (N ,A) is defined such that the arcs (s, t) ∈ A
connect k-nearest neighbors in the feature space. The arcs are

weighted by d(s, t) and the nodes s ∈ N are weighted by a

density value ρ(s), given by:

ρ(s) =
1√

2πσ2|A(s)|
∑

∀t∈A(s)

exp

(−d2(s, t)

2σ2

)

, (1)

where |A(s)| = k, σ =
df

3 , and df is the maximum arc

weight in (N ,A). This parameter choice considers all nodes

for density computation, since a Gaussian function covers most

samples within d(s, t) ∈ [0, 3σ]. The traditional method to

estimate a probability density function (pdf) is by Parzen-

window. Equation (1) can provide a Parzen-window estimation

based on isotropic Gaussian kernel when we define the arcs

by (s, t) ∈ A if d(s, t) ≤ df . This choice, however, presents

problems with the differences in scale and sample concen-

tration. Solutions for this problem lead to adaptive choices

of df depending on the region of the feature space [3]. By

taking into account the k-nearest neighbors, we are handling

different concentrations and reducing the scale problem to

the one of finding the best value of k within [1, kmax], for

1 ≤ kmax ≤ |N |. The solution provided by Rocha et al. [6]

considers the minimum graph cut provided by the clustering

results for k ∈ [1, kmax], according to a measure suggested by

Shi and Malik based on graph cuts [13].

Let a path πt be a sequence of adjacent samples starting

from a root R(t) and ending at a sample t, being πt = 〈t〉
a trivial path and πs · 〈s, t〉 the concatenation of πs and arc

(s, t). Among all possible paths πt with roots on the maxima

of the pdf, we wish to find a path whose the lowest density



value along it is maximum. Each maximum should then define

an influence zone (cluster) by selecting the samples that are

more strongly connected to it, according to this definition, than

to any other maximum. More formally, we wish to maximize

f(πt) for all t ∈ N where

f(〈t〉) =

{

ρ(t) if t ∈ R
ρ(t)− δ otherwise

f(〈πs · 〈s, t〉〉) = min{f(πs), ρ(t)} (2)

for δ = min∀(s,t)∈A|ρ(t) 6=ρ(s) |ρ(t) − ρ(s)| and R being a

root set with one element for each maximum of the pdf.

Higher values of delta reduce the number of maxima. We are

setting δ = 1.0 and scaling real numbers ρ(t) ∈ [1, 1000] in

this work. The OPF algorithm maximizes f(πt) such that the

optimum paths form an optimum-path forest — a predecessor

map P with no cycles that assigns to each sample t /∈ R its

predecessor P (t) in the optimum path from R or a marker

nil when t ∈ R. In essence, each maximum of the pdf,

i.e., prototype, will be the root of an optimum-path tree -

OPT (cluster), and the collection of all OPTs originates the

optimum-path forest that gives the name to the classifier.

III. LEARNING DEEP REPRESENTATIONS

As aforementioned, OPF can find the number of clusters

on-the-fly, which means there is no need for such information

beforehand. However, to the best of our knowledge, there is

no proposed approach that can somehow “force” the number

of clusters to a predefined number when one knows that

information when dealing with OPF. Although we can play

around with kmax, it can be prohibitive for large datasets,

such as the one addressed in this work (high resolution seismic

images).

In order to cope with this challenge, we propose to employ

different representations (layers) of the dataset samples, being

the first layer the original feature space to be clustered. After

that, the prototypes at the first layer are then used as the new

samples to compose the feature space at the second layer,

which is clustered once again. The very same process is

repeated until the predefined number of clusters (or at least

close to) is reached. Since the OPF clustering prototypes are

located in the highest density regions, they are very suitable

to represent nearby samples, as argued in the works conducted

by Castelo and Calderón-Ruiz [12] and Afonso et al. [9].

Let Si be the set of prototypes at layer Li, i = 1, 2, . . . , l,
where l stands for the number of layers. Since each root will be

the maximum of a pdf (Equation 2), we have a set of samples

that fall in the same optimum-path tree and are encoded by

the very same prototype (root of that tree) in the next layer.

In short, the higher the number of layers, the less prototypes

(clusters) one shall find, i.e., |S1| < |S2| < . . . < |SL| < . . . ≤
1. Therefore, at a very coarse layer, one shall find only one

cluster. Figure 1 displays the proposed OPF-based architecture

for deep-driven feature space representation.

At layer L1, we can observe four clusters (optimum-path

trees), where the black nodes stand for the set of prototypes

L
1

L
2

…

L
l

Fig. 1: Proposed approach based on coarser representations of

the feature space.

at that layer, i.e., S1. Some of these prototypes will become

new prototypes at L2, and others not (we can observe both

black and white nodes at layer 2). This process is carried out

up to the last layer specified by the user. Notice at the very

coarser scale, i.e., Ll, we shall find only one cluster.

IV. METHODOLOGY AND EXPERIMENTAL RESULTS

In order to provide both qualitative and quantitative insights

of the OPF-driven approach, we divided the experiment section

in two. In the first part, OPF is applied in a set of seismic

images enabling to visualize the clustering result. The second

part makes use of large labeled datasets so we can obtain some

metrics that indicate the OPF clustering quality.

A. Seismic Images

In order to validate the proposed OPF-driven approach to

obtain finer representations of the clustered space, we used

seismic images from the North Sea at a specific location in

the Dutch sector, the so-called “Netherlands Offshore F3 Block

Complete” dataset2. The dataset has around 466 images (i.e.,

slices) that are combined together to form a volume that some-

how models the geological information of the aforementioned

location. In this paper, we used 5 images chosen at random for

clustering purposes, say that: 924, 928, 932, 936 e 940. Note

these numbers stand for the acquisition time in milliseconds

of each image. Figure 2 depicts image 924, where the colors

stand for different layers of rocks or their compactness in the

sea floor, the green arrow points North and X1 stands for In-

line.

Each dataset sample is composed of a pixel from the

aforementioned images, thus resulting in 5 different datasets,

where each pixel is represented by the seismic amplitude.

Note the color intensities depicted in Figure 2 were used for

2https://opendtect.org/osr/pmwiki.php/Main

https://opendtect.org/osr/pmwiki.php/Main


Fig. 2: Figure 924 of the F3 Block at the Dutch sector.

the sake of vizualization purposes only. After that, we then

employed OPF with 4 layers against with the well-known k-

means and the Self-Organizing Maps (SOM) for evaluation

reasons. Aiming a fair comparison among the techniques, we

used the very same number of clusters found by OPF at the

last layer as the input to both k-means and SOM3.

Notice the kmax value is strongly related to the number of

desired clusters, i.e., the larger kmax value, the less clusters

one shall have. The rationale behind that idea is related to the

working mechanism used by OPF to find proper neighborhood

sizes (k values), as explained in Section II. Since OPF per-

forms a linear search within the range k ∈ [1, kmax], if one

uses larger kmax values we also increase the probability of

finding larger values of k that minimize the graph cut crite-

rion. Therefore, larger neighborhoods mean less clusters. As

such, we employed different and decreasing values for kmax

considering the different layers for all images. Considering the

first and last layers, we used k = 100 and k = 2, respectively.

In regard to the inner layers, we used 1% of the new dataset

for layer 2, and 10% with respect to layer 3. Notice the dataset

size decreases in the proposed approach as we move towards

the upper layers. Table I presents the number of clusters found

by OPF considering different layers for all images employed.

TABLE I: Number of clusters found by OPF at different layers.

Layer

Image 1 2 3 4

924 4,102 41 8 3

928 4,135 41 6 2

932 4,074 38 6 2

936 4,144 41 10 2

940 4,193 44 8 2

As aforementioned, one can observe the number of clusters

decreases as we move to the upper layers. Clearly, one can

obtain much less clusters by just using 2 layers. Additionally,

it seems, at least for the images employed in this work, that 4
layers are enough to cope with the problem of seismic-driven

image classification, since we achieved the minimum number

of clusters we can work with. Figures 3, 4 and 5 illustrate

the classified images at layer 4 with respect to OPF, k-means

3Recall that we employed k-means to label the SOM map after their
learning.

and SOM techniques, respectively, where the different colors

represent the different labels. Note these figures refer to the

image 924 (Figure 2).

Fig. 3: Classified image 924 using OPF at layer 4.

Fig. 4: Classified image 924 using k-means with 3 clusters.

Fig. 5: Classified image 924 using SOM with 3 clusters.

In order to provide a qualitative comparison among the

techniques, we asked for a geologist to provide insightful

comments about the results. In regard of OPF and SOM

results, one can observe the border of the reservoir body (the

leftmost arrow) is not visible in the SOM results, which means

a negative impact for exploration purposes. In addition, SOM

was also unable to provide lateral continuity of reflections,

i.e., some structures appear as a dashed-like lines instead of

a continuous-like line. On the other hand, OPF classification

overcame such issues by providing some details of the interest

region and other main structures, besides lateral continuity.



Lateral continuity is important because it allows to identify

the limits of a seismic body and any faults that may seal or

conduct fluids off a reservoir. Finally, k-means was able to

provide suitable levels of details, thus obtaining very good

results as well.

B. General-purpose Images

This section aims to provide some quantitative insight

concerning the proposed deep-driven OPF4 by evaluating it

against k-means5, Mean-Shift6 and SOM7 over three large

well-known labeled datasets:

• CIFAR-108: it consists of 60,000 32 × 32 images dis-

tributed in 10 classes, being 6, 000 images per class.

The training set has 50, 000 images and the remaining

10, 000 images are used to compose the testing set. The

experiments used all 60, 000 images as a single set.

• CIFAR-1008: This dataset is similar to CIFAR-10, and it

contains 60, 000 images distributed in 100 classes, being

600 images per each. The 100 classes represent a “finer”

label, and are grouped into 20 superclasses as a “coarser”

label. The experiments used the 60, 000 images and the

coarse label for evaluating the clustering techniques.

• MNIST9: this dataset has a total of 70, 000 images of

handwritten digits divided in 10 classes (one class for

each digit), in which 60, 000 belong to the training set and

the remaining images belong to the testing set. The digits

are size-normalized and centered in a fixed-size image.

All 70, 000 were used for the experiments as single set.

Figures 6, 7 and 8 depict some examples from CIFAR-10,

CIFAR-100 and MNIST datasets, respectively.

In order to describe the images from all aforementioned

datasets, we employed the Border/Interior Pixel Classification

(BIC) [16] technique, which is a 64-dimensional descriptor.

The reason for using such descriptor relies on its compactness

and low dimensionality, since we are dealing with thousands of

images to be clustered. As in Section IV-A, OPF is evaluated

using a four-layer design, as well as following the same rules

for setting the value of parameter k for each layer. Notice

k-means and SOM used parameter k equals to the number

of clusters found by the OPF on its last layer. The reason for

using the very same value is to allow a fair comparison among

the techniques10.

Since Mean-Shift has no parameter k, its number of clusters

is different from the other techniques in all datasets, but its

clustering metrics are computed though. Mean-Shift found 4, 4
and 3 clusters in CIFAR-10, CIFAR-100 and MNIST datasets,

respectively. Table II presents the number of clusters found by

each layer of OPF considering each dataset. The very same

4In regard to OPF implementation, we used LibOPF [14].
5We used our own implementation.
6We employed an implementation provided by scikit-learn [15].
7http://somoclu.readthedocs.io/en/stable
8https://www.cs.toronto.edu/∼kriz/cifar.html
9http://yann.lecun.com/exdb/mnist/
10Notice parameter k has distinct meaning for OPF, k-means and SOM.

We decided to keep the same notation for the sake of simplicity.

Fig. 6: Some samples from CIFAR-10 dataset.

number of clusters were computed by k-means and SOM. We

considered that Mean-Shift did not obtain interesting results,

since it has found less clusters than desired. Since CIFAR-100

contains 100 classes, it is expected to find out 100 clusters at

least. If one considers the results in Table II, OPF has the

flexibility to play around with different number of layers until

a desired number of clusters has been found.

TABLE II: Number of clusters found by OPF at different

layers considering each dataset.

Layer

Dataset 1 2 3 4

CIFAR 10 137 121 17 8

CIFAR 100 216 163 24 15

MNIST 221 145 5 2

http://somoclu.readthedocs.io/en/stable
https://www.cs.toronto.edu/~kriz/cifar.html


Fig. 7: Some samples from CIFAR-100 dataset.

Fig. 8: Some samples from MNIST dataset.

Since we have the true labels for each dataset, the overall

performance is assessed by five metrics11 which use the true

11http://scikit-learn.org/stable/modules/clustering.html#clustering-
performance-evaluation

and predicted labels for computation purposes, as follows:

• Homogeneity (H): this metric regards to how pure clusters

are, in other words, clusters have maximum value of

homogeneity if they contain only samples that belong to

the same class. Notice H ∈ [0, 1], where H = 1 denotes

the best result.

• Completeness (C): a clustering result satisfies complete-

ness if all samples that are members of a given class are

elements of the same cluster. Notice C ∈ [0, 1], where

C = 1 denotes the best result.

• V-measure (V): this metric is the harmonic mean between

homogeneity and completeness, as follows:

V = 2 ∗ (H ∗ C)

(H + C)
. (3)

Notice V ∈ [0, 1], where V = 1 denotes the best result.

The results achieved by each algorithm are shown in Ta-

bles III, IV and V. The best results are in bold. Notice these

results consider the number of clusters found by OPF at the

layer.

TABLE III: Results for CIFAR10 dataset.

Technique

Metric OPF k-means Mean-Shift SOM

H 0.000 0.054 0.001 0.049

C 0.153 0.060 0.039 0.056

V 0.000 0.057 0.001 0.052

TABLE IV: Results for CIFAR100 dataset.

Technique

Metric OPF k-means Mean-Shift SOM

H 0.010 0.033 0.001 0.030

C 0.069 0.038 0.077 0.034

V 0.017 0.035 0.003 0.032

TABLE V: Results for MNIST dataset.

Technique

Metric OPF k-means Mean-Shift SOM

H 0.000 0.007 0.000 0.073

C 1.000 0.024 0.005 0.376

V 0.000 0.011 0.001 0.122

Since the number of clusters found in all datasets does

not match the real number of classes, it is expected the

clustering homogeneity of all techniques never reaches the

maximum value. The k-means was able to find the most

homogeneous clusters considering CIFAR-10 and CIFAR-100

datasets, and SOM obtained the best result concerning MNIST

dataset. However, keep in mind all homogeneity values are

pretty close to the minimum in all cases. Regarding the clus-

tering completeness, OPF outperformed the other techniques

in CIFAR-10 and MNIST datasets, achieving the maximum

value in the latter one, thus meaning all samples for every

class were grouped in the very same cluster. Since V-measure

tries to balance both homogeneity and completeness, k-means



obtained the best V values concerning CIFAR-10 and CIFAR-

100, and SOM outperformed all techniques in MNIST dataset.

With respect to the efficiency, k-means was the fastest one,

followed by OPF, SOM and Mean-Shift.

V. CONCLUSIONS

This paper presented a deep-driven approach that allows

OPF to obtain coarser clustered images, being the problem

of unsupervised learning decomposed in different layers. The

proposed approach was evaluated in the context of seismic

image classification, being its results comparable to the ones

obtained by k-means and SOM techniques. In this specific

case, OPF was able to provide visual details that are important

to identify certain structures, where k-means and SOM were

unable to highlight.

Considering general-purpose datasets, we can highlight OPF

was able to found a number of clusters close to the real number

of classes in CIFAR-10 (8 clusters found out of 10 classes)

and CIFAR-100 (15 clusters found out of 20 classes) datasets.

Although the numbers of clusters found in MNIST dataset is

not close to the number of classes, OPF was able to cluster the

whole dataset on either cluster 1 or cluster 2, thus achieving

a completeness equals to 1. Regarding other techniques, k-

means and SOM were able to find more homogeneous clusters

in all situations.

The experimental section showed us the proposed deep-

driven OPF allows the user a more flexible tool when working

with unsupervised clustering-oriented applications where we

know the desired number of clusters. Also, experiments over

general-purpose datasets shed light over all techniques might

be complementary to each other, since they obtained different

results over distinct datasets and measures.
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