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Abstract—Parkinson’s Disease (PD) automatic identification in
early stages is one of the most challenging medicine-related tasks
to date, since a patient may have a similar behaviour to that of
a healthy individual at the very early stage of the disease. In this
work, we cope with PD automatic identification by means of a
Convolutional Neural Network (CNN), which aims at learning
features from a signal extracted during the individual’s exam by
means of a smart pen composed of a series of sensors that can
extract information from handwritten dynamics. We have shown
CNNs are able to learn relevant information, thus outperforming
results obtained from raw data. Also, this work aimed at building
a public dataset to be used by researchers worldwide in order
to foster PD-related research.
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I. INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive, multi-
lesion and neurodegenerative disease caused by the loss of
a neurotransmitter called dopamine [[1]. Usually, PD is more
common in the elderly population, producing alterations in
gait and posture that may increase the risk of falls and lead
to mobility disabilities. As such, it impacts daily activities
and reduces the quality of life concerning patients and their
families [12]], [3], [4].

Although some well-known drugs can help coping with the
disease in early stages, their usage along the years might has-
ten neurodegeneration [JS]. Therefore, a number of researchers
from different domains aim at combining knowledge in order
to aid PD diagnosis as early as possible. Due to their emerging
use in a number of applications, decision-making techniques
based on machine learning might be the most fruitful ones to
deal with PD recognition [6].

Das et al. [7], for instance, presented a comparison
among some classification techniques concerning PD diag-
nosis, achieving around 92.2% of classification accuracy by
means of Neural Networks. Spadotto et al. [8] introduced the
Optimum-Path Forest (OPF) [9]], [10] in the context of auto-
matic PD identification, and Gharehchopogh et al. [11]] used
Artificial Neural Networks with Multi-Layer Perceptron to
diagnose the effects caused by Parkinson’s Disease. Spadotto
et al. [12] also considered using a meta-heuristic-driven feature
selection aiming at recognizing such illness.
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Other works, such as the one by Pan et al. [[13], analyzed
the performance of Support Vector Machines with Radial
Basis Function in order to compare the onset of tremor in
patients with PD. Later on, Peker et al. [[14] used sound-
based features and complex-valued neural networks to aid
PD diagnosis as well, and Hariharan et al. [15] developed a
new feature weighting method using Model-based clustering
(Gaussian mixture model) in order to enrich the discriminative
ability of the dysphonia-based features, thus achieving 100%
of classification accuracy.

However, most works make use of audio-based datasets
to cope with PD identification. Very recently, Pereira et
al. [16] proposed to aid PD diagnosis by means of handwriting
movements. In addition, the very same group of authors
made available a dataset with hundreds of images containing
handwriting drawings made by both healthy individuals and
patients. Since the writing ability is affected by Parkinson’s
Disease, it is very usual to find such exams in hospitals
and clinics, but only a few works have considered them for
automatic diagnostic purposes.

Some years ago, a group of German researchers developed a
very clever way to assist PD diagnosis: the so-called Biometric
Smart Pen - BiSP® [17], which is essentially a pen composed
of sensors that measure some information captured during
handwritten exams. Although the pen has been originally
designed for biometric purposes, it was further employed to
aid PD diagnosis. Some years ago, Peuker et al. [[18]] used the
signals extracted from the pen to perform PD identification,
obtaining very suitable results. However, the authors extracted
around 400 hand-crafted features from the signal, which were
obtained by means of a sequential-driven feature selection
algorithm, which may be too costly.

In this work, we proposed to learn pen-based features by
means of a Convolutional Neural Network (CNN) [19], which
can process information through a set of layers, being each
one in charge of learning a different and finer representation.
Moreover, as far as we are concerned, we have not noticed
any work that deal with automatic PD diagnosis by means of
deep learning techniques, which turns out to be the main con-
tribution of this work. Additionally, another main contribution
of this work is to make available a dataset composed of the
signals extracted from patients and healthy individuals through
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the smart pen.

The remainder of this paper is organized as follows. Sec-
tions [l and [ present some theoretical background with
respect to CNNs and the methodology employed in this work,
respectively. Section [[V] presents the experimental results, and
Section [V] states conclusions and future works.

II. CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks can be seen as a represen-
tation of a bigger class of models based on the Hubel’s and
Wiesel’s architecture, which was presented in a seminal study
in 1962 concerning the primary cortex of cats. This research
has identified, basically, two kinds of cells: (i) simple cells,
which possess an analogous duty to the filter bank step, and
(ii) the complex cells, which perform a similar job to the CNN
sampling step.

The first model that simulated a computer-based con-
volutional neural network was the well-known ‘“Neocogni-
tron” [20], which implemented an unsupervised training al-
gorithm during the filter bank step, followed by a supervised
training algorithm applied in the last layer. Later on, LeCun
et al. [19], [21]] simplified this architecture by proposing the
use of the Backpropagation algorithm to train the network in
a supervised way. Thus, several applications that used CNN
emerged in the subsequent decades.

Basically, a CNN can be understood as an N-layered image
processing sequence. Thereby, given an input 1mageE| a CNN
essentially extracts a high level representation of its, called
multispectral image, whose pixel attributes are concatenated
in a feature vector for later application of pattern recognition
techniques. Figure [I] introduces the naive architecture of a
Convolutional Neural Network.

Fig. 1.

A typical Convolutional Neural Network architecture.

As aforementioned, each CNN layer is often composed
by three operations, being the first one a convolution with
a filter bank, followed by a sampling phase and then by a
normalization step. As one can observe in Figure [II there is
still a possibility of a normalization operation in the beginning
of the whole process. The next sections describe in more
details each of these steps.

A. Filter Bank
Let | = (Dy, I ) be a multispectral image such that D; €
n X n is the image domain, and I = {I1(p), I2(p), ..., Im(p)}

IThe same procedure can be extended to signal processing-based applica-
tions.

corresponds to a pixel p = (zp,yp) € Dy, and m stands for the
number of bands. When I is a grey-scale image, for instance,
we have that mm = 1 and I = (Dy, I).

Let ¢ = (A, W) be a filter with weights W (q) associated
with every pixel ¢ € A(p), where A(p) denotes a mask of
size La x L4, centered at p, and ¢ € A(p) if, and only
if, max{|z, — zp|,lyq —yp|} < (La — 1)/2. In case of
multispectral filters, their weights can be depicted as vectors
Wilg) = {wia(q), wi2(q), ..., wim(q)} for each filter i,
and a multispectral filter bank can be then defined as ¢ =
{61,602, n}. where ¢; = (A, W), i ={1,2,...,n}.

Thus, the convolution between an input image I and a filter
¢; generates the band ¢ of the filtered image J = (Dy, j}

vl;here Dy € Dy and J = {Ji(p), Ja(p), ..., Jn(p )}, Vp €
J:
Y. Ilg) @ Wilg), (1)

VgeA(p)

where @ denotes the convolution operator. The weights of
¢; are usually generated from an uniform distribution, i.e.,
U (0, 1), and afterwards normalized with mean zero and unitary
norm.

B. Sampling

This operation has an extreme importance for a CNN, which
intends to provide a translational invariance to the extracted
features. Let B(p) be the sampling area of size Lg X Lg
centered at p. Additionally, let Dx = D;/s be a regular
sampling operation every s pixels. Therefore, the resulting
sampling operation in the image K = (DK,X ) is defined
as follows:

Kip) = .| > Jilo), @

VqeB(p)

where p € Dy denotes every pixel of the new image, i =
{1,2,...,n?}, and « is a parameter that controls the operation
sensitiveness.

C. Normalization

The last operation of a CNN is its normalization, which
is a widely employed mechanism in order to enhance its
perfomance [22]. This operation is based on the apparatus
found on corticals neurons [23]], being also defined under a
squared-area C(p) of size L¢ x L¢ centered at pixel p, such

as: K( )
O0i(p) = = oP 3)
Jj=1VqeC(p)

Thus, the above operation is accomplished for each pixel p €
Do C Dy, of the resulting image 0= (Do, O)

III. METHODOLOGY

In this section, we present the methodology used to design
the dataset, as well as the proposed approach to analyze the
pen-based features (signals) by means of CNNs. In addition,
we present the experimental setup as well.



A. HandPD Dataset

The writing of parkinsonian patients is often distorted and
smaller (micro-graphing) than that of healthy individuals due
to the tremors, reduced movement amplitudes, slowness and
rigidity [24]]. Currently, it is not straightforward to pinpoint a
specific exam that can identify a patient in the early stages.
Also, PD can be misidentified with other brain disorders.

Recently, Pereira et al. [16] built a datasef concerning
images acquired during handwriting exams, which aim at
describing an individual skills when filling a form out, as
the one depicted in Figure 2l The idea of the form is to ask
a person to perform some specific tasks that are supposed
nontrivial to PD patients, such as drawing “spirals” (row ‘c’
in Figure2), “meanders” (row ‘d’ in Figure2)), and performing
the so-called diadochokinese test, which is basically a test
where the individual holds the pen with straight arms and
perform hand-wrist movements. Since there are no drawings
involved, only the signal generated though these movements
are recorded by the pen.
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Fig. 2. Form used to assess the handwritten skills of a given individual.

The former HandPD dataset was collected at the Faculty
of Medicine of Botucatu, Sdo Paulo State University, Brazil,

Zhttp://wwwp.fc.unesp.br/~ papa/pub/datasets/Handpd

being composed of images extracted from handwriting exams
of individuals divided into two groups: (i) healthy people and
(i) PD patients. In this work, we proposed to extend the
original HandPD dataset with signals extracted from the smart
pen as well. Figure [3 displays an image of the BiSP® used
in this work. The signals generated by the pen concern six
sensors, as described above:

o CH 1: Microphone;

o CH 2: Fingergrip;

o CH 3: Axial Pressure of ink Refill;

e CH 4: Tilt and Acceleration in “X direction”;

e CH 5: Tilt and Acceleration in “Y direction”; and
o CH 6: Tilt and Acceleration “Z direction”.

tilt & acceleration sensor \

refill pressure sensor

= grip pressure sensor

b
\

4= writing's pressure sensor

Fig. 3. Biometric Pen: sensors are located at four different points (extracted

from [23]).

The difference between the exams of healthy individuals
and patients are due to a dysfunction of movement disorders.
The parkinsonian patients, for instance, present high levels of
tremor during drawing tasks. Since each sensor outputs the
whole signal acquired during the exanl, we can represent
such data as a time series, as depicted in Figure d which
represents the output of an exam from a healthy individual
when drawing a spiral (e.g. Figure [Jh). We can observe the
drawing is pretty much the standard form of the image, while
the signal extracted from the patient seems to be too much
noisy, as displayed in Figure [3] (e.g. Figure [7b).

In order to build this initial datasetﬂ, we used signals
extracted from spirals and meanders only. The new dataset
comprises 35 individuals, being 14 patients (10 males and 4
females) and 21 control (healthy) individuals (11 males and
10 females). Each person is asked to fill the form out using
the smart pen starting from inward to outward. This activity
concerns the analysis of the movement provided by spirals and
meanders drawings, which quantify the normal motor activity

3The extension of the exam is defined as the time interval between a
computer beep (a start call) and the end of the drawing process.

4We are now working on to expand the dataset with the diadochokinese
and circles test (row “ab” in Figure 2).
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Fig. 4. Signals recorded by the pen from a control individual when drawing
a spiral.
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Fig. 5. Signals recorded by the pen from a PD patient when drawing a spiral.

in a healthy individual, as well as the dysfunction of PD
patients.

B. Modelling Time Series in CNNs

We propose to model the problem of distinguishing PD and
control individuals as an image recognition task by means of
CNNs. Roughly speaking, the signals provided by the smart
pen are transformed into pictures. Each exam is composed
of r rows (exam time in milliseconds) and 6 columns, which
stand for the aforementioned 6 signal channels (e.g. sensors).
Therefore, each exam needs to be resized to a squared matrix
in order to fulfil our purposes (notice the number of rows
r may differ from each test, since a person may take longer
than another to perform the exam). After rescaling, each exam-
based matrix is then normalized in order to be modelled as a
gray-scale image. Figures [6 and [7 illustrate some drawings
and their transformed versions into time series-based images.
One can observe the different patterns between spiral and
meander images, as well as different patterns between the same
drawings of healthy and PD patients.
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Meander samples from: (a) control and (b) PD patient, and their
respective time series-based images in (c) and (d).
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Fig. 7.  Spiral samples from: (a) control and (b) PD patient, and their
respective time series-based images in (c) and (d).

C. Experimental Setup

In this work, we classified meanders and spirals images
drawn by the control group and PD patients using a CNN-
based approach. Also, we conducted an additional experiment
over the raw data to serve as a baseline for comparison
purposes. Although one can use any supervised machine
learning technique, we opted to employ the OPF classifier,
which is a fast and parameterless technique [9], [10].

We divided the experiments into two datasets: (i) the me-
anders and the (ii) spirals. Both datasets are composed of 308
images, being 224 PD patients and 84 control group samples.
In addition, we evaluated the robustness of CNNs over two
different image resolutions: 64 x 64 and 128 x 128 pixels.
Also, we evaluate the influence of the training set size over two



distinct experiments: one with 75% of the dataset for training
and 25% for testing, and another with 50% for training and
50% for testing purposes.

In regard to the source-code, we used the well-known Caffe
libraryﬁg [26], which is developed under GPGPU (General-
Purpose computing on Graphics Processor Units) platform,
thus providing more efficient implementations. Each experi-
ment was evaluated by a different CNN architecture provided
by Caffe using 10,000 training iterations with mini-batches
of size 16. In order to provide a statistical analysis by means
of Wilcoxon signed-rank test with significance of 0.05 [27],
we conducted a cross-validation with 20 runnings. Different
CNN architectures were used to provide a deeper experimental
analysis:

1) ImageNet: composed of 5 convolution layers, 5 pooling
layers and 2 normalization layers. It is also constituted
by 5 ReLU layers among the convolution ones, 2 inner
product layers, 2 dropout layers, 1 softmax loss layer
and 1 accuracy layer for testing purposes.

2) CIFAR-10: a quick version is used, composed of 3 con-
volution layers and 3 pooling layers. It is also constituted
by 3 ReLU layers among the convolution ones, 2 inner
product layers, 1 softmax loss layer and 1 accuracy layer
for testing intentions.

3) LeNet: composed of 2 convolution layers and 2 pooling
layers. It is also constituted by 2 inner product layers
and a single ReL.U layer among the inner product ones.
Finally, we have 1 softmax loss layer and 1 accuracy
layer for testing duties.

Since the images used in the experiments are domain-specific,
we did not employ transfer learning, i.e. we opted to train the
networks using our own datasets.

IV. EXPERIMENTAL RESULTS

This section aims at presenting the experimental results con-
cerning the CNN-based Parkinson’s Disease identification. As
aforementioned in Section we compared three distinct
CNN architectures and a baseline approach by means of the
OPF classifier considering both meander and spiral datasets.
Tables I and II describe the average results regarding meander
dataset. The most accurate results, according to Wilcoxon
signed-rank test, are in bold. Table I presents the overall
accuracy, while Table II presents the recognition rates per
class. Notice the overall accuracy is computed using the

standard formulation, i.e., (1 — Z—=4E25—) + 100.

50% / 50% (Train / Test) | 75% / 25% (Train / Test)
64 x 64 128 x 128 64 x 64 128 x 128
ImageNet 86.14% 84.74% 85.00% 87.14%
CIFAR-10 56.59% 50.00% 68.83% 64.22%
LeNet 25.45% 40.00% 43.64% 36.36%
OPF 79.87% 76.62% 84.42% 81.82%
TABLE I

AVERAGE OVERALL ACCURACY OVER THE TEST SET CONSIDERING
MEANDER DATASET.

Shttp://caffe.berkeleyvision.org

One can observe CNN-based features obtained the most
accurate results for all experiments, except for the 75% — 25%
experiment with 64 x 64 images. Probably, images with such
resolution may not represent the whole time series well enough
to be discriminated by CNNs. Also, the best results were
obtained by ImageNet architecture with 128 x 128 images and
using 75% of the dataset for training purposes. Since LeNet
is shallower than ImageNet and CIFAR-10 architectures, it
obtained the lowest accuracy recognition rates.

Table II presents the results per class. Since our dataset
is not balanced, it is quite useful to provide the recognition
rates considering both healthy and patients group. In general,
the recognition rates are quite good, being the bottleneck
of the proposed approach the recognition rates over control
individuals. Although we have more control people than PD
patients, a considerable number of healthy individuals were
classified as patients, since the dataset comprises PD patients
with exams quite close to the ones performed by healthy
individuals. As aforementioned, one the of greatest challenges
in PD identification concerns the early stage of the disease,
where both patients and healthy individuals have similar
handwritten skills.

50% 7 50% (Train / Test)
64 x 64 128 x 128
Control PD Control PD
74.29 % 90.58% 76.31% 87.90%
CIFAR-10 15.71% 71.92% 10.00% 65.00%
LeNet 00.00% 35.00% 00.00% 55.00%
OPF 61.91% 86.61% 52.38% 85.71%

75% [ 25% (Train / Test)
64 x 64 128 x 128
Control PD Control PD
72.86% 89.55% 76.19% 91.25%
33.33% 82.14% 10.95% 84.20%
00.00% 60.00% 00.00% 50.00%
61.91% 92.86% 52.38% 92.86%

ImageNet

TABLE II
AVERAGE CONTROL AND PD PATIENTS ACCURACIES OVER THE TEST SET
CONSIDERING MEANDER DATASET.

Tables III and IV present the results concerning spirals
dataset. In this case, OPF over the raw data obtained better
results than the ones achieved over meanders. The most
accurate result of 83.77% was obtained by OPF with 64 x 64
images using 50% of the dataset for training purposes. The
best results concerning CNNs were obtained using 75% for
the training set, which is somehow expected, since the main
shortcoming of deep learning techniques is related to the
dataset size for training. Once again, the shallower architecture
(LeNet) obtained the lowest recognition rates.

50% / 50% (Train / Test) | 75% / 25% (Train / Test)
64 x 64 128 x 128 64 x 64 128 x 128
ImageNet 78.41% 77.69% 80.19% 77.53%
CIFAR-10 75.58% 73.38% 78.31% 70.78%
LeNet 54.55% 40.00% 43.64% 40.00%
OPF 83.77 % 80.52% 79.22% 77.92%
TABLE III

AVERAGE OVERALL ACCURACY OVER THE TEST SET CONSIDERING
SPIRAL DATASET.

Table IV presents the accuracy results per class. Once
again, the recognition rates for each group are considerably
good, with CNNs obtaining around 98% of classification rate
concerning PD patients, and OPF achieving around 71% of
recognition rate for the control group. In this case, smaller



training sets seemed to be fruitful for CNNss, since spirals pose
a greater challenge than meanders. In this case, it is possible
to distinguish PD patients from healthy individual with less
images. Notice the results over spirals are considerably more
accurate then the ones obtained over meanders, as well as a
shallower architecture (CIFAR-10) obtained the best results in
some situations.

50% /' 50% (Train / Test) 75% [ 25% (Train / Test)
64 X 64 128 x 128 64 x 64 128 x 128
Control PD Control PD Control PD Control PD
TmageNet 58.10% 86.03% 56.19% 85.76% | 59.52% 87.95% 55.48% 85.80%
CIFAR-10 29.76% 92.77% 06.31% 98.53% 57.38% 86.16% 14.76% 91.79%
LeNet 00.00% 75.00% 00.00% 55.00% [ 00.00% 60.00% 00.00% 55.00%
OPF 66.67% 90.18% 61.91% 87.50% | 71.43% 87.50% 66.67% 82.14%
TABLE IV

AVERAGE CONTROL AND PD PATIENTS ACCURACIES OVER THE TEST SET
CONSIDERING SPIRAL DATASET.

Also, one interest result that can be observed refers to how
OPF performed better on a smaller training set. As we are
working with signals converted into images, some of the PD
patients are still not impaired, resulting in similar signals to
a control group patient. Furthermore, there are more training
samples from parkinson’s group than that of control group
ones. Thus, the raw data considering PD patients and healthy
individuals may look similar at certain points.

V. CONCLUSIONS

In this paper, we cope with the problem of PD identification
by means of Convolutional Neural Networks. Basically, the
idea is to model the handwritten dynamics as a time series,
and to use it as an input to a CNN, which will be able to
learn features that are used to distinguish healthy individuals
from PD patients. The main contributions of this paper rely
on two main aspects: (i) to employ a deep learning-oriented
approach to aid Parkinson’s Disease diagnosis, (ii) as well as
to design a signal-based dataset composed of features related
to handwritten dynamics.

The experimental section comprised different CNN archi-
tectures, as well as images with different resolutions and
distinct training set sizes. The results obtained by CNNs were
compared against the raw data classified by means of the
OPF, and showed to be very promising, since CNNs were able
to learn important features to differentiate PD patients from
healthy individuals, thus obtaining very good results over the
datasets.

In regard to future works, we aim at extending the dataset
with more exams (circles and diadochokinese test), as well as
to increase the number of individuals. Also, our next idea is to
learn a fusion schema that considers all exams when making
decisions about an individual. Also, we aim at employing
different approaches to transform temporal series into 2D
images, such as the visual rhythms proposed by Almeida et
al. [28].
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