
A Scalable and Versatile Framework for Smart
Video Surveillance

Antonio C. Nazare Jr.
Renato Antonio Celso Ferreira (Co-advisor), William Robson Schwartz (Advisor)
Department of Computer Science – Universidade Federal de Minas Gerais, Brazil

Email: {antonio.nazare, renato, william}@dcc.ufmg.br

Abstract—The large amount of visual data generated by
surveillance cameras is usually analyzed manually, a challenging
task which is labor intensive and prone to errors. Therefore,
automatic approaches must be employed to enable the proper
processing of the visual data. The main goal of automated surveil-
lance systems is to analyze the scene focusing on the detection
and recognition of suspicious activities. However, these systems
are rarely tackled in a scalable manner. With that in mind, this
Master’s thesis1 proposed a framework for scalable video analysis
called Smart Surveillance Framework (SSF) to allow researchers
to implement their solutions to the surveillance problems as
a sequence of processing modules that communicate through
a shared memory. The framework provides useful features to
the researchers, such as memory management to allow handling
large amounts of data, communication control among execution
modules, predefined data structures specifically designed for
the surveillance environment and management of multiple data
input. Our experimental results evaluate important aspects of
the Smart Surveillance Framework (SSF) and demonstrate the
scalability of the framework, the lower overhead caused by the
communication between the modules and the shared memory
and the high performance of our feature extraction mechanism.

Keywords-Smart Surveillance Framework, Surveillance Sys-
tems, Computer Vision Video Analysis, Video Surveillance

I. INTRODUCTION AND MOTIVATION

Due to the reduction in prices of cameras and the im-
provement in network connectivity, the number of surveillance
cameras placed in several locations increased significantly in
the past few years. If on one hand, a distributed camera
network provides visual information in real time covering large
areas, on the other hand, the number of images acquired in a
single day can be easily in the order of billions, preventing
their manual processing and posing an intricate problem for
monitoring such areas [1].

While the ubiquity of video surveillance provides safer
environments, the monitoring of large amount of visual data
is a challenging task when performed manually by human
operators since most of the visual data do not present in-
teresting events from the surveillance standpoint, turning it
into a repetitive and monotonous task for humans [2], [3].
Hence, automatic understanding and interpretation of activities
performed by humans in videos are of great interest since such
information can assist the decision making process of security
agents [2].

1This work summarizes the M.Sc. thesis of the first author.

0

200

400

600

800

1000

1200

1400

19
9

0

1
9

9
2

1
9

9
4

19
9

6

19
9

8

2
0

0
0

2
0

0
2

20
0

4

20
0

6

2
0

0
8

2
0

1
0

20
1

2

20
1

4

N
u

m
b

er
 o

f 
P

u
b

lic
at

io
n

s
Year

IEEE Computer Society Digital Library IEEE Xplore Digital Library

Figure 2. Histogram of publications in IEEE Computer Society Library and
IEEE Xplore Digital Library whose metadata contains the keywords video
and surveillance (Adapted from [4] and updated on December 17, 2014).

The addition of automatic understanding and interpretation
to surveillance systems does not entail the replacement of
human operators as foreseen on several Sci-Fi movies, on the
contrary, it aims at supplying additional information to the
operator. For instance, instead of a security agent monitoring
continually up to 50 screens with live security video feed (task
which humans do not present high performance due to the lack
of important events during most of the time [5]), an automated
system might perform a filtering in the videos and indicate
only those video segments more likely to contain interesting
activities, such as suspicious activities that might lead to a
crime.

Smart visual surveillance systems deal with the real-time
monitoring of objects within an environment. The main goal of
these systems is to provide automatic interpretation of scenes
and understand activities and interactions of the observed
agents based on the visual information being acquired. Current
research regarding these automated visual surveillance systems
tend to combine multiple disciplines, such as computer vi-
sion, signal processing, telecommunications, management and
socio-ethical studies.

In the last two decades, professionals of industry and
researchers have dedicated their studies to improve surveil-
lance systems. To understand the increase of works related
to video surveillance and inspired by Huang [4] study, we



Image Sensors

Knowledge Representation

Regions of Interest Locations

Image 
Filtering

Background 
Subtraction

Pedestrian 
Detection

Tracking and Identification

Face Recognition
Person 

Tracking
Person 

Re-Identificadtion
Pose

Estimation

Knowledge Extraction

Gesture 
Recognition

Action Recognition
Activity 

Recognition

Low

High

In
fo

rm
atio

n
 

Leve
l

Visual Information 
Representation

Feature 
Transformation

Feature 
Extraction

Figure 1. Diagram illustrating the main problems considered in visual surveillance applications, and their dependencies. Visual information is captured by
the feature extraction which feeds several modules. The results obtained by solving each problem are employed to perform scene analysis and understanding.

searched the keywords video and surveillance in IEEE Xplore
Digital Library (within metadata only) and the IEEE Computer
Society Digital Library (by exact phrase). The findings are
shown in Figure 2 as a function of the publication year. The
large number of publications in the past ten years indicates
that research on surveillance video has been very active.

One of the great challenges of automatic surveillance sys-
tems is to interpret what is happening in the scene, a sequence
of problems need to be solved, which is highly prone to
noise generated during the process. Among the problems
are the background subtraction [6], pedestrian detection [7],
face recognition [8], pose estimation [9], person tracking [10]
and re-identification [11], action recognition [12] and activity
recognition [13].

The problems considered in the surveillance domain might
be divided into four groups: visual information representation,
regions of interest location, tracking and identification, and
knowledge extraction. Figure 1 shows these groups and the
relationship among the problems within each. While modules
located at the top of the diagram define low-level problems,
in the sense that they present low dependency to solutions
obtained by other problems, e.g., background subtraction and
pedestrian detection, modules at the bottom comprise high
level problems since they depend on the results of other
problems, e.g., action and activity recognition.

The arrow in the right-hand side of Figure 1 represents the
dependencies among the problems. For example, to solve the
action recognition, one first needs to correctly detect and track
the person who is executing an action. Tasks composing this
process might be affected by errors propagated along the task
chain (e.g., detection errors will affect the tracking of a person,
which will prevent the recognition of the action executed by
this person). Therefore, it is necessary to solve the tasks in an
accurate manner be able to solve problems presenting several
dependencies, such as the activity recognition, responsible for
making inferences regarding the activities being executed in

a scene (e.g., loitering, identification of suspicious collabora-
tions or carjacking).

In the diagram shown in Figure 1, Visual Information
Representation comprehends tasks aiming at representing the
information contained in the visual data, e.g., converting pixel
information to a feature space which is more robust to noise
and transformations taking place in the video. The goal of
the Regions of Interest Location is to narrow down efficiently
the locations of the scene where information regarding ac-
tivities taking place can be extracted. Then, once the tasks
in the previous category have located the relevant regions
in the scene for each frame, the problems in the Tracking
and Identification category will estimate their trajectories
and identify the agents based on information including their
appearance or their faces. Finally, after the objects and agents
have been located, identified and their trajectories have been
estimated, their actions and activities can be recognized, these
problems refer to the Knowledge Extraction category. All the
information collected by executing the tasks will be used to
generate a knowledge representation regarding the scene, so
that one can use such information to make inferences and
perform scene analysis.

Even though each one of these problems present a vast
literature, they are usually considered independently such as in
currently available evaluation data sets, e.g., the evaluation of
face recognition methods is performed using already detected,
cropped and aligned faces [14], which cannot be accomplished
in real surveillance scenarios where the only inputs are video
feeds without annotations. Therefore, dealing with the prob-
lems individually does not allow one to identify what are the
effects of the results obtained by solving one problem on the
following steps in the processing sequence.

Although visual surveillance has been subject to a huge
growth, most development frameworks do not couple with
the advances in the domain. According to Valera [15], the
technological evolution of surveillance systems can be divided



Implement the problem 
solution by means of user 

module. 

Create and configure a pipeline 
composed by the new and 

others modules 

Execute the pipeline

Configuration 
GUI 

YML 
File

C++ Source Code

Step 1
Code

Step 2
Configure

Step 3
Execute

Background 
Subtratcion

Detection

Video 
Acquisition

Tracking

Example of a Pedestrian Tracking Pipeline

Figure 3. Overview of the Smart Surveillance Framework, an development environment that allows the researcher to implement his/her surveillance algorithms
in an integrated manner by setting up a sequence of modules that will be executed in a pipeline. The researcher can take advantage of the transparent
communication control provided by a shared memory using surveillance-focused data structures (Section II-A), a feature extraction server (Section II-B) to
reduce the computational cost, and a high level reasoning might be performed using information stored in the Complex Query Server (Section II-C).

into three generations, The first generation consists of analogue
Closed-Circuit Television (CCTV) which are composed of
cameras distributed in the scene and connected to monitors
by switches. The second generation is characterized by high
performance computers and digital cameras, allowing the
development of computer vision algorithms to assist humans
in many surveillance tasks. The third generation deals with
wide-area scenes and large amount of data acquired by sev-
eral different types of sensors, leading to more challenging
scenarios which require improved solutions. Several surveil-
lance systems of the third generation have been designed and
developed both in the industry and in the academia. Among
the systems are Knight [16], IBM Smart Surveillance System
(S3) [17], Smart Platform [18] and the work proposed by Wang
et al. [19].

Motivated by the presented issues, this Master’s thesis
proposed a framework for a scalable video analysis able to
readily integrate different computer vision algorithms into a
functional surveillance system. This framework, called Smart
Surveillance Framework (SSF), aims at bringing several im-
provements providing scalability and flexibility, allowing the
users (researchers) to focus only on their application by
treating the sequence of problems as a set of processing
modules that communicates through data streams, stored in
a shared memory.

More specifically, the Smart Surveillance Framework is a
development environment in which the researcher can imple-
ment and evaluate his/her algorithms related to surveillance
in an integrated manner, as illustrated in Figure 3. It is based
on execution modules that communicate to each other using
data streams controlled by a shared memory. The framework
provides the following features to aid the researcher: memory
management to allow handling large amounts of data in
regular computers; communication control among execution
modules; predefined data structures specifically designed for
surveillance environment; management of multiple data input,

such as cameras or stored videos; feature extraction server
to maximize the usage of the processing power available
to compute local descriptors; query server to allow high
level reasoning and scene understanding; and a configuration
interface to help setting up sequences of execution. These
features and the framework architecture will be discussed in
details in Section II.

The main contributions provided by the development of this
Master’s thesis are the following:

i) A novel framework to allow the processing of large
amounts of data provided by multiple surveillance net-
work cameras;

ii) A platform to compare and exchange research results in
which researchers can contribute with modules to solve
specific problems;

iii) A framework to allow fast development of new video
analysis techniques since one can focus only on their
application, by treating the sequence of problems as a
whole and consequently providing the lower and higher
level application modules.

iv) Creation of a high-level semantic representation of the
scene using data extracted by low-level modules to allow
the execution of video event analysis based on individual
or group activities;

v) A testbed to allow further development on activity under-
standing since one can focus directly on using real data,
instead of annotated data that may prevent the method
from working on real environments;

vi) A platform to allow scalable feature extraction that uses
the full power of multi-core architectures;

vii) A review of published papers in recent years that discuss
the issues and challenges involved in the deployment of
modern visual surveillance systems, as well the discus-
sion of similar works to the proposed framework.

This document summarizes the work carried out during
the Masters and is organized as follows. Section II describes



SSF Kernel

CQS FES

User Modules

User Module
01

User Module
02

User Module
03

Shared Memory

Execution Control

Figure 4. Architecture of the Smart Surveillance Framework.

the proposed Smart Surveillance Framework (SSF). Then,
Section III presents our experimental evaluation, and finally
Section IV points our final remarks.

II. SMART SURVEILLANCE FRAMEWORK

Written in C/C++, the Smart Surveillance Framework (SSF)
is a tool built to provide a set of functionalities to aid re-
searchers not only on the development of surveillance systems,
but also on the creation of novel algorithms for problems
related to video surveillance.

The SSF has been designed to allow the development
of modern surveillance systems, providing features as tools
to perform scene understanding, scalability, real-time opera-
tion, distributed multi-sensor environment and communication
control. The architecture of framework can be divided into
two main parts: user modules and SSF kernel, as illustrated
in Figure 4. While the former is where the user implements
his/her surveillance and computer vision algorithms, the latter,
responsible for controlling data communication, parallelism
and data structures, lies outside of the user domain, being
accessible only through configuration parameters.

The SSF kernel is composed of the following components.
(i) shared memory: the backbone of the SSF, it allows the
communication among all other components and stores the
data generated by user; (ii) Feature Extraction Server (FES):
it processes feature extraction requests and return feature
vectors to user modules to maximize the occupancy of the
processing units available; (iii) Complex Query Search (CQS):
this component allows user modules to search for specific data
in the shared memory by using Prolog or queries in SQL
databases; (iv) Execution Control: this component controls the
execution of the other SSF components and is responsible
for the SSF initialization. In addition, this component has a
graphical interface to aid the user to configure the run-time
environment.

The user modules are components written by the researchers
to solve surveillance and computer vision problems (in fact,
any algorithm can be implemented in the user modules). These
modules use a well-defined interface to communicate with

the the kernel components and the concept of data stream to
communicate to other modules through specific data types).

The following sections describe the SSF components.

A. Shared Memory

To achieve a flexible and modular software architecture,
it is necessary that the modules be designed independently
without knowing each other specific interfaces, which would
reduce the flexibility when integrating a set of modules to
solve a given task. Therefore, to address this constraint,
the SSF provides a resource to store data and control the
data communication between user modules. Such feature is
referred to as shared memory and is responsible for the data
communication control. This way, the modules only need to
know the interfaces provided by the shared memory and not
each other specific interfaces.

B. Feature Extraction Server

Feature extraction is critical for surveillance systems since
several algorithms require feature descriptors as input. How-
ever, most feature extraction algorithms are highly time con-
suming and not suitable for real time applications. To address
the feature extraction problem, the SSF provides a powerful
tool: the Feature Extraction Server (FES). It allows the feature
extraction to be performed using the entire computational
power available in the system to maximize the performance
(one can use all available CPU cores). More specifically,
researchers implement their feature extraction methods based
on a template class and the feature extraction server will
be responsible for splitting the task among the available
processing units.

The feature extraction server relies on an asynchronous
approach to receive requests, process them and return feature
vectors to the user modules with the objective of maximizing
the occupancy of the processing units available. Once a request
has been sent to the FES, it does not block the processing being
executed in the module, which can continue working while the
request is been processed by the FES.

C. Complex Query Server

To search for specific data, such as actions being performed
in a given time interval or tracklets intersection of two given
subjects, one may retrieve data from the shared memory by
implementing the query in a module. However, such approach
may be inefficient since the architecture of the shared memory
is optimized for simple write and read requests. To allow user
modules to search efficiently for specific data in the shared
memory, the SSF provides the Complex Query Server (CQS).

CQS is independent of the underlying query/inference solu-
tion, for instance Relational or Big Data Databases and logic
programming such as Prolog. Therefore, the user modules are
not required to know how to write a query in a specific solu-
tion. To achieve this independence, the CQS defines a common
interface with modules so that each complex query solution
underlying must implement this CQS common interface which
either may be simplified to allow easily integration with as



1

2

3

4

5

6

7

8

9

10

11

12

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee

d
u

p

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
o

n
d

s)

Number of Instances

Execution Time Speedup

(a) Framework Scalability.

1 3 5 7 10 15

1 pipeline 0,051 0,058 0,054 0,062 0,064 0,068

3 pipelines 0,054 0,057 0,061 0,069 0,070 0,073

5 pipelines 0,061 0,069 0,071 0,073 0,079 0,081

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
o

n
d

s)

Number of Instances

(b) Communication latency.

1

2

3

4

5

6

7

8

9

10

11

12

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee

d
u

p

Ex
ec

u
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Number of Instances

Execution Time Speedup

(c) FES Performance

Figure 5. Examples of computational experiments performed on Smart Surveillance Framework (SSF)

many underlying solutions as possible or may also be complete
enough to easily allow complex queries. Any implementation
of an underlying query/inference solution in the CQS common
interface can be performed by implementing initialization,
storing and querying methods.

D. Execution Control

The SSF components that will be used for an execution are
chosen by parameter settings, which increases the customiza-
tion of the framework. The parameters might be supplied via
a configuration file or assigned through the Graphical User
Interface (GUI). Once the configuration file is provided, the
Execution Control is responsible for initializing the remaining
components and for assigning values to the parameters.

E. User Modules

The user modules are the framework mechanism where the
researcher implements his/her algorithms of typical routines
of a surveillance system, such as person detection, back-
ground subtraction, face recognition, person tracking and re-
identification, and action and activity recognition.

Every module follows the same standard interface, in which
the user (researcher) defines its input and output data types and
its parameters without specifying which module will provide
or receive them. This is done later, in execution time by
reading the dependencies from a parameter file (or the GUI),
which makes the framework highly flexible and versatile. Once
the module is launched, an execution routine (where the user
implement his/her method), is called and executed.

Another important feature related to modules, is the creation
of execution pipelines – collections of user modules behaving
as a single module. A pipeline allows one to group several
modules of individual methods in a sequence. Once defined,
multiple instances of the pipeline can be launched just by
changing their inputs. For instance, one pipeline can be
launched to process data from each surveillance camera at-
tached to the system. Such a feature also makes the framework
more scalable.

To the user’s perspective, the communication between
modules does not exist directly because when implementing
his/her module, the user requests data types as input without
specifying which module will provide it, and provides data
types as output also without specifying target modules. The

actual communication, controlled by the shared memory, is
only set in the execution time when the user specifies the input
and output modules. This communication scheme, known
as publish-subscribe messaging pattern, allows the reuse of
modules as components of applications with different goals
and increases the flexibility of the framework once the modules
with the same purpose are interchangeable.

III. EXPERIMENTAL RESULTS

A functional version of framework is available to down-
load2. The currently version has about 60, 000 lines of code
and 90 user modules developed by other researchers, including
algorithms for person detection, person tracking, camera con-
trol, classifiers and feature extraction approaches. Currently,
we are working on a new and improved version that will
be available as open source licensed software, along with its
documentation and user module examples.

We evaluate three important aspects of the framework pro-
posed in this work: scalability, latency and FES performance3.

Figure 5a presents an experiment to demonstrate the scala-
bility of the framework. The SSF allows the user to perform
parallelization of methods by decomposing a problem into in-
dependent sub-problems. Two general methodologies are com-
monly used. The first, termed data decomposition, assumes
that the overall problem consists in executing computational
operations to one or more data structures and, further, that
these data structures may be divided and operated upon. The
second, called task decomposition, divides the work based
on different operations or functions. Here, we present the
evaluation of data decomposition on SSF. In this experiment,
the sequential method has been implemented as a single SSF
module and replicated n times, where n represents the number
of cores used. Each instance of the method is responsible for
processing 100/n images from the data set, where n was var-
ied from 1 to 12 and each experiment was executed ten times.
Figure 5a reports the average execution time and speedup
achieved by the data decomposition approach. According to
Figure 5a, it is advantageous to use of the framework to
parallelize the processing of a considerable number of images.

2The SSF can be requested at http://www.ssig.dcc.ufmg.br/ssf/
3Due to the lack of space, we presented only a subset of the results. The

complete experiment set is available in the M.Sc. thesis (https://www.dcc.
ufmg.br/pos/cursos/defesas/1729M.PDF)

http://www.ssig.dcc.ufmg.br/ssf/
https://www.dcc.ufmg.br/pos/cursos/defesas/1729M.PDF
https://www.dcc.ufmg.br/pos/cursos/defesas/1729M.PDF


The speedup obtained by the data decomposition approach is
very close to linear, demonstrating that the communication
overhead caused by the SSF is minimal.

To evaluate the overhead caused by the communication
between the modules and the shared memory, we conducted
an experiment in which an image (SSF frame data type) was
transmitted through a certain number of modules. For that,
a pipeline with n modules was created and each module just
forwards the image frame (without performing any processing)
to the next module. The time elapsed between the instant at
which the first and the last module of the pipeline (Modules 01
and n, respectively) performed the reading of the image was
computed to estimate the data latency. According to results
shown in Figure 5b, the overhead caused by the increased
number of modules connected to the shared memory at the
same time is low, even when multiple pipelines are instantiated
simultaneously. Although this overhead exists, it is negligible
when compared with the processing time of the data, usually
orders of magnitude higher.

The Figure 5c presents a experiment conducted to evaluate
the performance of the Feature Extraction Server (FES).
This evaluation was conducted using a widely employed
features extraction methods: Gray-Level Co-occurrence Matrix
(GLCM) [20]. According to Figure 5c, it is possible to
observe an improvement in the computational performance
as a function of the number of instances used in the FES,
which demonstrates the advantage of its usage in multi-core
environments. The speedup achieved with the GLCM method
presents a linear growth, demonstrating the scalability of the
FES for computationally expensive methods.

IV. CONCLUSION

This Master’s thesis proposed a novel framework to al-
low further development of Computer Vision techniques
and surveillance applications. The architecture of the Smart
Surveillance Framework (SSF) allows simultaneous execution
of multiple user modules that can be developed independently
since they have communication and synchronization through
a shared memory, which contributes to the scalability and
flexibility. The proposed framework will also allow researchers
to provide their methods (implemented as modules) to be used
by other researchers to compare their results.

SCIENTIFIC PUBLICATIONS

As a result of this Master’s thesis, we published two papers
on international conferences and submitted another to a scien-
tific journal (currently in under review after a major revision).
The following list provides references to these documents.

1) A. C. Nazare, C. E. Santos, R. Ferreira, and W. R.
Schwartz, “Smart surveillance framework: A versatile
tool for video analysis,” in Proceedings of IEEE Win-
ter Conference on Applications of Computer Vision
(WACV), 2014, pp. 753–760. (Qualis B1)

2) A. C. Nazare, R. Ferreira, and W. R. Schwartz, “Scalable
feature extraction for visual surveillance,"" in Proceed-

ings of Iberoamerican Congress on Pattern Recognition
(CIARP), 2014, pp. 375–382. (Qualis B2)

3) A. C. Nazare and W. R. Schwartz, “A scalable and
flexible framework for smart video surveillance,” Journal
of Computer Vision and Image Understanding, 2015.
(Under Review). (Qualis A1)

ACKNOWLEDGMENTS

This work was supported by the CNPq and FAPEMIG,
Brazilian funding agencies.

REFERENCES

[1] F. Porikli, F. Bremond, S. Dockstader, J. Ferryman, A. Hoogs, B. Lovell,
S. Pankanti, B. Rinner, P. Tu, and P. Venetianer, “Video surveillance:
Past, present, and now the future,” IEEE Signal Processing Magazine,
vol. 30, no. 3, pp. 190–198, 2013.

[2] A. Hampapur, “Smart video surveillance for proactive security,” IEEE
Signal Processing Magazine, vol. 25, no. 4, pp. 136–134, 2008.

[3] A. C. Davies and S. A. Velastin, “A progress review of intelligent
CCTV surveillance systems,” in Proceedings of IEEE Intelligent Data
Acquisition and Advanced Computing Systems (IDAACS 2007), 2007,
pp. 417–423.

[4] T. Huang, “Surveillance video: The biggest big data,” Computing Now,
vol. 7, no. 2, 2014.

[5] G. J. Smith, “Behind the screens: Examining constructions of deviance
and informal practices among CCTV control room operators in the UK,”
Surveillance & Society, 2004.

[6] M. Piccardi, “Background subtraction techniques: A review,” in Pro-
ceedings of International Conference on Systems, Man and Cybernetics
(ISMC 2004), vol. 4, 2004, pp. 3099–3104.

[7] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 4, pp. 743–61, 2012.

[8] X. Zhang and Y. Gao, “Face recognition across pose: A review,” Pattern
Recognition, vol. 42, no. 11, pp. 2876–2896, 2009.

[9] R. Poppe, “Vision-based human motion analysis: An overview,” Com-
puter Vision and Image Understanding, vol. 108, no. 1-2, pp. 4–18,
2007.

[10] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys, vol. 38, no. 4, pp. 1–45, 2006.

[11] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and trends
in person re-identification,” Image and Vision Computing, vol. 32, no. 4,
pp. 270–286, 2014.

[12] R. Poppe, “A survey on vision-based human action recognition,” Image
and Vision Computing, vol. 28, no. 6, pp. 976–990, 2010.

[13] J. Aggarwal and M. Ryoo, “Human activity analysis: A review,” ACM
Computing Surveys, vol. 43, no. 3, pp. 1–43, 2011.

[14] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[15] M. Valera and S. Velastin, “Intelligent distributed surveillance systems:
A review,” IEE Proceedings - Vision, Image, and Signal Processing, vol.
152, no. 2, p. 192, 2005.

[16] M. Shah, O. Javed, and K. Shafique, “Automated visual surveillance in
realistic scenarios,” IEEE Multimedia, vol. 14, no. 1, pp. 30–39, 2007.

[17] Y. L. Tian, L. Brown, A. Hampapur, M. Lu, A. Senior, and C. F. Shu,
“IBM smart surveillance system (S3): Event based video surveillance
system with an open and extensible framework,” Machine Vision and
Applications, vol. 19, no. 5-6, pp. 315–327, 2008.

[18] W. Xie, Y. Shi, G. Xu, and Y. Mao, “Smart platform - a software infras-
tructure for smart space (SISS),” in Proceedings of IEEE International
Conference on Multimodal Interfaces (ICMI 2002), 2002, pp. 429–434.

[19] G. Wang, L. Tao, H. Di, X. Ye, and Y. Shi, “A Scalable Distributed
Architecture for Intelligent Vision System,” IEEE Transactions on
Industrial Informatics, vol. 8, no. 1, pp. 91–99, 2012.

[20] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features
for image classification,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 3, no. 6, pp. 610–621, 1973.


	I Introduction and Motivation
	II Smart Surveillance Framework
	II-A Shared Memory
	II-B Feature Extraction Server
	II-C Complex Query Server
	II-D Execution Control
	II-E User Modules

	III Experimental Results
	IV Conclusion
	References

