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Abstract—The invariance of geometric properties is a crucial
factor in many areas of Mathematics, particularly in Computer
Graphics. The affine geometry has occupied a significant place in
this field of application, having an intermediate position between
euclidean and projective geometries. The affine geometry is a
generalization of the euclidean geometry, but it is simpler than
projective geometry, both from the analytical and computational
point of view. It can be used to describe many common operations
in Computer Graphics. However, we did not find in literature
estimators for affine geometric properties in discrete surfaces.
The proposal of this work is to search for affine invariants in
these surfaces, beginning with an estimate of the affine normal
vector. This estimate was obtained from a discrete representation
of the surface using as elements pieces of paraboloids instead of
planes.
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I. INTRODUCTION

The objective of this work1 is to compute affine normal
vectors in discrete surfaces, so that such estimates preserve,
in the discrete model, the geometric characteristics of those
vectors in the continuous model. To our knowledge, there
are not known estimators for affine properties in discrete
surfaces. This fact motivated this study, given the potential
importance of those estimators in areas as Geometric Modeling
and Computer Vision, where projective transformations are
very common and can take advantage of affine properties,
which are closer to projective geometry than euclidean ones.

The main contribution of this paper is the estimation of the
affine normal vector in discrete surfaces. Thus, this is a starting
point for the study of affine invariants in discrete surfaces such
as the Gaussian and mean curvatures.

A. Related Work

It is possible to find in the literature plenty of estimators
for euclidean geometric properties in discrete surfaces, from
different points of view. In [13], for example, the authors
estimate Gaussian and mean curvatures, in a triangular mesh,
as an application of Euler’s formula, while in [6] these discrete
invariants are obtained based on the Gauss-Bonnet theorem.
Taubin [12] estimates some euclidean geometric properties in
polygonal meshes from the discrete curvature tensor defined
using an integral formula.

Estimates of affine geometric properties on smooth surfaces
and discrete curves can be found in [1], [2] and [4]. In [1]
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and [2] are presented estimators for the affine curvatures,
and affine co-normal and normal vectors in parametric and
implicit surfaces. In [4] parabolic polygons are used as models
of discrete curves to estimate affine curvature and affine arc
length.

In this work, we present estimates for affine normal vectors
in discrete surfaces. To do this, we build a representation
of these surface which is appropriated for affine geometry.
That representation uses paraboloid pieces instead of triangles,
allowing us to obtain the estimator of the affine normal from
it. This construction is similar to the construction done in [4]
for curves.

II. AFFINE CO-NORMAL AND NORMAL VECTOR IN
REGULAR SURFACES.

Affine co-normal and normal vectors in regular surfaces
are contravariant and covariant, respectively, by equiaffine
transformation. In the next subsection, we define these trans-
formations.

A. Affine Transformations

Proposition 1. A transformation T : R3 → R3 is affine if,
and only if, T satisfies T (u) = L(u)+ v0, where L is linear
and v0 ∈ R3.

Definition 1. An affine transformation T : R3 → R3 is called
equiaffine if T (x) = L(x) + v0, where det(L) = 1, i.e., if T
preserves volume.

In this paper we consider only equiaffine transformations.

B. Affine Co-normal and Normal Vectors

Definition 2. Let S be a regular surface locally convex and
X : U ⊂ R2 → S ⊂ R3 a parametrization of S, the affine
co-normal vector is defined by

ν =| Ke |−1/4 Ne,

where Ke is the euclidean Gaussian curvature and Ne is the
euclidean normal vector.

We denote by [u, v, w] the determinant of a 3 × 3 matrix
whose column vectors are u, v and w. We are now able to
define the affine first fundamental form.

Definition 3. Let X : U ⊂ R2 → R3 be a parametrization of
a regular surface locally convex. The affine first fundamental



form, or metric of Berwald-Blaschke, is the quadratic form
given by:

Ia =
Ldu2 + 2Mdudv +Ndv2

| LN −M2 |1/4
,

where, L = [Xu, Xv, Xuu], M = [Xu, Xv, Xuv] and N =
[Xu, Xv, Xvv] are such that the coefficient of metric
d = LN −M2 is not null.

Definition 4. Let S be a regular surface and P ∈ S. The
affine normal vector to S at P is defined as

ξ(P ) = [ν(P ), νu(P ), νv(P )]
−1(νu(P )× νv(P )).

Proposition 2. In the elliptical and hyperbolic paraboloids
the affine normal vector is constant.

Definition 5. Let S be a regular surface and G a group
of transformations associated with a geometry. We say
that a geometric measure is invariant by the group G if
∀ p ∈ S, ∀ A ∈ G, m(A(p)) = m(p), co-
variant if m(A(p)) = A(m(p)) and contravariant if
m(A(p)) = A−T (m(p)), where A−T = (A−1)T .

Proposition 3. The affine co-normal and normal vectors are,
respectively, contravariant and covariant by affine transforma-
tions.

The demonstrations of propositions 2 and 3 can be found
in [9].

III. TRIANGULAR BÉZIER PATCHES

In this section we make a brief review of triangular Bézier
patches, and show how to compute affine co-normal and
normal vectors if the patch is quadratic. Only quadratic patches
will be used later to give an alternative representation of
discrete surfaces. Further details can be found in references
[7], [8] and [10].

A. Representation of triangular Bézier patches

Every polynomial parametric surface b admits a unique
representation of Bézier in the form

b(u, v, w) =
∑
|i|=n

biB
n
i (u, v, w),

where u+ v + w = 1.
The coefficients bi are called points of Bézier of b and

are the vertices of a mesh called Bézier mesh or control net
of b. Therefore, each control net defines a unique Bézier
representation. The number of vertices in the control net is
given by (n + 1)(n + 2)/2, where n is the degree of the
polynomial (see figure 1).

Restricting the domain of this surface to T =
{(u, v, w) | 0 ≤ u, v, w ≤ 1 and u + v + w = 1} we obtain
the corresponding triangular Bézier Patch. Using the change
of variables u = x, v = y and w = 1 − x − y, we obtain a
new expression for b in two variables:

ϕ(x, y) =
∑
|i|=n

biB
n
i (x, y, 1− x− y).

The following properties are easy to verify
(3.1) ϕ is an affine combination of Bézier points. Conse-

quently it is covariant by affine transformations.
(3.2) For all (x, y, 1−x−y) ∈ T , ϕ(x, y) is a convex combi-

nation of Bézier points (since the Bernstein polynomials
are non negative on T ). Therefore, the patch satisfies the
convex hull property.

(3.3) The three boundary curves are Bézier curves. As a
consequence, the patch interpolates the three extreme
points of its control net.

Figure 1 illustrates a quadratic triangular Bézier patch, on
the left, and its control net, on the right. Note that each of the
three boundary curves is a Bézier parabola defined by three
control points in the corresponding side of the control net.

Fig. 1. Triangular Bézier patch with its control mesh.

B. De Casteljau’s algorithm

The following recursive algorithm was proposed by de
Casteljau [7]. It is very useful to compute the points b(u) =∑
|i|=n biB

n
i (u) in the triangular patch.

Algorithm 1: de Casteljau’s algorithm

Input : Control net vertices bi ∈ R3 and
the barycentric coordinates u = (u, v, w)

Output: The point b(u) in the patch
Consider i = (i, j, k), with i, j, k ∈ {0, 1, . . . , n} and1

| i |= i+ j + k = n
Let e1 = (1, 0, 0), e2 = (0, 1, 0) e e3 = (0, 0, 1)2

Set b0i (u) = bi3

For r = 2, 3, . . . , n, and | i |= n− r do4

bri (u) = ubr−1i+e1(u) + vbr−1i+e2(u) + wbr−1i+e3(u)

Return bn0 (u)5

Figure 2 illustrates how a domain point u is mapped to the
corresponding image in the quadratic Bézier patch using de
Casteljau’s algorithm.

C. Affine normal vector in the quadratic Bézier patch

In order to compute the normal vector in a quadratic
triangular Bézier patch we need to know its parameterization
in two variables ϕ : T ⊂ R2 → R3. Given the control net
{b200, b020, b002, b110, b101, b011}, we set u = (x, y, 1−x−y)
and using the degree 2 Bernstein polynomials



Fig. 2. De Casteljau’s algorithm

B2
200(u) = u2 B2

020(u) = v2 B2
002(u) = w2

B2
110(u) = 2uv B2

101(u) = 2uw B2
011(u) = 2vw

we obtain:

ϕ(x, y) = (b200 + b002 − 2b101)x
2 + (b020 + b002 − 2b011)y

2

+(2b002 − 2b011 − 2b101 + b110)xy

+2(b101 − b002)x+ 2(b011 − b002)y + b002.

We are now able to compute the affine co-normal –hence
the affine normal– vector in a quadratic patch. Note that

Ke =
LN −M2

‖ϕx × ϕy‖4
⇒ | Ke |−1/4=

‖ϕx × ϕy‖
| LN −M2 |1/4

.

So, considering δ = LN −M2, we have:

ν = |Ke|−1/4Ne =
ϕx × ϕy
|δ|1/4

.

Define the points a, b, c, d, e, f ∈ R3 as:

a = b200 + b002 − 2b101; d = 2(b101 − b002);
b = b020 + b002 − 2b011; e = 2(b011 − b002);
c = 2(b002 − b011 − b101 + b110); f = b002.

As the quadratic triangular Bézier patch is a paraboloid
[7], and the affine normal vector is constant in paraboloids,
it is sufficient to compute it in the point (0, 0). We have:

ν(0, 0) =
1

| δ |1/4
(d2e3 − d3e2, d3e1 − d1e3, d1e2 − d2e1);

νx(0, 0) =
1

| δ |1/4
(2a2e3 − 2a3e2 + d2c3 − d3c2, 2a3e1 −

2a1e3 + d3c1 − d1c3, 2a1e2 − 2a2e1 + d1c2 − d2c1);

νy(0, 0) =
1

| δ |1/4
(2d2b3 − 2d3b2 + c2e3 − c3e2, 2d3b1 −

2d1b3 + c3e1 − c1e3, 2d1b2 − 2d2b1 + c1e2 − c2e1).

where,

δ = [ϕx(0, 0), ϕy(0, 0), ϕxx(0, 0)][ϕx(0, 0), ϕy(0, 0),

ϕxy(0, 0)]− [ϕx(0, 0), ϕy(0, 0), ϕyy(0, 0)]
2.

Hence, the affine normal ξR is given by

ξR = [ν(0, 0), νx(0, 0), νy(0, 0)]
−1(νx(0, 0)× νy(0, 0)).

Note how this vector depends only of the six control points
of the patch. Figure 3 shows a patch together with its normal
(red) and co-normal (blue) vectors.

Fig. 3. Affine normal (red) and co-normal (blue) vectors in a quadratic patch

IV. DISCRETE AFFINE NORMAL VECTOR

In this section we introduce our discrete affine normal vector
estimator. To this end, we first represent the discrete surface
using triangular quadratic Bézier patches, instead of planar
triangles.

A. Representation of discrete surfaces using triangular
patches

Given a triangle mesh, we associate a patch with each of
its faces. So, we can consider each triangular face Ti of the
mesh as the domain of the corresponding paraboloid Ri, with
i ∈ {1, 2, . . . , n} and n the number of mesh faces.

To define the patch Ri we must specify its control net
{bi200, bi020, bi002, bi110, bi101, bi011}. For the sake of simplicity,
in the following we omit supra-index i. The three extreme
points b200, b020 and b002 are the vertices of triangle Ti, so
the patch interpolates mesh vertices, as stated by property
3.2.3. The other three control points b110, b101 and b011, are
defined with two objectives in mind: to obtain a continuous
surface, and to guarantee an affine invariant construction. For
each mesh triangle T (b200, b020, b002) we make the following
construction.

1) Consider the neighboring triangles T ′(b002, b020, b′200),
T ′′(b200, b002, b

′′
020) and T ′′′(b020, b200, b

′′′
002) as shown

in figure 4.

Fig. 4. Neighboring triangles of T

2) For each edge of T , we consider four tetrahedra, two of
them defined each by one of its adjacent triangles and
a point M , and two defined in the same way, after an
edge flip. See figure 5 for an example. The point M
is computed as the center of mass of the union of the
k-neighborhoods of both edge extremes. The “radius” k
of the neighborhood depends on the mesh.



Fig. 5. Tetrahedra of one edge of T

3) For each edge of T , we compute a coefficient α as the
ratio between the volume of the two tetrahedra before
and after the flip. So, if we call the tetrahedra before the
flip A and B, and after the flip C and D, we have

α =
V ol(A) + V ol(B)

V ol(C) + V ol(D)
.

Note how α tells us whether the surface is convex
(α > 1) or concave (α < 1) in that edge. Given an extra
parameter ε ∈ (0, 0.5], we define a linear interpolation
parameter β as

β =

{
α(1 + ε), if α > 1
α(1− ε), if α < 1

The control point corresponding to the edge is computed
as the linear interpolation between M and edge mid-
point, with parameter β. Parameter ε controls how far
will be this control point from the edge. The computation
is done by the following formulas:

b110 =
β′

2
(b200 + b020) + (1− β′)M ′;

b011 =
β′′

2
(b020 + b002) + (1− β′′)M ′′;

b101 =
β′′′

2
(b002 + b200) + (1− β′′′)M ′′′

Note how the above construction is affine invariant, since it
depends on means and linear interpolations, which are affine
combination of points, so preserved by affine applications.

Figure 6 (a) shows a quadratic Bézier patch, while in (b)
we have the whole mesh representation given by such patches.

(a) (b)

Fig. 6. Representation of an ellipsoid mesh model by quadratic patches

B. Estimating affine normal vector at mesh Vertices
Representing mesh triangles as parabolic patches has the

advantage that each mesh face (a parabolic patch) has a
constant affine normal vector. We are now able to estimate
affine normal vector at a vertex as the mean of the normals of
its incident faces, pondered by patch areas. This construction
is similar to the approach usually taken in the computation of
(euclidean) normals in triangular meshes. As triangle meshes
have planar faces, it is impossible to estimate affine normals
for them, as is done in the euclidean case, but paraboloids
play the role of planes in affine geometry. The affine normal
is then computed as

ξi =

∑
ARi

ξRi∑
ARi

.

Areas are preserved by affine transformations, so the com-
puted affine normal are also preserved. Patch areas are esti-
mated as the area of a, sufficiently refined, triangular mesh
approximating the patch. This mesh can be easily computed
using subdivision together with de Casteljau’s algorithm.

V. RESULTS AND FINAL THOUGHTS

A. Affine normal estimator:
In figure 7 we show the estimated affine normals in a

sphere and an ellipsoid models. In both cases we expect the
lines containing the affine normals to pass through the quadric
center. In both cases we used the 7-neighborhood to compute
M and ε = 0.1. By our experiments, the k-neighborhood size
depends on mesh discretization and further study is necessary
to select k automatically. Figure 8 shows the influence of the
selection of k in the normal estimation, in a model with 6000
faces. Good estimates were obtained using k = 10.

(a) Sphere model: 1280
faces

(b) Ellipsoid model: 1730 faces

Fig. 7. Affine normals in sphere and ellipsoid

B. Preservation of geometric properties:
The affine normal and co-normal vectors are, respectively,

covariant and contravariant by equiaffine transformations. Fig-
ure 11 shows some experiments in the computation of such
vectors before and after randomly generated equiaffine trans-
formations. Besides, we show the mean error in such compu-
tations. Lets call the affine normal vectors (before and after
transformation) as ξbi and ξai respectively, i ∈ {1, 2, . . . , n}.
Similarly, call co-normal vector as νbi , νai . The error may be
computed as

eξ =

n∑
i=1

||ξbi − ξai ||
n

, eν =

n∑
i=1

||νbi − νai ||
n

,



(a) k = 5 (b) k = 7

(c) k = 10

Fig. 8. Influence of k-neighborhood size in normal estimation

where eξ denotes error in normal computations and eν is the
error in co-normal computations.

C. Limitations

This work is restricted to closed surfaces, with no planar or
parabolic points, since affine normal is not defined on points
with zero Gaussian curvature. In figure 9, for example, affine
normals were not well estimated in regions where euclidean
Gaussian curvature change signal. Also, we do not know
yet how to choose the appropriated neighborhood size when
computing M . Our experiments suggest it should depend on
the mesh and this is subject of future work. Meshes containing
triangles with obtuse angles have been a source of problems.
In such triangles the patches may be going too far from the
mesh, resulting in poor mesh approximation. Figure 10 shows
an example of this behavior. We believe this is not a real issue,
since it can be addressed by mesh preprocessing.

(a) (b)

Fig. 9. Normal estimates in points with zero Gaussian curvature

(a) (b)

Fig. 10. Patches on obtuse-angle triangles

D. Future work

In this work we give estimates of affine normal vectors as
well as affine co-normal vectors. We see it as a first step in
the search for robust estimators for other affine properties as
surface curvatures. Some issues are to be carefully studied as
an automatic method to decide the appropriated neighborhood
size in the computation of M .
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(a) eν = 1.254288e−15 (b) eξ = 8.4281e−15

(c) eν = 8.257393e−15 (d) eξ = 6.253971e−14

(e) eν = 4.250836e−12 (f) eξ = 3.250841e−08

(g) eν = 8.35405e−12 (h) eξ = 1.26713e−14

Fig. 11. Affine normal (right) and co-normal (left) vectors before and after equiaffine transformation.


