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Abstract—As augmented reality applications become more
important, there is increasing effort in spatial audio research.
The term spatial audio or 3D sound refers to techniques where
a person’s anatomy is modeled as digital filters. By filtering a
sound source with these filters, a listener is capable of perceiving
a sound as though it were reproduced at a specific spatial location.
In the frequency domain, these filters are known as Head-
Related Transfer Functions (HRTFs). A significant problem for
the implementation of 3D sound systems is the fact that spectral
features of HRTFs differ widely among individuals due to their
anatomical differences. Thus, it is necessary to personalize them
to guarantee high quality sound perception. With this aim, we
introduce a new anthropometric-based method for customizing
of HRTFs in the horizontal plane using manifold learning. The
method uses Isomap, artificial neural networks (ANN), and a
neighborhood-based reconstruction procedure. We first modify
Isomap’s graph construction step to emphasize the individuality
of HRTFs and perform a customized nonlinear dimensionality
reduction of the HTRFs. We then use an ANN to model
the nonlinear relationship between anthropometric features and
our low-dimensional HRTFs. Finally, we use a neighborhood-
based reconstruction approach to reconstruct the HRTF from
the estimated low-dimensional version. Simulations show that
our approach performs better than PCA (Principal Component
Analysis) and confirm that Isomap is capable of discovering the
underlying nonlinear relationships of sound perception.
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I. INTRODUCTION
The objective of spatial audio or 3D audio is to simulate a

sound source in arbitrary spatial locations. The core compo-
nents of spatial audio are the so-called Head-Related Impulse
Responses (HRIRs) or their frequency-domain representation
Head-Related Transfer Functions (HRTFs). HRTFs model the
spectral filtering of a sound source caused by the head, pinna
(i.e. the outer part of the ear ) and torso before it reaches
the eardrum. By filtering a sound source with these filters, a
listener is capable of perceiving a sound as though it were
reproduced at a specific location in space [1].

Spatial audio has a wide range of applications from hearing
aids and entertainment (e.g. home theaters, video games) to
virtual reality [2] (e.g. Oculus RiftTM, Google GlassTM, air
traffic controllers [3]). In fact, as virtual reality applications
become more important, there is increasing research effort in
the spatial audio research. In this sense, several works has
proposed the use of spatial audio as natural user interface for
sensory substitution and augmented reality prototypes aimed
at visually impaired people [4], [5], [6], [7].

It is precisely in this type of application that the project “Vi-
sion for the blind: translating 3D Visual Concepts into 3D Au-
ditory Clues” focused through the Microsoft Research/Fapesp
cooperation agreement 2012/50468-6. The goal of this project
was to construct and validate a complete proof-of-concept
assistive device for the blind. This device uses computer
vision algorithms to extract high-level 3D information from
a Microsoft Kinect Sensor and communicates this information
to the visually impaired user using 3D audio to exploit the
inherent spatial sense of the auditory system.

With this in mind, the main objective of the M.Sc. dis-
sertation 1 associated to this paper, in the context of the
aforementioned project, was to provide the theoretical basis
and characteristics of HRTFs as the main components of
spatial audio. Besides, we proposed a novel approach for
HRTF personalization using the manifold learning technique,
Isomap.

This paper is organized as follows. Section II gives an
overview of HRTFs and why we need to personalize them.
Section III analyze related works using machine learning
techniques for HRTF personalization. Section IV introduces
our approach for HRTF personalization using Isomap. In Sec-
tion V, we performed experiments and compared our approach
to a PCA-based method.

II. THE NEED OF HRTF PERSONALIZATION

The sound from an audio source reaches both ears after
interacting with the anatomical characteristics of the individual
(i.e. head, torso and pinna). The resultant signal contains stat-
ics cues (i.e. binaural and monoaural cues) that in conjunction
with dynamic cues (i.e. produced by head movements) define
our three dimensional perception of audio [1]. The static cues
are modeled through HRTFs that encode binaural cues, such as
the Interaural Time Difference (ITD, i.e. difference in arrival
time of a sound between two ears) and the Interaural Level
Difference (ILD, i.e. difference in air pressure level of a sound
between two ears). Besides, they also encode monoaural cues
that are mainly produced by the pinna. A pair of complex-
valued HRTFs at distance r, azimuth θ and elevation φ, for

1M.Sc Dissertation directed by Luiz César Martini (FEEC-Unicamp), co-
directed with Siome Klein Goldenstein (IC-Unicamp) and in collaboration
with Dinei Florencio (Microsoft Research).
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Fig. 1. The left HRTF at a specific location for four different subjects. The
variability among subjects, more evident at high frequencies, is due to the
monoaural cues introduced by the pinna.

left and right ear, HL and HR, are

HL (r, θ, φ, f, a) =
PL (r, θ, φ, f, a)

P0 (r, f)
,

HR (r, θ, φ, f, a) =
PR (r, θ, φ, f, a)

P0 (r, f)
,

(1)

where, PL e PR represent the pressure level for each ear and
P0 represents the pressure level in the center of the head with
the head absent [8]. The variable a depends on the subject’s
anatomy. If r > 1 m, the HRTFs do not depend on distance and
are called far-field HRTFs. Otherwise, they are called near-
field HRTFs. Near-field HRTFs are beyond the scope of this
study and when we refer to HRTFs, we are referring to far-
field HRTFs.

A significant problem for the implementation of 3D sound
systems is the fact that spectral features of HRTFs differ
widely among individuals [1]. This inter-subject variability is
due to their anatomical differences such as the head dimen-
sions and the pinna shape and size. Figure 1 shows the left
HRTF at a specific location for four different subjects. The
inter-subject variability is specially notable for high frequen-
cies (i.e. f > 4 KHz) where the monoaural cues introduced
by the pinna are more prominent [1]. For this reason, the
pinna is considered as the acoustic fingerprint of a subject.
Various studies show a decrease in localization accuracy due to
nonindividualized HRTFs [9], [10], often producing front/back
reversals (i.e. the listener perceive a sound source at a front
location as though it were coming from a back location, or vice
versa), poorly sound externalization (i.e. the subject perceives
the sound inside her head) and incorrect elevation perception.
Thus, it is necessary to personalize HRTFs to guarantee high
quality 3D sound perception. The most accurate approach of
personalizing HRTFs is through direct measurements. This
way, for each spatial location, a loudspeaker reproduces a
sound signal which in turn is captured by a microphone

inserted in the subject’s ear. Then, the captured microphone
signals are processed to extract their corresponding HRTFs [8].
Note that custom HRTF measurement involves expensive
apparatus (e.g. an anechoic chamber, low-noise microphones)
and it is a complex, time consuming, and not scalable pro-
cedure [8]. To avoid HRTF measurements, several theoretical
models (spherical head model [11], the snowman model [12])
and numerical methods (boundary element method [13]) have
been proposed. Nevertheless, theoretical models are approxi-
mations of complicated anatomy and numerical methods are
computationally intensive.

On the other hand, since HRTFs are closely related
to certain anthropometric parameters, they can therefore
be customized from anthropometric measurements [14].
Anthropometric-based regression methods predict the individ-
ualized HRTFs of a new subject using a model derived from a
baseline database. Usually, some dimensionality reduction is
applied to the HRTFs prior to customization. It is this kind of
HRTF personalization methods that this work focuses on.

III. PRIOR WORK

Nishino et al. [15] performed Principal Component Analysis
(PCA) on the log magnitude HRTFs in the horizontal plane
for each direction and ear separately. Then, linear regression
analysis for each direction and ear is applied on a baseline
database, using 9 anthropometric parameters as inputs and 5
PCA weights as outputs. For a new subject outside the training
database, the PCA weights are predicted from the linear
models and then used to reconstruct the log magnitude of
HRTFs. Finally, minimum-phase reconstruction [16] estimates
the final complex-valued HRTFs.

Due to the inability of linear methods (such as PCA)
to represent the complex relationship between HRTF and
multiple variables (i.e direction, frequency and individual),
Grindlay et al. [17] introduced a multilinear tensor framework
representation for HRTF decomposition. The tensor has 3
modes: frequency mode, direction mode and subject mode. A
single linear regression model is used for mapping anthropo-
metric features to a 5 dimension vector representing the subject
mode in the tensor. Li et al. [18] employ a similar approach
for dimensionality reduction but instead of linear regression,
they use an artificial neural network (ANN).

Moreover, nonlinear techniques have been applied to both
dimensionality reduction of HRTFs (e.g Isomap, Locally
Linear Embedding) and to regression of HRTFs based on
anthropometric features (e.g Support Vector Regression [19],
ANNs [20], [18]). In [21], Duraiswami et al. present an ex-
ploratory study on learning the nonlinear manifold structure in
vertical plane HRTFs using Locally Linear Embedding (LLE).
They also propose a new method for HRTF interpolation and
a new distance metric between two HRTFs based on the
geodesic distance on the learned manifold.

Kapralos et al. [22], [23] conducted a comparative study
from a quantitative point of view between PCA, Isomap and
LLE for HRTF dimensionality reduction, finding that Isomap
and LLE perform better than PCA in subjective experiments.
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Fig. 2. HRTF Personalization using Isomap.

As in [20], [18], we employ an ANN for regression to
predict the HRTFs for a new subject based on his anthro-
pometric parameters. Unlike this prior work, we use nonlinear
reduction technique, Isomap, to construct a manifold structure
in horizontal plane HRTFs..

Our work is inspired on the successful results by Du-
raiswami et al [21] and Kapralos et al [22], [23] using
LLE and Isomap for HRTF interpolation and dimensionality
reduction. Their findings support the idea suggested by Seung
et al [24] that nonlinear manifold techniques are crucial
for understanding how perception arises from the dynamics
of neural networks in the brain. However, neither of them
addresses the customization of HRTFs as we do.

As in previous work [15], [20], we use the minimum
phase approximations for HRTFs, a minimum-phase function
cascaded with a pure delay [16]. In practice, the pure delay
is the ITD (Inteaural Time Difference) and it is commonly
cascaded in either the left or right HRTF of each left-right
HRTF pair [15]. Calculation of ITD is beyond the scope of
this paper. Several studies address the ITD calculation based
on anthropometric parameters, notably in [25]. Here, we focus
only on the spectral features of HRTFs magnitude and, unless
otherwise stated, when we refer to HRTF we are referring to
its magnitude.

IV. HRTF PERSONALIZATION USING ISOMAP

Figure 2 summarizes our HRTF personalization method.
First, we reduce the HRTF dimensionality using Isomap. Then,
we train an ANN with anthropometric parameters as inputs
and the low-dimensional HRTFs as output. For each new
subject with known anthropometric features, the ANN model
predicts the low-dimensional HRTF representation. Finally,
we use neighbor reconstruction mapping to recover the high-
dimensional HRTFs from the low-dimensional space.

A. Dimensionality Reduction using Isomap.

In general, dimensionality reduction algorithms provide a
method for taking a dataset represented in a D×N matrix X
consisting of N sample vectors xi, i.e. X = {x1, ...,xN} ⊂
RD and calculating a corresponding low-dimensional repre-
sentation in a d × N matrix Y = {y1, ...,yN} ⊂ Rd, where
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Fig. 3. Intrinsic Dimensionality Estimation.

d < D. Here, consider all HRTFs in the horizontal plane as
points in the D high-dimensional space.

Isomap is a nonlinear dimensionality reduction algorithm,
first introduced in [26]. The first step in the Isomap algorithm
is to construct a graph G(V,E) on the input data set X. Each
sample xi ∈ X is represented by a node vi ∈ V , and two
nodes viand vj are connected by an edge (vi, vj) ∈ E with
length dX(xi,xj) if xi is one of the K nearest neighbor of xj .
The edge length dX(xi,xj) is given by the Euclidean distance
between xi and xj [26], [27].

The second step in Isomap involves computation of the
shortest paths between all nodes in G. Distances are stored
pairwise in a matrix DG. The distance matrix DG represents
geodesic distances between all samples on the manifold [27].
Because these distances are Euclidean, Isomap makes the same
assumption of local linearity as LLE [27].

The third and final step is to construct the d-dimensional
embedding calculating the eigenvectors of τ(DG), where
τ(D) = −HSH/2 and Sij = D2

ij (S is the matrix of squared
distances) and Hij = δij − 1/N . Recall that N is the number
of sample points and δ is the Kronecker delta function. Finally,
let λp be the pth eigenvalue (in decreasing order) of the matrix
τ(DG), and vip be the ith component of the pth eigenvector.
Then set the pth component of the d-dimensional coordinate
vector yi equal to

√
λvip [26].

Isomap first step is the construction of a graph. The simplest
approach is to select, for each data point, a fixed number
of nearest neighbors, K, as measured by Euclidean distance.
Other criteria, however, can also be used to choose neighbors,
and in general, neighborhood selection in Isomap presents an
opportunity to incorporate a priori knowledge [28].

We know that some correlation exists due to left-right sym-
metry of HRTFs at frequencies below 5.5 KHz [29]. Moreover,
to emphasize the individuality of HRTFs across directions,
Nishino et al. [15] perform PCA reduction separately for each
direction and ear. Here, instead of applying Isomap separately
for each direction and ear, we propose construct the graph
taking into account this knowledge.

One of our contributions is our graph G construction
procedure. Consider again the high-dimensional dataset in a
D×N matrix X = {x1, ...,xN} ⊂ RD formed by N HRTFs
of two ears of P subjects at M azimuths in the horizontal
plane (i.e. N = 2 · P ·M ).

We connect each datapoint xi to K = 2P + 1 neighbors
and we set its edge lengths to sijdX(xi,xj), where sij is a
scale factor, according to the following rules:



Fig. 4. Example of graph construction procedure for P = 3 subjects. Each
color represents a subject. L=Left, R=Right and θ is the azimuth angle.
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Rule 1. If xi and xj represent HRTFs of the same azimuth
and ear but different subject, then connect them and set sij =
1/100 in order to emphasize the individuality of HRTFs across
directions.

Rule 2. Let θi and θj be azimuths of HRTFs represented
by xi and xj respectively. Regardless of the subject, if xi

and xj represent HRTFs of opposite ears and θj is the mirror
horizontal azimuth of θi (i.e. θj = 360−θi), then connect them
and set sij = 1/100 in order to take advantage of left-right
symmetry.

Rule 3. Let θi and θj be azimuths of HRTFs of the same
subject represented by xi and xj respectively. If θj is the
nearest azimuth greater than θi or if θj is the nearest azimuth
less than θi , then connect xi and xj and set sij = 1.

In order to clarify how the above mentioned rules were
applied, Figure 4 shows an illustrative example.

Before applying Isomap, we first need to select the number
of neighbors, K, and the intrinsic dimensionality, d. Due to
our proposed graph construction explained above, the number
of neighbors is set to K = 2P + 1, where P is the number
of subjects on the dataset X. The intrinsic dimensionality was
estimated analyzing the residual variance. Figure 3 shows the
normalized eigenvalues (in decreasing order) calculated over
the complete dataset X. Since eigenvalues give the variance
in each dimension, when they are lower than a threshold, little
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Fig. 7. Mean Spectral Distortion as a function of azimuth.

is gained from adding a dimension [27]. Using 0.025 for the
threshold we find the intrinsic dimensionality d = 4 [30].

Unlike previous works [21], we apply Isomap only once,
over the entire dataset – a single procedure for the HRTFs
of all subjects, ears and directions taking into account our
proposed neighborhood selection. Figure 5 shows the Isomap
manifold calculated for all directions and ears of 30 individuals
(i.e. P = 30, so K = 2P + 1 = 61 neighbors) from CIPIC
database [14] in the horizontal plane, where the color represent
the azimuth angle.

In Figure 5a, we plot the first embedded component of
Isomap as a function of azimuth in order to highlight the sym-
metric properties of HRTFs. In Figure 5b and 5c, the manifold
embedded in two and three dimensions show the variability
of HRTFs across directions. Note that for each direction there
are small clusters of reduced HRTFs. The variability inside
these clusters is due to inter-subject differences (see Figure 6).
Figure 5b illustrates that clusters are not uniformly distributed
– the large gaps between some clusters is due to the HRTF
non-uniform sampling in CIPIC database.

B. Regression using an Artificial Neural Network

ANN is a system inspired by human brain capable of
approximating nonlinear functions of their inputs. Since the
relationship between HRTFs and anthropometric parameters is
very complex, it is difficult to express them with linear func-
tions. Here, we apply a back propagation ANN with sigmoid
activation function in the hidden layer and a linear activation
function in the output layer. The inputs are s anthropometric
parameters, the azimuth angle in the horizontal plane and the
ear (Left=1, Right=-1). The outputs are the coordinates of the
HRTFs in the low-dimensional space obtained in Section IV-A.
In order to determine the number of hidden nodes, we varied
it from 5 to 30 and selected 20 hidden nodes that produced
the lowest mean squared error. Note that our approach requires
training only one ANN for all directions and ears. After the
regression model is learned, the individual HRTF on the low-
dimensional space for a new subject can be predicted by his
anthropometric parameter measurements.

C. Neighborhood Reconstruction Mapping

Unlike PCA and similar linear reduction methods, Isomap
produce a low-dimensional embedding

Yd×N = {y1, ...,yN} ∈ Rd
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from the samples in X without generating an explicit map [27].
As we are interested in reconstructing an HRTF in the high-
dimensional space from the low-dimensional HRTF predicted
by the ANN, we need to project a low-dimensional point y
back into the original space. Since Isomap assumes that a
sample and its neighbors are locally linear, we can perform
the mapping using a linear combination of a sample’s K
neighbors [27], and the reconstructed HRTF, Ĥ ,

Ĥ =

K∑
i

wixi (2)

to calculate the weights wi, we follow Brown et al. [27], and
choose wi to be the inverse Euclidean distance between the
sample and the neighbor i in the low-dimensional space.

V. SIMULATIONS
We use the publicly available CIPIC database [14] which

contains head related impulse responses (HRIRs) measured for
45 subjects at 1250 directions (25 azimuths and 50 elevations
in interaural coordinate system). We employ 50 azimuth di-
rections per subject and ear corresponding to horizontal plane.
Each HRIR is 200 samples long (roughly 4.5 ms at 44.1
KHz sampling rate and 16 bit resolution). Each HRIR was
transformed into an HRTF by a 512-point FFT. To reduce the
effects of error due to nonlinearity introduced by equipments
used to measure HRIRs, HRTFs were filtered to preserve
frequencies between 200 Hz and 15 kHz, leaving 172 fre-
quencies in each HRTF magnitude. We use only subjects that
has the complete anthropometric parameters (i.e. 35 subjects).
Performance was evaluated using a K-fold cross-validation
approach. We split the HRTF dataset into 7 folds of 5 subjects
each (6 folds for training and 1 fold for testing). Because the
number of subjects for training each fold is P = 30, then
according to our neighborhood selection proposed, the number
of neighbors for Isomap is set to K = 2P + 1 = 61

The CIPIC database also contains anthropometric measure-
ments. We selected 8 anthropometric parameters for regression
in accordance to [31]: head width, head depth, neck width,
shoulder width, cavum concha height, cavum concha width,
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pinna height, and pinna width. As explained in Section IV-B,
the azimuth angle, the L/R ear, and the eight anthropometric
parameters are the inputs for the ANN and the outputs are
the low-dimensional HRTFs reduced using Isomap. We used
Matlab Neural Network Toolbox 8.0.

We implemented a PCA-based customization, for compar-
ison, with seven principal components (90% of variance).
We used a similar ANN structure for the regression model
and K-fold cross-validations for testing. We used Matlab
Dimensionality Reduction Toolbox [30] for both PCA and
Isomap.

We choose the mean spectral distortion as an error metric,

SDM =

√√√√ 1

Nf

∑
fk

(
20log10

|H(fk)|
|Ĥ(fk)|

)2

(3)

where H and Ĥ represent the measured and reconstructed
HRTF respectively and Nf is the number of frequency points.
The reconstructed HRTF, Ĥ , was calculated using Equation 2.

As can be seen in Figure 7, our approach performs better
than PCA. The confidence interval (±2σ, 95%) shows that
our method has less variability than PCA (see Figure 8b).
Moreover, our approach achieves better performance even with
less dimensions than PCA. As in other studies [15], error
increases at high frequencies due to complex scattering caused
by pinna (Figure 8a) but in our approach it stays roughly below
5dB.



VI. CONCLUSIONS

In this paper, we presented the problem of spatial audio
and the need of HRTF personalization to ensure high 3D
audio quality. Moreover, we introduced a new method for
customizing HRTFs in the horizontal plane based on anthro-
pometric measurements. Unlike previous works, we keep the
multi-factor nature of HRTFs (i.e. frequency, direction and
subject) by performing dimensionality reduction once on the
entire HRTF dataset for all subjects, directions and ears in
the horizontal plane. Besides using Isomap as a nonlinear
dimensionality reduction technique, we introduce a brand-
new graph construction technique that incorporates important
prior information about the HRTFs that aims to exploit the
correlations existent among HRTFs. The results show that
incorporating prior knowledge in the neighborhood selection
in Isomap can lead to a better manifold representation, and we
can conclude that Isomap is a promising reduction technique
for HRTFs analysis and synthesis.

We are currently extending our approach to estimate HRTFs
beyond just the horizontal plane.
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