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Fig. 1. Illustration of our method, left we can see a photograph of the real object and on the right our result. (right).

Abstract—This work presents an acquisition system that ap-
proximates a simple BRDF model per vertex of a real world
object. Given a digital mesh from the physical object and
photos taken with different light directions, our system faithfully
represents the material that composes the object. The main
advantage of our work is the ability to generate online results and
provide immediate feedback to the user. We present an efficient
system that doesn’t require complex devices or an over controlled
acquisition environment.
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I. INTRODUCTION

Photorealistic rendering has been a goal in Computer Graph-
ics almost since its beginning. A lot of focus has been placed
on the development of global illumination algorithms[1], how-
ever, even the most advanced techniques rely on the descrip-
tion of the object’s material properties. BRDFs are models
that mimic the material behavior but for their parameters to
be settled, some measurement of the specific material must be
carried on. BRDF Approximation has been a topic of research
in the last decades [2]. Our work consists in approximating
a simple BRDF model using only photos with an associated
light direction.
Even though there are works that almost generally solve the
BRDF acquisition problem, they usually have some limitations

regarding the object’s size and position or special acquisition
environments. Our work presents no restrictions about the
object’s dimensions and its position. Furthermore, some acqui-
sition environment conditions are desirable, but not mandatory.
Besides the desire of rendering photorealistic scenes, our work
supplies the demand for other areas of research that focus on
digital techniques applied to Cultural Heritage. A field focused
on preservation, restoration and dissemination of historical
artifacts. Although we can faithfully create a geometric copy
of a real world object and extract information about its color,
there’s still room for improvements regarding the extraction
of its reflectance properties.
A common pipeline for digitizing a historical artifact is to
acquire its geometry and photos in situ, followed by offline
post-processing. It is not uncommon during this step to notice
that there is not enough data to fully represent the object. In
certain campaigns this may be a major problem, since another
trip to the site may not be viable.

Contributions: The main contribution of our work is a
fast algorithm that can approximate a simple BRDF model
of a real world object. Our system can provide the user
with feedback about all the information required to faithfully
represent the object and overall quality, and also suggest good
light directions in order to have a better result with less data.



We are not aware of other tools used in the field that can
provide such online response.

II. RELATED WORK

There are some approaches used in estimating BRDFs of
real objects: controlled lighting solutions which use various
images with fixed viewpoint but varying light directions, tech-
niques that try to perform the acquisition in a general lighting
environment, and some of them design specific devices for
this task.
Lensch et. al [3] presents a fitting process using only a
professional digital camera, a reflecting sphere and a dark
room. They use the Lafortune BRDF model in their approach,
but instead of having a BRDF model per vertex, they divide
the mesh in clusters of BRDFs. Due to the clusterization it
may happen that some areas may not be represented. The
authors extended the previous work in [4] by changing the
calibration of the light source position and estimating normal
maps in order to refine the mesh’s geometric details. The work
of [5] fits a Polynomial Texture Map by solving a linear system
for given N images using singular value decomposition. They
also show that it is possible to apply filter behaviors on the
PTM and some lighting models such as anisotropic surfaces
and fresnel effects can be modeled. The work of [6] tries to
recover at the same time the shape and the spatially-varying
BRDFs of objects. The shading model is the isotropic Ward.
Following the same approach the work of [7] recovers both
shape and BRDF simultaneously, but instead of using a para-
metric reflectance model, it uses a bi-variate approximation
of measured isotropic BRDFs, which they argue that it can
represent a broader number of materials.
In [8] a statistical method for the estimation of Spatially
Varying BRDFs is provided. Their approach is based in video
sequences with fixed but general lighting conditions. A user
assisted clustering process is also performed, since in the video
some object areas may have not been appropriately specularly
sampled. Some limitations are presented in this work due to
the input data and the Phong model, it may also present blur
effects. In addition, the clustering step may sometimes require
too much manual intervention. The work presented by [9] also
tackles the unknown lighting conditions using a video, but in
this case the object is rotated around its axis. As BRDF model
they chose the isotropic microfacet model.
[10] designed a complex coaxial optical scanner capable
of synchronously acquiring shape and spatially varying re-
flectance. Their device consists of a pair of assemblies each
containing a coaxial camera and a light source. The model
used is Cook-Torrance. [11] created a minidome with the
goal of digitizing cuneiform tablets. Their dome with a radius
of 50cm consists of a single camera placed on top and 256
white power LEDs positioned on the knots and edge centers.
The entire digitization process is programmable and fully
automatic. One special work with the usage of a dome is
from [12], currently producing state-of-art results. Their dome
consists of 151 DSLR cameras taking HDR sequences and
one LED-Projector mounted on a tripod placed at five to eight

different positions, projecting 38 different patterns. Instead
of calculating BRDF functions, they create a Bidirectional
Texture Function for the mesh. All of the related works with
devices present as limitation the size and position of objects
that can be used and its practicality in field application.

III. TECHNIQUE OVERVIEW

The goal of our algorithm is to approximate the BRDF of
an object given its mesh and photos from a fixed viewpoint but
with different light positions. In order for our method to work
we expect the mesh to be aligned with the real world object
in the photo. We project the mesh’s vertices onto each image
and read the pixel color information. All calculations are done
independently per vertex in the fragment shader, where we fit
a Phong model for every vertex:

f(L,E) = kd( ~N · ~L)Crgb + ks(~R · ~E)αSrgb

The unknown parameters to be computed for each vertex
are: the diffuse coefficient kd, the specular coefficient ks, the
shininess α and the diffuse color Crgb.
We may acquire all the photos interactively in our acquisition
procedure or work with a prepared set. If we acquire
the photos interactively, we start our algorithm with the
calibration procedure. This includes locating the sphere,
retrieving the color chart’s values, and computing the mesh-
image alignment. After the calibration, we start the BRDF
approximation per se. We compute an initial diffuse color
for each vertex. Following, there’s the computation of an
approximate specular coefficient. Finally, we perform an
optimization on the BRDF’s parameters.
We use the Hough transform to automatically detect the
sphere position, and the highlight center projected in the
sphere to calculate the light direction. In order to simplify the
solution we assume that the distances between both camera
and light are large with respect to the object, then we can
approximate our view direction ~V as the z axis in the world
space. To calculate the light direction ~L, we need only to
reflect the view vector with respect to the normal at the
highlight position.
The Color Checker is a chart consisting of color samples
designed to obtain a measure of how your photos deviate
from the true colors. The model used in our system has 24
colors. The color chart detection consists merely in detecting
the squares with respective colors in the image. Then, we
apply a linear regression for each color channel.
The effectiveness of our algorithm relies heavily on the
alignment between the mesh and the photo. We perform the
Mutual Correspondences algorithm [13]. The goal is to find
the position, orientation and focal length of the camera. The
algorithm tries to optimize these variables by simultaneously
maximizing the mutual information and minimizing the error
of manually-set correspondences.
An important aspect is to use as few data as possible. Our
system is able to provide a new light direction as suggestion
to cover the remaining non covered vertices. We generate a
new light direction for each vertex. Instead of testing all new



light directions, we employ a spatial bin division scheme,
where we allocate each light into the correct bin and select
the best one. This strategy is also used to generate photos for
vertices which do not have a good specularity coverage.

IV. DIFFUSE COLOR

As a first approximation of the diffuse color we assume
our object is lambertian, but only reflects half of the received
radiance. It is worth mentioning that for each photo we render
our mesh as seen by the light so we can mark which vertices
are illuminated. We also do not considerate vertices that are
in highlight or in grazing angles.
The color of a vertex v is the weighted average of all
corresponding pixel colors Ci, where the weights are simply
the product ~N · ~Li, and ~Li is the light direction of photo i .
However, the pixel color does not represent the true object’s
reflectance value, it is affected by the light interaction, thus,
we need to take this factor in consideration:

Crgb =
f(L,E)

kd( ~N ·~L)

V. SPECULAR COEFFICIENT

After capturing all photos and calculating a basic diffuse
color, we go through the whole dataset estimating specular
coefficients for all the vertices that have been specularly
covered. For every photo we subtract the diffuse color from
the pixel Pi and take out the specular value:

kis(
~Ri · ~E)αSrgb = Pi − kd( ~N · ~L)Crgb

The superscript i in kis means that this is the specular coeffi-
cient ks from the photo i. Let (~Ri · ~E)αSrgb be ~Si, and S+

i

its Moore-Penrose pseudoinverse. We can now calculate ks:

kis = (Pi − kd( ~N · ~L)Crgb)S+
i

The final ks is simply the average of all kis obtained from each
photo.

VI. OPTIMIZATION CYCLE

The next phase of our system is to optimize the parameters,
but instead of improving all simultaneously, we perform three
optimization steps: first the coefficients, followed by the shini-
ness parameter, and finally the base color. As we improve our
color estimation, the other parameters need to be reestimated,
hence we begin a cycle repeating these steps. Our optimization
scheme seeks to reduce the squared error between the pixel and
the resulting color of the vertices. Note that the optimization is
global only on a per vertex basis, we do not take into account
neighboring vertices.
In order to simplify our future notation, we will designate the
resultant color from the Phong model of the vertex i as Ci,
di = ( ~N · ~L) and si = (~R · ~E).
What remains is to calculate the Jacobian for every set of
parameters. We show how to calculate the derivative in each
following subsections.

A. Diffuse and Specular Coefficients

We need the derivatives ∂f
∂kd

and ∂f
∂ks

which are easily
calculated:

∂f
∂kd

= −2(Pi − Ci)(diCrgb)
∂f
∂ks

= −2(Pi − Ci)(s
α
i Srgb)

B. Shininess

Up to now we just used an initial empirical value of α = 10.
Although not optimal, the chosen value provided satisfactory
results as a starting point. The minimum point of f with
respect to α is the critical point when df

dα = 0, which is: df
dα =

−2(Pi−kddiCrgb)(ksSrgbln(si)sαi )+2((ksSrgb)
2(sαi )

2ln(si)
Finding the root of this equation is not a simple task since we
have an exponential equation of α. To overcome this we use
the classic Newton’s method to find the zero of an equation.
Thus we need the second derivative d2f

dα2 :
d2f
dα2 = −2(Pi − kddiCrgb)(ksSrgbs

α
i ln

2(si)) +
4(ksSrgbs

α
i ln(si))

2

As this is a global optimization, our optimization actually
finds the root of the function which is the sum of the
derivatives for each photo.

C. Color

The final optimization step is to improve our basic diffuse
color. For this matter, we need the partial derivatives ∂f

∂r , ∂f
∂g

and ∂f
∂b .

∂f
∂r = −2(Pri − Cri)(kddi)
∂f
∂g = −2(Pgi − Cgi)(kddi)
∂f
∂b = −2(Pbi − Cbi)(kddi)

VII. RESULTS AND DISCUSSIONS

We performed a number of tests to analyze the results of
our BRDF approximation algorithm. We test it with different
materials and examine its behavior.

Nana: The first object analyzed is the Nana doll, com-
posed of a very specular head and a diffuse body. Besides,
groups of similar colors, for example its green belly, tend to
present a high color variation, i.e., many close points present
different green tonalities, which calls for a good SVBRDF
approximation. Results show that our algorithm is able to
faithfully capture highlight areas and perform an efficient
diffuse color extraction (Figure 2).

(a) Photograph of Nana (b) Rendering of Nana

Fig. 2. Results for the Nana



However, there are some drawbacks mainly regarding the
diffuse and specular coefficients (Figure 3). The error of
specular photos are guiding the optimization process to set
the specular coefficient too high while setting the diffuse
coefficient too low.

(a) Diffuse coefficient (b) Specular coefficient

Fig. 3. Nana’s coefficients. Observe the dark dots present on Nana’s head
in the diffuse coefficients photo and how these match the white dots in the
specular coefficients photo.

Buddha: The Buddha is a small statue composed of a
highly specular golden part representing the Buddha’s body
and a less shiny, but still moderately specular surface com-
posing its robe. The robe is painted in a dark red color. There
is also the Budda’s hair composed of a mostly dark diffuse
surface with some golden spots in the middle. Due to the
golden material, we already expected to face some problems
with the Buddha. We show results in Figure 4.

(a) Photograph of Buddha (b) Rendering of Buddha

Fig. 4. Results for the Buddha. While we can adequately approximate the
robe’s BRDF, and the highlight shape to some extent, the problem experienced
with the diffuse holes prevents a better reflectance approximation.

For our datasets, the total time of execution was: Nana
42.7443s and Buddha 44.9737s. These results include all
the steps of the BRDF approximation without the calibration
procedure.

VIII. CONCLUSION AND FUTURE WORKS

In this work we have presented a system for simple, fast and
faithful BRDF approximation using only photos with varying
light directions. There are some drawbacks regarding shiny
objects, but we believe a few corrections in our optimization
algorithm could solve the problem. We also provide a tool
for CH professionals who need to perform digitization of
historical artifacts in possible distant locations. To the best
of our knowledge, there is no tool in the research community
that can provide the same immediate feedback.
Nevertheless, there is always room for improvement and
experimentation. The main drawback in performing the tests

is the maximum number of photos used in our GPU. Also,
a recurrent artifact in our results was some very low diffuse
coefficients after the optimization approach biased towards the
specular photos. Although Phong’s model provides convincing
results, there may be a need to use another reflectance model
for objects with complicated materials. One idea would be to
make sure in situ we capture all the relevant data for a good
BRDF approximation, and perform a more time-consuming
optimization approach offline.
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