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Fig. 1. A custom-made timeline of the history of science (left) and its event matrix (right). Each cell in the upper triangular part of the event matrix
contains a curve depicting the distribution of events of the input data in that time interval. Peaks represent important periods of time. The timeline on the
left shows the user-selected events. Blue dots represent the events shown on the timeline.

Abstract—Timelines are often used for summarizing complex,
time-evolving, sequences of events. In this work, we propose
Linea, a tool that helps users build timelines from unstructured
text. Besides providing interactive tools for browsing, selecting,
editing, and filtering events, Linea includes mechanisms to build
smart defaults, thus providing good starting points for users
to create their own timelines. The core component is a novel
visualization widget called event matrix, a matrix designed to
explore events over time and in different time scales. We illustrate
the strengths of our tool with a case study showing that important
events can be browsed, timelines can be easily built, and show
the result of an information user evaluation.

Keywords-timeline; textual summaries; event matrix.

I. INTRODUCTION

Building meaningful summaries from document collections
is a routine task for many professionals. As an example, when
preparing a news article, journalists gather as much infor-
mation as possible about the topic, select events of interest,
and organize the flow of events. In the era of information
overload, semi-automated techniques for text analysis become
indispensable to explore the document haystack. Nevertheless,
although computational tools for assisting the summarization

and visualization of time-stamped documents are available,
the burden of compiling, organizing, and explaining events of
interest still falls on the shoulders of professionals.

In this paper, we focus on the summarization of unstructured
text via timelines. Timelines can be useful in the classroom
[1], for journalist [2], in museums, and others. Given a set
of unstructured text data, our challenges are (i) to extract
real world events from the text, (ii) show those events to the
user, and (iii) provide tools that allows the user to explore,
filter, and build timelines based on the extracted events. Our
approach, called Linea, combines text analysis techniques used
by the Information Retrieval and Natural Language Processing
communities to extract events, with a novel visualization
widget, the event matrix to allow users to explore them. Our
main contributions are:

• Event matrix, a visualization widget designed to explore
events over time and in different time scales;

• Linea, a tool that combines text analysis techniques,
visualization, and interaction tools for building timeline
summaries.



II. RELATED WORK

Here we focus on techniques and systems that rely on
timelines to convey information from time-stamped data. A
comprehensive discussion can be found in the surveys by
Wolgang and Heidrun [3] and Srivatsan and Shanti [4].

A. Visualization

The use of timelines as a visual resource to convey the
content of data endowed with temporal information dates back
from eighteenth century [5]. Recently, computational systems
have been proposed to handle large amounts of data, most of
them influenced by the gripping ThemeRiver methodology [6],
[7]. ThemeRiver relies on stacked graphs to build meaningful
visualizations where horizontal axis reflects flow of time and
vertical dimension is segmented in strips (or flows), each one
representing a theme. The width of the strips changes accord-
ing to the strength of the underlying theme in each time slice.
ThemeRiver metaphor has been improved and adapted in many
ways. For instance, TextFlow [8] combines the river metaphor
with sophisticated mechanisms to detect birth, death and topic
splitting, making use of glyphs and polylines to highlight topic
dynamics as well as their interactions. TIARA [9] builds upon
ThemeRiver by incorporating automatic text summarization
techniques to assist users in comprehending and analyzing
abstract and complex text summaries. EventRiver [10] relies
on river metaphor, but strips are replaced by geometric entities
representing bubbles whose dimensions reflect the importance
and duration of each event.

Tanahashi and Ma [11] and Liu et al. [12] employ thread-
based timelines for generating storyline visualizations. Thread-
based layouts have also been employed to visualize document
collections [13], where elaborate mechanisms that identify the
dynamic competition among topics have been proposed [14].

Systems such as LifeFlow [15], LifeLine [16], Out-
Flow [17], PatternFinder [18], and TimeLine [19] employ
timelines as a facet of multifaceted visualization systems to
clearly convey patient data histories. These systems are typi-
cally made up of advanced interfaces able to promptly depict
images, medical records, and temporal patterns contained in
medical histories. SemaTime [20] relies on a multifaceted
system that enables hierarchical categorization and visual-
ization of time-dependent entities in document collections.
Continuum [21] is a faceted system where a timeline enriched
with event histogram is used to provide an overview of the
whole content of a data set. A detailed view panel is used
to show users selected information. The level of detail is
controlled by users through interactive slide bars.

B. Summarization

Several techniques are available for automatic text summa-
rization. LexPageRank [22] assigns importance to document
sentences by using the PageRank algorithm. Strötgen et al.
[23] introduces a new search method that takes into account
temporal information embedded in text document. The search
result is optimized by clustering and ranking documents ac-
cording to the embedded dates. Allan et al. [24] performs

news summarization by extracting ranked sentences from the
news article. Swan and Allan [25] present a statistical model
that extract important features from text and build overview
timelines. We refer the interested reader to Alonso et al. [26],
[27] for more details on the topic.

III. DESIGN STRATEGY

Linea takes as input a set of unstructured texts describing
historical events and which contains temporal information,
namely dates. In this paper, we use Wikipedia articles as our
source of unstructured text. The main reason for choosing
Wikipedia is the sheer number of articles available: nearly
5 million articles in English.

Building a timeline is a simple two step process: first one
collects the timeline events and then builds the timeline itself.
Thus, a user must be able to accomplish two tasks: A. to
explore important events about a topic that possibly spans a
large timescale; and B. collect the desired events and build
timelines. Linea was designed to solve these two issues.

A. Exploring Important Events on Large Time Scale

Signaling hidden content Discovering trends and features
are common tasks in data-visualization [28]. Here we are
interested in revealing hidden content. This is important to
allow the user to see information that is potentially relevant but
not obvious. We signal hidden events in the timeline itself by
placing reminders between timeline events. More specifically,
keywords are extracted from the hidden data and depicted
between events of the timeline (see the hashtags placed in
Figures 1 (left) and 6).

We also need to signal important time periods within the
events. As an example, consider the top-left histogram cell
shown in Figure 1. That histogram cell contains all the
data starting from 3500 BC until 1991. Clearly, most of the
events in the history of science happened in the last few
centuries. Because the events are not distributed uniformly,
we should provide tools that indicate potentially interesting
content hidden in certain time intervals.

There are techniques available to explore time series data.
Stack Zooming [29] and Continuum [30], for example, are
designed to explore large scale time series data. They provide a
simple way build a hierarchy in time, dynamic drill-down, and
compare events in different intervals. While they can be used
to navigate the time series, they do not provide indications
of interesting aspects of the data that may be hidden. A
solution based on dynamic drill-down requires the user to
first select a small slice of data before noticing whether any
interesting feature is present. We opt for showing as many
important time intervals simultaneously as the user requires.
Once the user select an interval, our event matrix automatically
detect interesting cluster of events and it generates multiple
histograms based on those clusters.
Explore large time scales The history of topics such as
“Egypt” may span several millennia. Tools such as Continumm
are capable of dealing with large scale time series. As in
Continuum, our tool allow the user to specify the interval of



Document
collection

Sentence
splitting

Date
detection

Ranking

1773 1890 1916 1948 1981 2013

1773
1890

1916
1948

1981
2013

1773 / 1890 1773 / 1916 1773 / 1948 1773 / 1981 1773 / 2013

jakob
polio
clinical

debility
heine

calledcase

condition

der

fever

karl

led
leg

scott

1890 / 1916 1890 / 1948 1890 / 1981 1890 / 2013

polio
epidemic

case

karl

report

began
city

heine

jakob

physician

clinical
debility description

developed

disease

europe

events

local
lower

medin

month

state

world

agent

gap

led
leg

power

epidemic
began

case

city

karl

polio
europe

events
landsteiner

local

month

paralytic
poliovirus

primarily

regular

report

state

summer

units

world

agent

country

erwin

fifty

gap
major

study
york

1916 / 1948 1916 / 1981 1916 / 2013

epidemic
polio

case
city

report

treatment
york

developed

karl began

children

disease heine

jakob

killed

monkeyparalytic

patients

provide

assist
brodie

cords

early

kenny

state
care

polio
city

treatmentyork

case

began

children
developed

karl

killed

monkey
paralytic

patients

report

research

roosevelt

summerassist
brodie

cords

country

early

found
kenny

local

month
occurs

resort
spinal

state

avoidcare

treatment
polio

epidemic

york

children
killed

monkey

patients

research
roosevelt
vaccine

assist

attempted

brodie
city

cords

developed
early

found

franklin

kenny

resort

spinal

virus

avoid

care

case

center

emerson

1948 / 1981 1948 / 2013

vaccine
polio

units
state

case
epidemic
children
developed

report
poliovirussalk

test
trial

world

began

licensed nation

sabin

sv40

virus
occurs

york

city

jonas

live karl
lung

mass

oral
peak

vaccine
polio

units

state

epidemic

case

children
developed

poliovirus

reportsalk

testtrial
world

began

licensed

nation

paralytic
sabin

sv40
virus

occurs

city

live

mass

polio
unitsstate

children
case

epidemic

developed

salk
test

trial

licensed

nation

sabin
sv40

virus
institutekoprowski

poliovirus report
research

world

jonas

live

million occurs

york

began

found
large

field

oral

weller

worst

age care

polio
vaccine

units
state

case
children

salk

trial

licensed sabin

sv40

test

developed

koprowski
nation

poliovirus world

jonas
live

million

person
report

virus

began

field

mass

oral

peak

grow

opv 1981 / 2013

case
vaccine

polio

report

country
state

units

world

poliovirus
children

number

epidemic
eradicate

health
nigeria

outbreak
pakistandisease

nation

occurs

virus

india began

test
type

led
group

case
vaccine
polio
report
country

stateunits

world
poliovirus

children

number
epidemic

health
nigeria
nation

occurs virus

developed

india

began

free
test

type

million

oral

sabin

salk

china
sv40
live

led

case
vaccine

polio
report

country state
units

world

poliovirus

children

number

eradicate

health
nigeria outbreak

pakistan

nation

virus

occurs

india

free

test

type

million

oral

salk

live

opv

case

vaccine

report
polio

country

state
units

world

poliovirus

number

eradicate

health

nigeria
childrenoutbreak
pakistanendemic

nation

india
occurs

virus

type
free

test

trial

time
case
reportpolio

country vaccine

nigeria
world

pakistan

eradicate number

poliovirus

health

organization

india

endemic

state

type

free

china

occurs
total

units

global

oral

end
years

Event matrix

Wikipedia

2006
Wikipedia

2006
Wikipedia

2006
Wikipedia

Poliomyelitis

Poliomyelitis, often called polio or infantile paralysis, is an
acute, viral, infectious disease spread from person to
person, primarily via the fecal-oral route. The term derives
from the Greek poliós (πολιός), meaning "grey", myelós
(µυελός “marrow”), referring to the grey matter of the spinal
cord, and the suffix -itis, which denotes inflammation. , i.e. ,
inflammation of the spinal cord’s grey matter, although a
severe infection can extend into the brainstem and even
higher structures, resulting in polioencephalitis, producing
apnea that requires mechanical assistance such as an iron
lung. Although approximately 90% of polio infections cause
no symptoms at all, affected individuals can exhibit a range
of symptoms if the virus enters the blood stream. In about
1% of cases, the virus enters the central nervous system,
preferentially infecting and destroying motor neurons,
leading to muscle weakness and acute flaccid paralysis.
Different types of paralysis may occur, depending on the
nerves involved. Spinal polio is the most common form,
characterized by asymmetric paralysis that most often
involves the legs. Bulbar polio leads to weakness of
muscles innervated by cranial nerves. Bulbospinal polio is a
combination of bulbar and spinal paralysis. Poliomyelitis
was first recognized as a distinct condition by Jakob Heine
in 1840. Its causative agent, poliovirus, was identified in
1908 by Karl Landsteiner. Although major polio epidemics
were unknown before the late 19th century, polio was one
of the most dreaded childhood diseases of the 20th
century. Polio epidemics have crippled thousands of
people, mostly young children; the disease has caused
paralysis and death for much of human history. Polio had
existed for thousands of years quietly as an endemic
pathogen until the 1880s, when major epidemics began to
occur in Europe; soon after, widespread epidemics

2006–2010
In 2006 only four countries in the world were reported to
have endemic poliomyelitis.

2006–2010
A total of 1,997 cases worldwide were reported in 2006; of
these the majority occurred in countries with endemic polio.

2006–2010
Over 60% of cases occurred in India; while in Nigeria, the
number of polio cases fell dramatically, from 1,122 cases
reported in 2006 to 285 cases in 2007.

Timeline

Pre-processing Layout construction

Fig. 2. Linea pipeline. Event detection is accomplished by sentence splitting
and date detection. The event ranking is used to build default timelines. Event
matrix and timeline construction. The event matrix is used to navigate through
a story and build a timeline.

interest by dragging the mouse into the period of interest. This
action will ignore data outside the selection to focus the user
attention on the selected time period. Additionally, the user
can specify the number n of interesting regions and let our
system define n intervals automatically.
Smart defaults A timeline depicting all events associated
with a subject can quickly become overwhelming, demanding
great effort from users to filter out irrelevant and uninteresting
information. Smart defaults can help with this task. Siegel and
Heer identified smart defaults as an under-utilized technique
that provide an initial representation of the data [31]. The
authors argue that smart default can provide a stimulating
starting point for users to explore the tool. We include smart
default on Linea by ranking events and showing only the n
most important ones.

B. Event Selection and Timeline Construction

Chronologically organized snippets A major requirement in
our context is to provide a visualization from which users can
easily read a chronological sequence of events. Unlike most
of the representations available in the visualization literature
of text summary, which uses complex geometry to summarize
content, our summaries are visualized as vertical timelines.
This is decision is motivated some evidence of the user
preference for vertical scroll [32].
Interactive editing Lastly, Linea provides several interaction
resources that allow users to hide visible snippets, make hidden
snippets visible, and edit the textual summary in each snippet,
thus customizing the timeline altogether.

In the following section, we detail the technicalities built
into Linea and how they are implemented in our visualization
system.

IV. THE LINEA CONSTRUCTION

Linea’s pipeline can be divided into data pre-processing
and layout construction. As illustrated in Figure 2, the pre-
processing modulus comprises event detection and ranking.
The layout construction comprises the event matrix, timeline,
and interaction tools. In the next sections, we detail each of
these moduli and substeps involved in the Linea construction.
In this work, we do not devise a new approach to detect and
evaluate events, but instead we rely on previous work, such
as Alonso [33] and Alonso et al. [34]. As such, our technique
benefits from advances in the information retrieval and natural
language processing fields.

A. Data Pre-Processing

Our technique assumes as input a collection of unstructured
text containing implicit, temporal information. By “implicit”
we mean that explicit temporal information extracted from
metadata (such as date of creation or last modification of
a document) is not used; instead, we use latent temporal
information, i.e., temporal information written in the body of
the text. This is an important distinction between our approach
and many previous work. Unstructured texts that are not rich
in temporal information will not benefit from this approach.
Given a collection of unstructured text as input, the first task
in the pre-processing step is to detect events, which are then
ranked according to their importance. These two steps are
described as:

Detecting events Following Luo et al. [10], the term “event”
is used to characterize an event that happened in a particular
time t. We differ, however, in how to detect it. Luo et al.
detect events indirectly by tracking the number of documents
and describing a happening in a certain time period, relying on
metadata to achieve this goal. Our approach, on the other hand,
uses dates written in the document body as proxy for events.
The rationale is the following: because someone decided that
it is worth writing that “something” happened at “sometime”,
the “something” is likely to be relevant. Therefore, in contrast
to Luo et al. scheme, which is meant to track more general
themes, our approach uses a finer grain definition of event.

Events are derived from sentences detected in the docu-
ments. To detect sentences, the input text is first subdivided
into tokens. Then, sentence boundaries are detected by looking
up special tokens (such as “!” or “.”) that are not part of
other tokens. Heuristics can be used to resolve issues such as
punctuation inside quotes and other complications. We use the
Stanford Tokenizer for sentence splitting [35].

The next step is to identify sentences that contain dates
to define an event. A sentence may contain four types of
temporal information [27]: date, time, duration, and sets. Date
and time refer to particular instances of time (“4th of July
2014” and “9am”, respectively), duration refers to time length
(“ten years”), and sets refer to periodical events (“every 4th
of July”). Our approach only considers “firm” dates, which
are normalized to (year), (year-month), or (year-month-day)
format. Duration is taken into account if it exceeds 10000
years ago. Throughout this paper, we use the word “date” to
refer to these two cases only.

Ranking Events Ranks define the importance of an event in
the timeline. To find the rank of an event, we first connect
similar events, thus building a graph where events are nodes
and edges are the connection between them. PageRank algo-
rithm is then used to find “popular” events, thus increasing
their rank.

Specifically, the ranking mechanism implemented in Linea
is similar to the one employed in LexPageRank [22] and
it consists of three steps: bag-of-words extraction, stochastic
matrix construction, and the ranking computation itself. Let
A = {a1, . . . , am} be a set of m events and W be the



matrix where each row wr
i corresponds to an event in A

and each column wc
j corresponds to a word in A (stop words

are not considered; words are stemmed before building W ).
Entries wij in W are given by tf − idf statistics [36], [37]
defined as wij = tf(ai, wj) × idf(wj ,A), where tf(ai, wj)
is the number of occurrences of the word wj in ai and
idf(wj ,A) = log( m

|{ak∈A|wj∈ak}| ) (|·| is the cardinality of the
set) accounts for how frequent wj is across all events in A.

From W we build the adjacency matrix M using a combi-
nation of k-nearest neighbors and cosine similarity measure.
More precisely, given an event ai we compute the di ≤ k
(k = 10 in our implementation) most similar events aj such
that < wr

i , w
r
j > /(||wr

i || ||wr
j ||) > α, where < ·, · > accounts

for the dot product and α is an input parameter (we use
α = 5 × 10−2 in our experiments). For each aj selected as
a neighbor of ai we set mij = 1/di, making the remaining
entries in the i-th row of M equal zero. If di = 0, all entries
in the i-th row of M is set to mij = 1/m. Matrix M is
a stochastic matrix, hence, the rank of each event ai can be
obtained by the well-known PageRank algorithm [38].

B. Layout Construction

Several visualization techniques can be used to visualize a
set of ranked events [39], [10]. However, although previous
works provide good visualization metaphors, they do not
tackle the problem of handling an event set spanning large
periods of time (centuries or even millennia). In this section,
we present the event matrix, an approach for visualizing large
time periods in multiple scales.

42 31

1

2

3

4

[1,2] [1,3]

[2,3]

[1,4]

[2,4]

[3,4]

[1,2] [2,3] [3,4]

[1,3]
[2,4]

[1,4]
Overlapping intervals

Event matrix The event matrix
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matrix for the time interval [1, 4]. The bottom lines show
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to E(1, 4). In this paper, we use the same number of bins for
all histograms in E.
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Fig. 3. The 4×4 event matrices of US history show two approaches for the
subdivision of the interval [30000 BCE, 2013]. Left: uniform subdivision.
The highlighted histograms cover intervals of approximately 10000 years:
p1 = [30000 BCE, 19329 BCE], p2 = [19329 BCE, 8658 BCE], and
p3 = [8658 BCE, 2013]. Right: non-uniform subdivision. p3, p4, and p5
cover approximately 31000, 380, and 137 years. The non-uniform subdivision
reveals more interesting details using the same matrix size. See Section IV-B
for details on how to find appropriate interval breaks.

Break selection We build the event matrix E by determining
the start and ending break dates I = {t1, . . . , tn} for each of
its rows and columns. One option is to let users control the
interval breaks they are interested in by manually selecting
dates. Nevertheless, it is important to have automated default
ranges so as to reveal interesting patterns to users.

A straightforward approach is to subdivide the interval
uniformly. The problem with uniform subdivision is that the
larger the time span the more difficult it is to visualize details.
For instance, when visualizing the event matrix of the history
of the US, it becomes harder to get a meaningful overview
of the data (see left matrix in Figure 3). Since our goal is
to show both an overview and interesting details, we use a
different approach for building interval ranges.

We cluster all events according to their time-stamp using
k−means. Since k−means will cluster data in 1D, it can be
done optimally. Then we set the dates ti as the lower time-
stamp of each each cluster. This simple strategy naturally con-
centrates finer intervals in denser time intervals, thus allowing
a better visualization of details and event distribution. Figure 3
compares event matrices built with uniformly distributed and
cluster-based intervals. Notice how details show up when using
the clustering scheme.
Smooth curves Instead of showing the his-
tograms directly, we use a B-splines to ap-
proximate its shape (see inline figure). A
smooth curve draws more attention to peaks
and valleys of the histogram than the his-
togram themselves.
Alternative layouts to the event matrix An alternative
approach for generating histograms of progressively smaller,
nested, intervals is binary subdivision. The main disadvan-
tage of binary subdivision is the exponential growth in the
total number of intervals generated. However, the problem
is mitigated if the number of subdivision is low. H-trees
[40] make better use of the space by means of a fractal-like
subdivision. However, H-trees are mainly designed to present
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Fig. 4. Layouts displaying the uniform subdivision of the time interval
p = [2001, 2013]. The event matrix has compact layout; binary subdivision
generates more intervals; and H-tree has compact layout using the same
intervals as binary subdivisions. As H-tree grows, “children” intervals are
positioned further away from “parent” interval.

hierarchies (e.g., parents/children relation), thus it does not
provide an intuitive way of representing the relation between
sub-intervals.

C. Building Timelines Interactively

We now show how previous concepts are tied together in
our approach.

Timeline The timeline is where events chosen by the user (or
highly recommended by the ranking algorithm) are depicted in
a vertical arrangement. The timeline is divided into three parts:
a summary of the subject of interest, hidden event snippets,
and visible event snippets (see Figure 5). The summary on the
top of the timeline is an (optional) abstract that can be assigned
to a story. Since our main source of data is Wikipedia, we
use the abstract data provided with each article as the story
summary. An image can be manually attached to an event.

Hidden snippets are flagged by a list of keywords extracted
from the hidden content. This list is shown between visible
snippets respecting the time stamp of the hidden events. An
example of hidden content is shown in Figure 5 between
the dates 1879 and 1905, where one can read 18 events:
#einstein #marić #paper #published. We use a
simple word count to retrieve the most frequent words in the
hidden events and display them as hashtags. By clicking on
hidden snippets icon, the hidden event with the highest priority
is shown, becoming part of the timeline. Visible event snippets
contain the name of the data source, and optional title, the
description of the event, and an optional image.

Default timeline A subject may contain dozen, hundreds, or
even thousands of events. Presenting all events in a timeline
is overwhelming, as the user can face difficulties finding
the focus of interest amidst many available events. Random
sampling is not a viable alternative as the selected snippets
may not be representative of the whole. We use the ranking
introduced in Section IV-A to automatically build default
timelines depicting the top ranked events. Users can then
add/remove events deemed important/irrelevant. Event markers
(the blue dots in Figures 1 and 6) are shown in the event
matrix to highlight from which time interval the user is picking
out new events to compose the timeline. This is useful to
help users decide whether all the important time intervals are
represented with enough events.

Filtering Linea uses brushing and linking to allow users to
explore the event matrix. By selecting a time interval s in

Fig. 5. Timeline components. The story summary (top), the hidden events
are shown between visible event snippets. Snippets are highlighted when the
mouse cursor goes over it allowing the user to expand an image, if any, and
hide the events.



Fig. 6. The Wikipedia article entitled “Albert Einstein” (shown here across eight panels) contains over 300 sentences. The rightmost image shows a 5× 5
event matrix of that article. The yellow circles show the nine events with highest priority (see Section IV-A). Numbers represent the order in which events
appear in the timeline (from old to new). Yellow pen markers show the position in the article from which these events were extracted. The following keywords
were omitted from the word cloud: albert and einstein.

one matrix cell, s is reflected to all other cells that contain
that interval. This allow users to inspect a time period in
different level of details, which may reveal interesting patterns.
In addition, when a time interval is selected, all events that
make up the tailored timeline are temporarily replaced by
events within the selected interval. The user can then browse
all events for that particular interval, adding those of interest
to the timeline. By deselecting the cell, the tailored timeline
is restored in addition to any new events chosen by the user.

D. Implementation

Linea is implemented using JavaScript, C++, and Java.
The front end relies on D3 [41] and plugins to render
the event matrix and timeline. The event extraction algo-
rithm relies on Stanford CoreNLP [35]. In this paper, our
source of unstructured temporal text is the English version of
Wikipedia (2013/05/03 version). Each Wikipedia article was
pre-processed to remove wiki tags. The removal of wiki tag is
done on the backend along side with the event extraction and
ranking. Linea also relies on DBpedia for extracting (optional)
article lead [42].

V. CASE STUDY

In this section, we present one case study for Linea, namely,
Albert Einstein’s life. More case studies can be found in the
supplemental material. In this case study we employ Linea
to visualize Albert Einstein’s life. The input data come from
Wikipedia’s Albert Einstein article. Here we use a single
article, but in practice, others could be included, e.g., Einstein
family, History of special relativity, etc. The article contains
over 330 sentences, of which our pre-processing step selected
85 events. Although the number of events collected is nearly
a fourth of the input data, a timeline with 85 events is too
dense.

Figure 6 shows how Linea assists the summarization of
documents. When an article is loaded for the first time, the
default timeline is built based on the ten highest ranking
events. Nine events ranked as the most relevant correspond

to Einstein’s scientific career: special theory of relativity and
Brownian motion (1905); general theory of relativity (1907,
1916); and Einstein’s prediction that light would be bent by
the Sun’s gravity (1911). This example shows that the default
timeline is a good starting point for a deeper investigation.
Notice from Figure 6 that the events are not organized lin-
early in the article, but they go back and forth (shown as
numbered yellow circles). This is expected because the article
is organized by subject instead of chronologically; hence, each
section may cover large periods of time. Linea chronologically
reorganizes the information available on Wikipedia. Figure 5
shows Einstein’s timeline after we edited it (in total 6 events
were removed — two of them were redundant — and 2 added).
Note how the chosen events condense the whole article.

Out of the ten default events, only one was not related to
Einstein’s scientific career, namely, his death (last event shown
in Figure 5). Although the date of his death was extracted
from Wikipedia, its description was built automatically. This
is a limitation of the text analysis performed. The Wikipedia
article reads:

On 17 April 1955, Albert Einstein experienced inter-
nal bleeding caused by the rupture of an abdominal
aortic aneurysm, which had previously been rein-
forced surgically by Dr. Rudolph Nissen in 1948.
[...] He died in Princeton Hospital early the next
morning at the age of 76, having continued to work
until near the end.

This example illustrates the challenge of retrieving events from
raw text; an important event, his death, was not extracted
because our text analysis cannot process relative dates: the
“next morning” is in relation to 17 April 1955. This problem
was mitigated by detecting that the subject of interest is
a person and extracting information typically found in a
person’s life, such as birth, death, marriage, and others, from
Wikipedia’s infobox. In this case, his death date was extracted
and an event was created based on it.

The 5×5 event matrix in Figure 6 shows the distribution of
events over time. The highest peak in the top right histogram



(1879/1995) ranges from 1900 to 1919 (see selection in the
top-right matrix cell), which suggests an important period in
Einstein’s life. By selecting that interval, Linea displays only
event snippets in that range, which in this case, is mostly
related to Einstein’s scientific career. Moreover, since the
selection is reflected in other time scales, the event matrix
reveals three smaller peaks, labeled as (1), (2), and (3) in the
matrix cell (1900/1919). With further exploration, the user can
observe that the three peaks correspond to (1) family matters
(marriage and children) and special theory of relativity, (2)
academic career, and (3) family matters (divorce and new
marriage) and the general theory of relativity.

The selection around the highest peak is not the only range
containing interesting features. A small inflection in the curve
outside the selection of the (1879/1995) cell, turns out to be
another peak inside the (1900/1946) cell, labeled as (4). By
selecting that area, the timeline reveals that most of the events
correspond to Einstein’s emigration to the US. The word cloud
summarizes it nicely as the words “United States” and “Visit”
are prominent. Note that the histogram essentially flattens out
after 1960, just after Einstein’s death (1946/1995), except by
small peaks. Lastly, by exploring the period around his death
(labeled as (6)), a curious event is revealed:

After the death of Israel’s first president, Chaim
Weizmann, in November 1952, Prime Minister
David Ben-Gurion offered Einstein the position of
President of Israel, a mostly ceremonial post.

Once a user has explored the collection of events, she/he can
build a tailored timeline.

VI. USER FEEDBACK

We performed a qualitative user evaluation [43] to get
feedback about the usefulness and usability of Linea. A total
of 12 users (2 female 10 male) volunteered to participate
in a 2-hour session from a graduate center. Volunteers were
able to read English and were enrolled in computer science
undergraduate or graduate programs. Users had no previous
experience with Linea.

First, we demoed Linea’s features. All users were encour-
aged to ask questions to assure a good understanding of how
to navigate Linea. Second, users were asked to use the tool
to explore different pre-specified datasets: a training dataset
(92 events), World War II (666 events), and poliomyelitis (194
events), and create a timeline that they deemed relevant, keep-
ing track of the amount of time needed to complete the tasks.
Users were asked an open-ended question on their overall
impressions and opinions (positive, neutral or negative). At the
end, we asked whether they agreed with two statements “I had
previous knowledge about the topic” and “I learned something
about the topic”. Answers were collected via a 5-point Likert
scale (strongly agree — strongly disagree). The users spent 23
minutes on average during the training phase. The average time
spent to build the timelines, World War II and poliomyelitis,
was 17 and 10 minutes, respectively. The average number
of events in the final timeline were 17.17 (training), 44.91
(WWII), and 26.33 (polio). Half of the users reported having

previous knowledge (“agree” or “strongly agree”) on the topic
of WWII, while no one reported previous knowledge on the
topic of poliomyelitis (“disagree” or “strongly disagree”).

Written, free-text, overall impressions and user feedback
were collected. Both positive and negative criticisms were
provided. Besides providing their opinion about Linea’s use-
fulness and usability, the volunteers were encouraged to point
out improvements as to general usability. The given sugges-
tions included to highlight a word in the word cloud when
it is selected and to allow users to click anywhere to remove
selection from the event matrix. Volunteers also suggested new
features to be incorporated, for instance, to enable queries
using keywords and add weights to words based on previous
knowledge. Overall impressions were positive. The features
users found most useful were the easy to use event matrix, the
ability to remove words from the event matrix to filter out the
word cloud, and the brushing mechanism, which users found to
be efficient to select events from specific time intervals. Users
also reported that changing matrix resolution dynamically was
useful for exploring all events. Most users reported that they
were able to uncover interesting facts for all datasets they
investigated. For all datasets, most users reported have gained
knowledge on the topic (“agree” or “strongly agree”), by
exploring the timelines.

VII. DISCUSSION AND CONCLUSION

Our case study showed that relevant events appear as peaks
in the event matrix cells (see more case studies in the supple-
mental materials). Peaks in coarser time scales can represent
a set of important events that show up as multiple peaks in
finer scales, evidencing the importance of providing visual
representations in different level-of-details. The user feedback
about the selection tool implemented in Linea was positive. It
allows users to easily explore events in the different time scales
while showing clues of important time periods. Word clouds
are also helpful for providing summaries of time intervals.
Additionally, we are investigating alternatives to incorporate
information extracted from the histograms into the ranking
mechanism to provide even better default timelines. In the
current state, the most time-consuming step is retrieving the
context around an event, which was also pointed out by users
in the informal evaluation session, thus being an aspect for
further investigation.

Although dates have proven to be a good proxy for inter-
esting events, this is not always the case. Sentences describing
important events may not contain dates suitable to Linea (e.g.,
“4th of July is an important american holiday”) or may not
contain time-tags at all. An interesting polio-related event in
Wikipedia reads:

Ancient Egyptian paintings and carvings depict oth-
erwise healthy people with withered limbs, and
children walking with canes at a young age.

In this case, time is implicitly defined as “Ancient Egypt”.
Conversely, some irrelevant events may be tagged. Although
false-positives and false-negatives may occur, in general, the



assumption that dates are good proxy for events has performed
well on our experiments.

The event matrix has a similar disadvantage as scatterplot
matrices and others: as the matrix dimensions increase, it
becomes harder to navigate through the cells and explore
the data. This is mitigated by the fact that the user can
select a particular time period, effectively filtering out all the
data outside the specified range, thus reducing the number
of dimensions required to navigate through the data. The
disadvantage, however, of this workaround is that the user will
no longer have overview of the whole data. This is a drawback
we should approach in a future work.

Making use of a new visualization widget called event
matrix, Linea turned out to be quite effective in enabling tools
to explore collections of time-stamped events in different time
scales. The provided case studies and user feedback showed
Linea is an easy to use method that can benefit professionals
from different fields.
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