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Abstract—This work presents an image classification method
based on bag of features, that needs less local features extracted
for create a representative description of the image. The feature
vector creation process of our approach is inspired in the cortex-
like mechanisms used in ”Hierarchical Model and X” proposed
by Riesenhuber & Poggio. Bag of Max Features - BMAX works
with the distance from each visual word to its nearest feature
found in the image, instead of occurrence frequency of each word.
The motivation to reduce the amount of features used is to obtain
a better relation between recognition rate and computational cost.
We perform tests in three public images databases generally used
as benchmark, and varying the quantity of features extracted.
The proposed method can spend up to 60 times less local features
than the standard bag of features, with estimate loss around
5% considering recognition rate, that represents up to 17 times
reduction in the running time.

Keywords-Image classification; bag-of-features; HMAX; low
feature usage;

I. INTRODUCTION

The problem of classifying an image content is a difficult
challenge for Computer Vision. The main reference in this
problem is the human natural ability in classifying images
semantically, that is impressive, both for its performance and
by its response time.

Starting with response time, the simple Haar cascade [1]
is the first method to achieve face recognition in real-time. It
needs a huge amount of positive and negative samples from
the target object for training, and do not deal well with intra-
class variance. For example, if a Haar cascade model is trained
to detect a red traffic cone with two white strips, it will not
detect one with three white strips.

In other way, some methods emphasize performance work-
ing just because of the evolution in computational power
and use of graphics processing units (GPUs). One example
is the deep convolutional neural networks [2]–[4] that can
achieve human-like performance, but is non-viable to real time
applications. However, we are still far from achieve human-
like performance and response time.

In this work, we proceed to investigate a technique that can
achieve good relation between recognition rate and compu-
tational cost. Our proposal is based in two methods: bag of
features (BOF) [5]–[8], also known as bag of visual words, and
Hierarchical Model and X (HMAX). The BOF extracts local

features from the image, and match them with the vocabulary
of visual words. Each feature is attributed to a visual word,
and the occurrence of the visual words are counted. Then,
we create a histogram of visual words for the image, also
known as image bag of features. The bag of features is
the image representation, and is used as the image feature
vector. The second method, HMAX, was proposed by [9] and
extended by [10]. It is a model that simulates the primate
prefrontal cortex functions for classifying image objects, and
is divided into four layers, where simple layers employ local
filter convolutions and complex layers perform maximizations
and sampling operations.

We propose a new approach, the bag of max features
(BMAX) method which is based on HMAX to create the
feature vector. The main difference from BOF is that BMAX
find the closest local feature from each visual word and use
their distance instead of occurrence counting to compose the
feature vector. This method can handle better situations with
less features used compared to BOF. This situation can be
faced either by lack of available features, in case of small
images classification, or by option, to improve the response
time.

There are some works that also try to reduce the compu-
tational complexity of BOF in the classification step, without
worrying with the training. Uijlings et al. [11] made changes
in all steps: modification of SIFT and SURF to improve the
extraction time using a regular grid, employment of a random
forest to create the vocabulary and proceeded the dimensional
reduction in the feature descriptors using principal component
analysis. Galvez-Lopez and Tardos [12] proposed a BOF-
based approach to detect closed loop in real time applied to
robotics. They used the BRIEF binary descriptor and FAST
key point detector to reduce the feature extraction time.

Our proposal reduces the computational complexity using
less local features per image, bringing down the feature
extraction time and assignment with the vocabulary.

This paper is organized as follows. In Section II we present
the formal definitions and necessary background to follow
the work. In Section III we formally present our approach
describing the proposed method. In Section IV presents the test
methodology and experimental results, and finally, Section V
states the conclusion and points to future research directions.



Fig. 1. Flowchart of BMAX and BOF algorithms.

II. BACKGROUND AND DEFINITIONS

In this section we present the two methods used to compose
our proposed method: Bag of features and Hierarchical Model
and X. The first one is the base of our proposed method and
the second is the inspiration of the process for image feature
vector creation.

A. Bag of features

To perform the classification task, BOF model [6] employs
features extracted from texture image and put them into a
vocabulary to measure the occurrence of each word and to
create a histogram of occurrences. The algorithm assumes that
a class is defined by the occurrence of the visual words not
considering the position of them. Fig.1 shows a flowchart of
the proposed method.

In the local feature extraction process the keypoints (interest
points) are identified and described. The identification of key-
points aims to find the relevant image regions. Sparse methods
for keypoint detection are employed by [6]–[8], such as the
difference of gaussians [13] that search for local extremum
in the image. However, [14] and [15] report better results
using a dense regular grid for keypoint detection. This grid
has two parameters, the feature size(S) and the grid step(ds),
which influence the amount of keypoints found. Fig. 2 depicts
a sample of two regular grids and parameters influence in the
feature detection process. We always use S as twice the value
of ds.

For the feature description, the scale invariant feature trans-
form (SIFT) [13] is used. In the original proposal, each point
can be described in more than one orientation, but in this work
only one orientation per keypoint is considered.

In the training process, the visual words vocabulary is
created using a clusterization algorithm over the local feature
descriptors extracted from the training images. In this work,
we use Kmeans algorithm [16] that is widely used in BOF
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Fig. 2. Samples of regular grids where each circle is a detected feature.
Keypoints are reduced by four when the grid step is doubled considering that
grid fits perfectly the image.

implementations. Each cluster found represents a visual word
being the cluster center used as its reference.

The vocabulary is used to create the feature vector that is a
representation of the image. For each image, its local features
are extracted and assigned to the nearest visual word, using
the euclidean distance to the visual word center as reference.
Then, a histogram is built using the occurrence frequency of
each visual word, which is normalized. This histogram is used
as the image feature vector.

The feature vector of the training images is delivered to a
support vector machine (SVM) [17]. A radial basis function is
selected as the SVM kernel, and the one-against-all approach
is applied for multi-class problems.

B. Hierarchical Model and X

The Hierarchical Model and X [9], [10] is based on the pro-
cess of image recognition that occurs in the primate prefrontal
cortex. This model is composed by four layers: S1, C1, S2,
and C2.

S1 acts as the primate primary visual cortex. It applies a set
of Gabor filters [18] with different orientations and scales in
the input image. The result maps are grouped into bands, two



by two scales with all the orientations of each scale.
In C1, for each band, a maximum filter is applied over

scales and positions for the same orientation and the result
map is sub-sampled. We obtained one map for each orientation
in each band. In the training process, random patches are
extracted being used as references for visual features in a
similar way of BOF visual words vocabulary.

In S2, the group of patches extracted from C1 layer during
the training is matched with the C1 layer output, and the output
of S2 layer is computed using the equation 1.

R(i, j) = exp(−γ||X − Pi||2) (1)

Where X represents the image patches for all positions, and
Pi is each one of the extracted patches during training (for
i ranging from 1 to the number of extracted patches). The
parameter γ is the same used in the Gabor filter. This result
represents the response of each image region to the visual
characteristics represented by each patch.

In C2, the maximum response for each patch is found and
used to compose the feature vector. It is based in the similarity
of the nearest patch on the image from each patch of the group
extracted in the training, representing the most similar region
in the image to their visual characteristic. Then, the feature
vector is delivered to a support vector machine for training
using a radial basis function as kernel.

III. PROPOSED METHOD

The proposed approach is the Bag of max features(BMAX),
that is similar to the BOF, but using the S2 and C2 layers of
HMAX to generate the image feature vector.

BMAX employs a vector of best responses for each vocab-
ulary visual word as the feature vector. The process to create
this vector can be divided into two steps, inspired in S2 and
C2 HMAX layers.

In the first step we compute the responses (R) from the
vocabulary words (W ) for each feature descriptor found (D)
in a gaussian-like way, using the Equation 2.

R(i, j) = exp(−||Wi −Dj ||2/α) (2)

Where the difference between W and D vectors are their
euclidean distances, and α defines the sharpness of the tuning
being dependent of the descriptor nature. For SIFT descriptors,
we found empirically a good value for α as around 100,000.

The second step is the global maximization. This process
consists in finding the maximum response for each vocabulary
visual word, while the other responses are discarded. The final
result is a vector of size N , where N is the vocabulary size.
The process to discover the best response for a visual word is
illustrated in Fig. 3.

To classify an image from a trained model, we need four
steps: obtain the image, extract the local features, construct the
feature vector and classify using the SVM, as we can see in
the test step presented in Fig. 1. The cost to capture the image
is related to the camera and the drivers or the disk speed and
the time spent in the classification with SVM showed to be

Fig. 3. Process to find the best stimulus for a vocabulary visual word. This
process are repeated with each vocabulary word in order to create the feature
vector.
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Fig. 4. Toy example of creating the image feature vector using BMAX and
BOF in situations with few features available.

irrelevant in our test, but can be a threat to problems with more
classes or major feature vectors. The main computational cost
source to classify an image with this methods is the feature
extraction and creation of the feature vector. Thus, the number
of features used affects directly the run time methods.

Using this approach, we can aggregate more information to
the image feature vector when few local feature are extracted.
In the standard BOF model, each local feature can be assigned
just to one visual word. Considering visual vocabulary with
hundreds of words (from 400 to 800, like we had in our
tests), a high number of local features is required to create a



histogram not composed basically of null values. Employing
our approach, each local feature can be assigned to the best
answer of all visual words without limitations. Therefore, all
the values in the feature vector will have representative values,
even if just one local feature is extracted (Fig. 4). Note that,
with this characteristic, our proposed method can be used
with less local features minimizing recognition rate drop when
compared to BOF.

IV. EXPERIMENTAL RESULTS

In the following we present the experimental results. We
studied the behavior of BMAX method applied to three
datasets, fifteen scene categories [19], Caltech-101 [20] and
CIFAR10 [21]. For each test, we performed the algorithm
ten times, varying the training and test images randomly. The
results are represented by classifier accuracy for each class and
for the final results we analyzed mean and a 95% confidence
interval considering 10 executions. All the tests were carried
out on grayscale images, being colored images converted to
grayscale before feature detection.

A. CIFAR10

The CIFAR10 database [21] is composed of small images,
32x32 pixels, from 10 categories. This base contains 60,000
images, 6,000 per class. The difficulty of this base is the intra-
class variance; for the bird class, the image can be of a distant
flying bird or just his head. Sample images from CIFAR are
displayed in Fig. 5.

Fig. 5. Sample images from CIFAR10 database.

Originally, this base is used with predefined training (5,000
images per class) and test sets (1,000 images per class).
However, in our tests we mixed the images and selected the
training and test sets randomly for each experiment applying
BOF and BMAX.

In Table I, the results are shown for classification experi-
ments undertaken for CIFAR10. The first column presents the
regular grid parameters, the second one the number of detected
features used in this grid. In this case we selected 100 images
for each class for training and 2,000 for testing, and vocabulary
size of 400. For this set of images, in all the scenarios, our
approach BMAX led to better classification performance when
compared to BOF classification.

We can observe that with 36 features, BMAX presented
a classification rate of 28.2% and BOF 25.9%. Comparing

TABLE I
CLASSIFICATION RATE FOR CIFAR10 DATABASE.

Number of Classification Rate
Regular Grid Detected features BMAX BOF

ds = 6, S = 12 36 28.2± 0.3 25.9± 0.4
ds = 8, S = 16 16 27.7± 0.3 24.9± 0.8
ds = 16, S = 32 4 26.1± 0.2 21.8± 0.8

TABLE II
CLASSIFICATION RESULT FOR EACH CLASS FOR CIFAR10 DATABASE.

ds = 6, S = 12 ds = 16, S = 32
Class BOF BMAX BOF BMAX
airplane 18.7 19.2 23.7 20.7
automobile 28.9 33.9 22.3 28.9
bird 21.9 17.7 15.8 13.0
cat 12.4 17.7 15.2 17.8
deer 19.1 16.9 16.4 22.8
dog 32.9 39.7 28.1 29.0
frog 36.2 23.3 21.0 35.9
horse 21.2 24.7 22.7 19.7
ship 36.7 52.3 30.4 42.2
truck 31.3 39.0 23.0 30.3
General 25.9 28.4 21.9 26.0

the results from the methods with 4 detected features, BMAX
obtained a gain of 20% over BOF. Using only 4 features,
BMAX has a small advantage over BOF using nine times the
number of features, showing that our proposal can led to good
results in situations with less features available.

The Table II presents the classification results for each class
in CIFAR10. In the two presented scenarios, BMAX got a
better recognition rate on seven categories when compared to
BOF. This difference is more evident in ship and truck classes.

For this database and considering the images size, the goal
is to evaluate the two methods in situations when few features
are available. Even with small images, BMAX presented a
smaller classification drop when the number of features are
reduced when compared to BOF. Comparing 4 and 36 features,
BMAX had a classification loss around 8%, while BOF lost
around 19%. For tasks where few features can be gathered,
like classification of small image segments for image parsing,
BMAX could have better results compared to BOF.

B. Scene Category

This database is composed of fifteen scenes categories,
thirteen provided by [14] and two by [19]. Each class has 200
to 400 images with average size of 300 x 250 pixels. Sample
images from natural scene category are displayed in Fig. 6.

The Table III presents the classification rate for BMAX and
BOF using the 15 scenes database. For this tests we employ

TABLE III
CLASSIFICATION RATE FOR 15 SCENES DATABASE.

Number of Classification Rate
Regular Grid Detected features BMAX BOF

ds = 8, S = 16 1200 65.5± 0.6 65.9± 0.6
ds = 16, S = 32 300 64.0± 0.5 60.3± 0.6
ds = 32, S = 64 80 63.1± 0.4 57.2± 0.9
ds = 64, S = 128 20 62.7± 0.3 54.7± 0.6
ds = 128, S = 256 6 59.8± 0.4 51.9± 1.0



Fig. 6. Sample images from 15 scenes database.

TABLE IV
RUN TIME FOR PROCESS A IMAGE OF SIZE 300X250 PIXELS WITH BMAX
RANGING THE REGULAR GRID PARAMETERS FOR A VOCABULARY OF SIZE

400.

Number of
Regular Grid Detected features Run time
ds = 8 1200 600 ms
ds = 16 300 276 ms
ds = 32 80 117 ms
ds = 64 20 35 ms
ds = 128 6 12 ms

100 images per category for training and the remaining for
test. The vocabulary size is 400, the stated number of detected
features is acquired using the average image size of 300 x 250.
Using the same regular grid employed in [19], ds = 8, S = 16,
the BOF got a small advantage over BMAX. The difference
between our BOF implementation and the one presented in
[19] is the kernel of SVM, they use a histogram intersection
while we use a radial basis function. And so, different values
of recognition rate for the same database can be verified.

When we started to decrease the number of features used,
BMAX got advantage against BOF. Using 300 features, our
proposal obtained a gain of 6% over BOF using the same
amount of features. Using 20 features, BMAX has lost just
5% in the recognition rate compared to BOF using 1200
features. For tasks that demand fast response, this penalty can
be acceptable considering the reduction of 60 times the number
of features to be processed and matched with the vocabulary.

The Table IV shows the run time to process a image of
size 300x250. This process extracts the local features, compare
them with the vocabulary to compose the feature vector and
classification with SVM. The classification with SVM takes
less than 1 ms using a feature vector with 400 elements and
15 classes with one-against-all approach. In our tests, it took
around 2 ms to classify the feature vector of 100 images. For
larger feature vectors and problems with more categories, the
SVM classification cost can be a limitation. This times are
acquired using a 3.3 GHz CPU and a single thread, while
the file read time is disregarded. Reducing from 1200 to 20
features, the run time is decreased around 17 times.

The Table V presents the classification result for each class

TABLE V
CLASSIFICATION RESULT FOR EACH CLASS FOR 15 SCENES DATABASE.

ds = 8, S = 16 ds = 64, S = 128
Class BOF BMAX BOF BMAX
bedroom 46.6 46.6 22.4 37.9
CALsuburb 89.4 85.9 83.1 92.9
industrial 47.9 39.6 34.9 32.7
kitchen 50.9 43.6 36.4 30.0
living room 55.6 63.2 45.3 39.2
MITcoast 80.8 80.0 73.8 78.1
MITforest 87.7 88.6 78.1 82.0
MIThighway 83.1 75.0 51.3 70.6
MITinsidecity 56.7 50.9 68.3 76.9
MITmountain 82.1 76.6 54.7 66.8
MITopencountry 58.4 68.4 49.0 58.1
MITstreet 82.8 80.2 69.8 76.0
MITtallbuilding 70.7 74.2 71.1 79.3
PARoffice 68.7 46.6 55.2 58.3
store 58.1 65.7 45.4 52.1
General 67.9 65.7 55.9 62.1

in 15 scenes database. We can observe the difference from
the methods when the number of features is reduced. Using
a regular grid of ds = 8, BOF has an advantage in 9,
disadvantage in 5, and parity in one class. In the test using
less features, ds = 64, BMAX has advantage in 12 of the 15
classes.

C. Caltech-101

The caltech 101 database [20] is composed of 102 classes,
from 31 to 800 images per class. The objects are centered and
occupy most of the image. The majority of the images have
medium resolution, around 300 x 300 pixels. It is widely used
as benchmark for image classification algorithms and known
for its intra-class variance.

Fig. 7. Sample images from Caltech-101 database.

In our tests we used 30 images per class for training and the
number of test images are limited to 70 for performance rea-
son. For this database, we used a visual word vocabulary with



TABLE VI
CLASSIFICATION RATE FOR CALTECH 101 DATABASE.

Number of Classification Rate
Regular Grid Detected features BMAX BOF

ds = 8, S = 16 1450 46.6± 0.4 47.7± 0.6
ds = 16, S = 32 360 49.2± 0.7 45.1± 0.8
ds = 32, S = 64 100 43.1± 0.9 35.6± 1.2
ds = 64, S = 128 25 35.5± 0.5 25.9± 0.6
ds = 128, S = 256 9 28.7± 0.5 21.4± 0.6

TABLE VII
PUBLISHED CLASSIFICATION RESULTS FOR CALTECH 101 DATABASE.

Model Recognition rate
for 30 training images

BOF [19] 41
HMAX [10] 42
Holub at al. [22] 43
BOF (our implementation) 47
BMAX 49
Grauman & Darrell [23] 58
spatial pyramid matching [19] 65

800 words. Even though, [19] reports that they did not obtain
any substantial benefit using more than 200 visual words in
the vocabulary. Here, we observe considerable increase in the
recognition rate using 800 words. Our test results are shown
in the Table VI.

The results from altech 101 presented the same behavior of
the 15 natural scenes database, BOF achieved a small advan-
tage using the grid by [19] and BMAX obtained considerable
advantage in the recognition rate increasing the space of the
grid. Indeed, this is a most challenging database and both
methods presented good results considering the decrease of
number of local features.

Using 100 features, BMAX reached 43% of recognition
rate, that is 21% better than BOF using the same amount of
local features. Note that the classification result for BMAX
was better using 360 features than using 1450 features, and
also even better than BOF with 1450 features.

The Table VII presents some published results for cal-
tech 101 database. In fact, we realize that our proposal BMAX
is better than the two base models, BOF and HMAX.

The spatial pyramid matching [19] is a modification of
standard BOF, that subdivide the image and compute the
histogram of visual words for each part, concatenating them
in order to create the feature vector. It encodes geometrical
information with the histogram of visual words, and performs
a considerable increase in the recognition rate. A similar
approach can be used along with BMAX, and is one of our
possible direction for further works.

V. DISCUSSION

This work has presented a new approach for image classifi-
cation based on bag of features. The proposed approach uses
the distance of the closest local feature for each visual word in
the vocabulary, instead of occurrence count, to make the image
feature vector. In the bag of max words, each local feature can
be used for more than a visual word, unlike standard bag of

features, and thereby aggregate more information to the image
feature vector when few local feature are available.

We have conducted experiments in three different public
images databases normally used for benchmark. The results
showed that our approach can handle better situations where
few features are available compared to standard bag of fea-
tures. This characteristic enables our approach to derive a
better cost benefit rate than standard BOF. In some cases,
compared to BOF using 60 times more local features, that
represents a raise of 17 times in the run time, BMAX has lost
just 5% in the recognition rate.

In future works, we intend to test fastest feature extractors,
like SURF [24] or ORB [25]. Currently, the slow feature
extraction process of SIFT and its big descriptor vector are
the main limitations to reduce the computational cost of our
approach.
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