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Abstract—The performance of image classification is highly
dependent on the quality of extracted features. Concerning high
resolution remote image images, encoding the spatial features
in an efficient and robust fashion is the key to generating
discriminatory models to classify them. Even though many visual
descriptors have been proposed or successfully used to encode
spatial features of remote sensing images, some applications,
using this sort of images, demand more specific description
techniques. Deep Learning, an emergent machine learning ap-
proach based on neural networks, is capable of learning specific
features and classifiers at the same time and adjust at each
step, in real time, to better fit the need of each problem. For
several task, such image classification, it has achieved very
good results, mainly boosted by the feature learning performed
which allows the method to extract specific and adaptable visual
features depending on the data. In this paper, we propose a
novel network capable of learning specific spatial features from
remote sensing images, with any pre-processing step or descriptor
evaluation, and classify them. Specifically, automatic feature
learning task aims at discovering hierarchical structures from
the raw data, leading to a more representative information.
This task not only poses interesting challenges for existing vision
and recognition algorithms, but also brings huge opportunities
for urban planning, crop and forest management and climate
modelling. The propose convolutional neural network has six
layers: three convolutional, two fully-connected and one classifier
layer. So, the five first layers are responsible to extract visual
features while the last one is responsible to classify the images. We
conducted a systematic evaluation of the proposed method using
two datasets: (i) the popular aerial image dataset UCMerced
Land-use and, (ii) a multispectral high-resolution scenes of the
Brazilian Coffee Scenes. The experiments show that the proposed
method outperforms state-of-the-art algorithms in terms of over-
all accuracy.
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I. INTRODUCTION

A lot of information may be extracted from the earth’s
surface through images acquired by airborne sensors, such
as spatial features and structural patterns. A wide range of
fields have taken advantages of this information, including
urban planning [1], crop and forest management [2], disaster
relief [3] and climate modelling. However, extract information
from these remote sensing images (RSIs), by manual efforts
(e.g., using edition tools), is both slow and costly, so automatic

methods appears as an appealing alternative for the com-
munity. Although the literature presents many advances, the
spatial information coding in RSIs is still considered an open
and challenging task [4]. Traditional automatic methods [5],
[6] extract information from RSIs in two separated basic
step: (i) spatial feature extraction and, (ii) learning step, that
uses machine learning methods. In a typical scenario, since
different descriptors may produce different results depending
on the data, it is imperative to design and evaluate many
descriptor algorithms in order to find the most suitable ones
for each application [7]. This process is also expensive and,
likewise, does not guarantee a good descriptive representation.
Another automatic approach, called deep learning, overcome
this limitation, since it can learn specific and adaptable spatial
features and classifiers for the images, all at once. In this
paper, we propose a method to automatic learn the spatial
feature representation and classify each remote sensing image
focusing on the deep learning strategy.

Deep learning [8], a branch of machine learning that favours
multi-layered neural networks, is commonly composed with a
lot of layers (each layer composed of processing units) that
can learn the features and the classifiers at the same time, i.e,
just one network is capable of learning features (in this case,
spatial ones) and classifiers (in different layers) and adjust
this learning, in processing time, based on the accuracy of the
network, giving more importance to one layer than another
depending on the problem. Since encoding the spatial features
in an efficient and robust fashion is the key to generating
discriminatory models for the remote sensing images, this
feature learning step, which may be stated as a technique that
learn a transformation of raw data input to a representation
that can be effectively exploited [8], is a great advantage when
compared to typical methods, such as typical aforementioned
ones, since the multiple layers responsible for this, usually
composed of nonlinear processing units, learn adaptable and
specific feature representations in some form of hierarchy,
depending on the data, with low-level features being learned
in former layers and high-level in the latter ones. Thus, the
network learns the features of different levels creating more
robust classifiers that use all this extracted information.

In this paper, we propose a new approach to automatically
classify aerial and remote sensing image scenes. We used a



specific network called Convolutional Neural Network (CNN),
or simply ConvNet. This kind of deep learning technique
uses the natural property of a image being stationary, i.e., the
statistics of one part of the image are the same as any other
part. Thus, features learned at one part of the image can also
be applied to other parts of the image, and the same features
may be used at all locations. We proposed a network with
six layers: three convolutional ones, two fully connected and
one softmax at the end to classify the images. So, the five
first layers are responsible to extract visual features while the
last one is responsible to classify the images. Between some
of these layers, we used some techniques, such as dropout
regularization [9], Local Response Normalization (LRN) [10]
and max-polling.

In practice, we claim the following benefits and contribu-
tions over existing solutions:

• Our main contribution is a novel ConvNet to improve
feature learning of aerial and remote sensing images.

• A systematic set of experiments, using two datasets,
reveals that our algorithm outperforms the state-of-the-art
baselines [11], [12] in terms of overall accuracy measures.

The paper is structured as follows. Related work is presented
in Section II. We introduce the proposed network in Sec-
tion III. Experimental evaluation, as well as the effectiveness
of the proposed algorithm, is discussed in Section IV. Finally,
in Section V we conclude the paper and point promising
directions for future work.

II. RELATED WORK

The development of algorithms for spatial extraction infor-
mation is a hot research topic in the remote sensing commu-
nity [4]. It is mainly motivated by the recent accessibility of
high spatial resolution data provided by new sensor technolo-
gies. Even though many visual descriptors have been proposed
or successfully used for remote sensing image processing [13],
[14], [15], some applications demand more specific description
techniques. As an example, very successful low-level descrip-
tors in computer vision applications do not yield suitable
results for coffee crop classification, as shown in [7]. Thus,
common image descriptors can achieve suitable results in
most of applications. Furthermore, higher accuracy rates are
yielded by the combination of complementary descriptors
that exploits late fusion learning techniques. Following this
trend, many approaches have been proposed for selection of
spatial descriptors in order to find suitable algorithms for
each application [16], [11], [17]. Cheriyadat [11] proposed
a feature learning strategy based on Sparse Coding, which
learned features from well-known datasets are used for build-
ing detection in larger image sets. Faria et al. [16] proposed
a new method for selecting descriptors and pattern classifiers
based on rank aggregation approaches. Tokarczyk et al. [17]
proposed a boosting-based approach for the selection of low-
level features for very-high resolution semantic classification.

Despite the fact the use of Neural Network-based ap-
proaches for remote sensing image classification is not re-
cent [18], its massive use is recent motivated by the study on

deep learning-based approaches that aims at the development
of powerful application-oriented descriptors. Many works have
been proposed to learn spatial feature descriptors [19], [20],
[21], [12]. Firat et al. [19] proposed a method that combines
Markov Random Fields with ConvNets for object detection
and classification in high-resolution remote sensing images.
Hung et al. [20] applied ConvNets to learn features and detect
invasive weed. In [21], the authors presented an approach to
learn features from Synthetic Aperture Radar (SAR) images.
Zhang et al. [12] proposed a deep feature learning strategy
that exploits a pre-processing salience filtering. Moreover,
new effective hyperspectral and spatio-spectral feature descrip-
tors [22], [23], [24], [25] have been developed mainly boosted
by the deep learning growth in recently years.

Our work differs from others in the literature in many
aspects. As introduced, classification accuracy is highly de-
pendent on the quality of extracted features. A method that
learns adaptable and specific spatial features based on the
images could exploits better the feasible information available
on the data. Moreover, to the best of our knowledge, there is no
work in the literature that proposes a ConvNet-based approach
to learn spatial features in both remote sensing and aerial
domains. The ConvNet methods found in the literature are
designed to be focused on very specific application scenarios,
such as weed detection or urban objects. Thus, the proposed
network is totally different (in the architecture, number of
neurons and layers, etc) when compared to others in the
literature. In this work, we experimentally demonstrate the
robustness of our approach by achieving state-of-the-art results
not only in a well-known aerial dataset but also in a remote
sensing image dataset, which contains non-visible bands.

III. CONVOLUTIONAL NEURAL NETWORKS FOR REMOTE
SENSING IMAGES

Neural Network (NN) is generally presented as systems of
interconnected processing units (neurons) which can compute
values from inputs leading to a output that may be used on
further units. These neurons work in agreement to solve a
specific problem, learning by example, i.e., a NN is created
for a specific application, such as pattern recognition or data
classification, through a learning process. ConvNets, a type of
NN, were initially proposed to work over images, since it tries
to take leverage from the natural property of an image, i.e.,
its stationary state. More specifically, the statistics of one part
of the image are the same as any other part. Thus, features
learned at one part can also be applied to another region of the
image, and the same features can be used in several locations.
When compared to other types of networks, convNets present
several other advantages: (i) automatically learn local feature
extractors, (ii) are invariant to small translations and distortions
in the input pattern, and (iii) implement the principle of
weight sharing which drastically reduces the number of free
parameters and thus increases their generalization capacity.

The proposed ConvNet has six layers: three convolutional,
two fully-connected and one classifier layer. So, the five
first layers are responsible to extract visual features while



the last one, a softmax layer, is responsible to classify the
images. Next, we present some basic concepts followed by
the proposed architecture.

A. Processing Units

As introduced, artificial neurons are basically processing
units that compute some operation over several input vari-
ables and, usually, have one output calculated through the
activation function. Typically, an artificial neuron has a weight
vector W = (w1, w2, · · · , wn), some input variables X =
(x1, x2, · · · , xn) and a threshold or bias b. Mathematically,
vectors w and x have the same dimension, i.e., w and x
are in <n. The full process of a neuron may be stated as
in Equation 1.

z = f

(
N∑
i

Xi ∗Wi + b

)
(1)

where z, x, w and b represent output, input, weights and bias,
respectively. f(·) : < → < denotes an activation function.

Conventionally, a nonlinear function is provided in f(·).
There are a lot of alternatives for f(·), such as sigmoid,
hyperbolic, and rectified linear function. In this paper, we
are interested in the latter one because neurons with this
configuration has several advantages when compared to others:
(i) works better to avoid saturation during the learning process,
(ii) induces the sparsity in the hidden units, and (iii) does
not face gradient vanishing problem1 as with sigmoid and
tanh function. The processing unit that uses the rectifier as
activation function is called Rectified Linear Unit (ReLU) [26].
The first step of the activation function of a ReLU is presented
in Equation 1 while the second one is introduced in Equation 2.

a =

{
z, if z > 0

0, otherwise
⇔ a = f(z) = max(0, z) (2)

The processing units are grouped into layers, which are
stacked forming multilayer NNs. These layers give the foun-
dation to others, such as convolutional and fully-connected.

B. Network Components

Amongst the different layers, the convolutional one is the
responsible to capture the features from the images, where
the first layer obtains the low-level features (like edges, lines
and corners) while the others get high-level features (like
structures, objects and shapes). The process made in this layer
can be decomposed into two phases: (i) the convolution step,
where a fixed-size window runs over the image defining a
region of interest, and (ii) the processing step, that uses the
pixels inside each window as input for the neurons that, finally,
perform the feature extraction from the region. Formally, in
the latter step, each pixel is multiplied by its respective weight

1The gradient vanishing problem occurs when the propagated errors become
too small and the gradient calculated for the backpropagation step vanishes,
making impossible to update the weights of the layers and achieve a good
solution.

generating the output of the neuron, just like Equation 1. Thus,
only one output is generated concerning each region defined
by the window. This iterative process results in a new image
(or feature map), generally smaller than the original one, with
the visual features extracted. Many of these features are very
similar, since each window may have common pixels, generat-
ing redundant information. Typically, after each convolutional
layer, there are pooling layers that were created in order to
reduce the variance of features by computing some operation
of a particular feature over a region of the image. Specifically,
a fixed-size window runs over the features extracted by the
convolutional layer and, at each step, a operation is realized
to minimize the amount and optimize the gain of the features.
Two operations may be realized on the pooling layers: the max
or mean operation, which selects the maximum or mean value
over the feature region, respectively. This process ensures that
the same result can be obtained, even when image features
have small translations or rotations, being very important for
object classification and detection. Thus, the pooling layer
is responsible for sampling the output of the convolutional
one preserving the spatial location of the image, as well as
selecting the most useful features for the next layers.

After several convolutional and pooling layers, there are
the fully-connected ones. It takes all neurons in the pre-
vious layer and connects it to every single neuron it has.
The previous layers can be convolutional, pooling or fully-
connected, however the next ones must be fully-connected
until the classifier layer, because the spatial notion of the
image is lost in this layer. Since a fully-connected layer
occupies most of the parameters, overfitting can easily happen.
To prevent this, the dropout method [27] was employed.
This method randomly drops several neuron outputs, which
does not contribute to the forward pass and backpropagation
anymore. This neuron drops are equivalent to decreasing the
number of neurons of the network, improving the speed of
training and making model combination practical, even for
deep neural networks. Although this method creates neural
networks with different architectures, those networks share the
same weights, permitting model combination and allowing that
only one network is needed at test time.

Finally, after all convolution, pooling and fully-connected
layers, a classifier layer may be used to calculate the class
probability of each instance. The most common classifier layer
is the softmax one [8], based on the namesake function. The
softmax function, or normalized exponential, is a generaliza-
tion of the multinomial logistic function that generates a K-
dimensional vector of real values in the range (0, 1) which
represents a categorical probability distribution. Equation 3
shows how softmax function predicts the probability for the
jth class given a sample vector X .

hW,b(X) = P (y = j|X;W, b) =
expX

TWj∑K
k=1 exp

XTWk

(3)

where j is the current class being evaluated, X is the input
vector, and W represent the weights.



In addition to all these processing layers, there are also
normalization ones, such as Local Response Normalization
(LRN) [28] layer. This is the most useful when using process-
ing units with unbounded activations (such as ReLU), because
it permits the local detection of high-frequency features with
a big neuron response, while damping responses that are
uniformly large in a local neighborhood.

C. Training

After modelling a network, in order to allow the evaluation
and improvement of its results, a loss function needs to be
defined, even because the goal of the training is to minimize
the error of this function, based on the weights and bias, as
presented in Equation 4. Amongst several functions, the log
loss one has become more pervasive because of exciting results
achieved in some problems [28]. Equation 5 presents a general
log loss function, without any regularization term.

argmin
W,b

[J (W, b)] (4)

J (W, b) = − 1

N

N∑
i=1

(y(i) × log hW,b(x
(i))+

(1− y(i))× log(1− hW,b(x
(i))))

(5)

where y represents a possible class, x is the data of an
instance, W the weights, i is an specific instance, and N
represents the total number of instances.

With the cost function defined, the neural network can
be trained in order to minimize the loss by using some
optimization algorithm, such as Stochastic Gradient Descent
(SGD), to gradually update the weights and bias in search of
the optimal solution:

W
(l)
ij =W

(l)
ij − α

∂J (W, b)
∂W

(l)
ij

b
(l)
i = b

(l)
i − α

∂J (W, b)
∂b

(l)
i

where α denotes the learning rate.
However, as presented, the partial derivatives of the cost

function, for the weights and bias, are needed. To obtain these
derivatives, the backpropagation algorithm is used. Specifi-
cally, it must calculate how the error changes as each weight is
increased or decreased slightly. The algorithm computes each
error derivative by first computing the rate at which the error δ
changes as the activity level of a unit is changed. For classifier
layers, this error is calculated considering the predicted and
desired output. For other layers, this error is propagated by
considering the weights between each pair of layers and the
error generated in the most advanced layer.

The training step of our Neural Network occurs in two steps:
(i) the feed-forward one, that passes the information through
all the network layers, from the first until the classifier one,
and (ii) the backpropagation one, which calculates the error

δ generated by the Neural Network and propagates this error
through all the layers, from the classifier until the first one. As
presented, this step also uses the errors to calculate the partial
derivatives of each layers for the weights and bias.

D. Final Architecture

Figure 1 presents the final architecture of our CNN. The pro-
posed network maximizes the multinomial logistic regression
objective. Specifically, Equation 6 presents the loss function
of the proposed network that is, actually, a simplified form of
the function presented in Equation 5 with a new regularization
term, called weight decay, to help prevent overfitting.

J (W, b) = − 1

N

N∑
i=1

1∑
k=0

1{y(i) = k}×

×P (y(i) = j|x(i);W, b) + λ

2

∑
W 2

(6)

where y represents a possible class, x is the data of an
instance, W the weights, i is an specific instance and N
represents the total number of instances. The 1{·} is the
“indicator function” so that 1{a true statement} = 1, and
1{a false statement} = 0.

The kernels of all convolutional layers are connected to
all kernel maps in the subsequent layer. The neurons in the
fully-connected layers are connected to all neurons in the
previous layer. Local Response Normalization (LRN) layers
follow the first and second convolutional layers. Max-pooling
layers follow both response-normalization layers as well as the
third convolutional layer. The ReLU non-linearity is applied
to the output of every convolutional and fully-connected layer.
The first convolutional layer filters the input image, which
may have varied size depending on the application, with 96
kernels of size 5×5×3 with a stride2 of 3 pixels. The second
convolutional layer uses the (response-normalized and pooled)
output of the first convolutional layer as input and filters it
with 256 kernels. The third convolutional layer has 256 kernels
connected to the (normalized, pooled) outputs of the second
convolutional layer. Finally, the fully-connected layers have
1024 neurons each and the classifier one has the probability
distribution over the possible classes.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental setup as well
as the results obtained.

A. Dataset

Datasets with different properties were chosen in order
to better evaluate the robustness and effectiveness of the
proposed network and the features learned with it. The first
one is a multi-class land-use dataset that contains aerial high
resolution scenes in the visible spectrum. The second dataset
has multispectral high-resolution scenes of coffee crops and
non-coffee areas.

2This is the distance between the centers of each window step.
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Fig. 1. The proposed Convolution Neural Network architecture. It contains six layers: the first three are convolutional, two others are fully-connected. The
output of the last fully-connected layer is fed into a classifier layer which produces the probability distribution over the possible class labels.

(a) Dense Residential (b) Harbor

(c) Medium Residential (d) Intersection

(e) Sparse Residential (f) Airplane

Fig. 2. Some samples from the UCMerced Land Use Dataset.

1) UCMerced Land-use Dataset: This manually labelled
and publicly available dataset [29] is composed of 2,100 aerial
scene images with 256 × 256 pixels equally divided into 21
land-use classes selected from the United States Geological
Survey (USGS) National Map: agricultural, airplane, baseball
diamond, beach, buildings, chaparral, dense residential, forest,
freeway, golf course, harbor, intersection, medium density
residential, mobile home park, overpass, parking lot, river,
runway, sparse residential, storage tanks, and tennis courts.

The data set represents highly overlapping classes such as
the dense residential, medium residential, and sparse residen-
tial which mainly differs in the density of structures. Samples
of some class are shown in Figure 2. For providing diversity
to the dataset, these images, that have pixel resolution of one
foot, were obtained from different US locations.

2) Brazilian Coffee Scenes: This dataset [30] is composed
of scenes taken by the SPOT sensor in 2005 over four counties
in the State of Minas Gerais, Brazil: Arceburgo, Guaranésia,
Guaxupé and Monte Santo. This dataset is very challenging for
several different reasons: (i) high intraclass variance, caused
by different crop management techniques, (ii) scenes with

(a) Coffee (b) Non-coffee

Fig. 3. Example of coffee and non-coffee samples in the Brazilian Coffee
Scenes dataset. The similarity among samples of opposite classes is notorious
as well as the intraclass variance.

different plant ages, since coffee is an evergreen culture and,
(iii) images with spectral distortions caused by shadows, since
the South of Minas Gerais is a mountainous region.

This dataset has 2,876 multispectral high-resolution scenes,
with 64 × 64 pixels, equally divided into two classes: coffee
and non-coffee. Figure 3 shows some samples of these classes.

B. Baselines

We used several recently proposed methods as baseline [12],
[11]. For the UCMerced Land-use dataset, only the best
method of each work [12], [11] were considered as baseline.
Cheriyadat [11] proposed an unsupervised method that uses
features extracted by dense low-level descriptors to learn a
set of basis functions. Thus, the low-level feature descriptors
are encoded in terms of the basis functions to generate new
sparse representation for the feature descriptors. A linear SVM
is used over this representation, classifying the images. For
this scenario, dense sift with feature encoding (using the basis
functions) yielded the best result for the UCMerced dataset,
and was used as baseline. In [12], salient regions are exploited
by an unsupervised feature learning method to learn a set
of feature extractors which are robust and efficient and do
not need elaborately designed descriptors such as the scale-
invariant-feature-transform-based algorithm. Then, a machine
learning technique is used over the features extracted by the
proposed unsupervised method, classifying the images. In this
case, for the UCMerced dataset, linear SVM with the proposed
saliency algorithm yielded the best result.

For the Brazilian Coffee Scenes dataset, we have used
BIC [31] and ACC [32] descriptors with Linear SVMs as



baselines. We choose the aforementioned descriptors based on
several works, such as [14], [33], [30], which demonstrate that
these are the most suitable descriptors to describe coffee crops.

C. Experimental Protocol

We conducted a five-fold cross validation in order to assess
the accuracy of the proposed algorithm for both dataset.
Therefore, the dataset was arranged into five folds with almost
same size, i.e., the images are almost equally divided into five
sets, where each one is balanced in relation to the number of
images per class, so one fold may not have images from only
or a few classes, giving diversity to each set. At each run,
three folds are used as training-set, one as validation (used to
tune the parameters of the network) and the remaining one is
used as test-set. The results reported are the average of the
five runs followed by the standard deviation.

The proposed ConvNets was built by using a framework
called Convolutional Architecture for Fast Feature Embed-
ding [34], or simply Caffe. This framework is more suitable
due to its simplicity and support to parallel programming using
CUDA R©, a NVidia R© parallel programming based on graphics
processing units. Thus, in this paper, Caffe was used along
with libraries as CUDA and CuDNN 3. All computational
presented experiments were performed on a 64 bits Intel R©

i5 R© 760 machine with 2.8GHz of clock and 20GB of RAM
memory. A GeForce R© GTX760 with 4GB of internal memory
was used as graphics processing units, under a 6.5 CUDA
version. Fedora 20 (kernel 3.11) was used as operating system.

The ConvNet and its parameters were adjusted by consid-
ering a full set of experiments guided by [35]. We started the
setup experiments with a small network and, after each step,
new layers, with different number of processing units, were
being attached until a plateau was reached, i.e., until there is
no change in the loss and accuracy of the network. At the
end, a initial architecture was obtained. After defining this
architecture, the best set of parameters was selected based on
convergence velocity versus the numbers of iterations needed.
During this step, a myriad of parameters combinations, for
each dataset, were experimented and, for the best ones, new
architectures, close to the initial one, were also experimented.
For each dataset, we basically used the same network architec-
ture proposed in Section III-D with several peculiarities related
to the input image and the classifier layer. For the UCMerced
Land-use Dataset, the input image has 256 × 256 pixels and
the classifier layers has 21 neurons, since each image can
be classified into 21 classes. For the Brazilian Coffee Scenes
Dataset, the input image has 64× 64 pixels and the classifier
layers has 2 neurons, since the dataset has only 2 classes
(coffee and non-coffee).

D. Results and Discussion

The results for the UCMerced Land-use dataset are pre-
sented in Table I. One can see that the proposed ConvNet out-
performs all the baselines [11], [12] in, at least, 10% in terms

3It is a GPU-accelerated library of primitives for deep neural networks

TABLE I
RESULTS, IN TERMS OF ACCURACY, OF THE PROPOSED METHOD AND THE

BASELINES FOR THE UCMERCED LAND-USE DATASET.

Method Accuracy(%)

Our ConvNet 89.39 ± 1.10
With-Sal [12] 82.72± 1.18
Dense Sift [11] 81.67± 1.23

TABLE II
RESULTS, IN TERMS OF ACCURACY, OF THE PROPOSED METHOD AND THE

BASELINES FOR THE BRAZILIAN COFFEE SCENES DATASET.

Method Accuracy(%)

Our ConvNet 89.79 ± 1.73
BIC [31]+SVM 87.03± 1.17
ACC [32]+SVM 84.95± 1.98

of overall accuracy. It is worth to point out that all baselines
are more hand-working, since features need to be extracted
first to be, then, used with some machine learning technique
(in this case SVM). Meanwhile, the proposed method does not
need to extract the features in advance, since it can learn the
features by itself.

The results for the Brazilian Coffee Scenes dataset are
presented in Table II. Our ConvNet performs slight better
than BIC and outperforms ACC. Once again, all baselines are
more hand-working, since features need to be extracted first to
be, then, used with some machine learning technique . In the
opposite direction, as introduced, the proposed network learns
all at once. Furthermore, it is worth to mention that agricultural
scenes is very hard to classify since the method must to
differentiate among different vegetation. BIC is showed to be
the a suitable descriptor for coffee crop classification after
several comparisons with other descriptors [14].

Figure 6 shows some features extracted by the network at
each convolutional layer for Figure 6a. Moreover, Figure 7
shows some filters used by the network at each convolutional
layer to extract the features of the aforementioned image. In
this case, the convolutional layers are a collection of block
filters capable of considering, not only the color channels
(first convolutional layers, per example), but the gradients and
contours considered useful for the classification.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new approach based on Convo-
lutional Neural Networks to learn spatial feature arrangements
from remote sensing domains. Experimental results show that
our method is effective and robust. We have achieved state-
of-the-art accuracy results for the well-known UCMerced
dataset by outperforming all the baselines. Our method also
presented suitable results for coffee crop classification, which
is considered a challenging dataset.

As future work, we intend to fine-tune an existing network,
such as ImageNet [28], and compare the results with the
proposed method. We are also considering perform some
modifications in our net in order to improve even more the
obtained results, test new datasets and new applications.
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Fig. 4. Per-class classification rates of the proposed net and baselines for the UCMerced Land-use dataset.

(a) (b) (c) (d)

Fig. 6. An image from the UCMerced Land-use dataset followed by the features extracted in the three convolutional layers of the network. (a) the original
image, (b)-(d) features extracted from the first, second and third convolutional layer, respectively.

(a) (b) (c)

Fig. 7. Filters from each convolutional layers of the network for Figure 6a.
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