
Unsupervised Effectiveness Estimation for Image

Retrieval using Reciprocal Rank Information

Daniel Carlos Guimarães Pedronette
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Abstract—In this paper, we present an unsupervised approach
for estimating the effectiveness of image retrieval results obtained
for a given query. The proposed approach does not require any
training procedure and the computational efforts needed are
very low, since only the top-k results are analyzed. In addition,
we also discuss the use of the unsupervised measures in two
novel rank aggregation methods, which assign weights to ranked
lists according to their effectiveness estimation. An experimental
evaluation was conducted considering different datasets and
various image descriptors. Experimental results demonstrate the
capacity of the proposed measures in correctly estimating the
effectiveness of different queries in an unsupervised manner.
The linear correlation between the proposed and widely used
effectiveness evaluation measures achieves scores up to 0.86 for
some descriptors.

Keywords-content-based image retrieval; unsupervised effec-
tiveness estimation; query difficult prediction

I. INTRODUCTION

The consistent development of digital image acquisition and

sharing technologies led to a huge growth of image collections

in last decades. In this scenario, indexing and searching for

collection images is of paramount importance. One common

approach to support these tasks consider the use of image

visual content and the construction of the well-known Content-

Based Image Retrieval (CBIR) systems. The main objective of

these systems is to retrieve the most similar images ranked

according to their similarity to a query input (e.g., query

image).

Although the continued research and development in last

two decades [1], the CBIR technology still faces several chal-

lenges. A common problem faced by all current approaches is

their reliance on visual similarity for judging semantic simi-

larity, which may be difficult due to the semantic gap between

low-level content features and higher-level concepts [1].

Such inherent difficulties can directly affect the effective-

ness of image retrieval systems based on the visual content.

The effectiveness of image retrieval tasks is commonly as-

sociated with the relevance of top-ranked images regarding

to the query image. In addition, various post-processing [2]–

[4] methods use the information encoded in top positions of

ranked lists for improving the effectiveness results. However,

distinct queries present different search difficulty levels, de-

pending on considered visual features. For some queries, the

search systems may return effective results, while for others,

the search results may be very unsatisfactory [5].

In fact, it would be very desirable estimating the effective-

ness of retrieved results without the need of user intervention,

e.g., in an unsupervised way. We claim that the quality of

retrieved results for a given query may be used to improve the

search system automatically. For example, considering that the

effectiveness of results for a given query is known, the CBIR

system may perform re-ranking [4], [6], [7] or may support

relevance feedback [8]–[10] sessions for improving the quality

of low-effective queries. On the other hand, a greater relevance

can be assigned to high-effective queries, and that information

may be used to tune searching models aiming at improving the

results associated with future queries.

In textual information retrieval systems, Query Difficulty

Prediction (QDP) approaches have been investigated for

years [11]–[13], as an attempt to predict the quality of the

search result for a query over a given collection [5]. Consid-

ering the textual domain, studies have been conducted [13] to

investigate the reason why some queries are more difficult

than others and models have been proposed for predicting

the query difficulty. Ranking robustness [11], which refers to

a property of a ranked list of documents that indicates how

stable the ranking is in the presence of uncertainty, consistently

correlates with query performance in textual domains.

In image retrieval applications, however, the use of un-

supervised effectiveness estimation approaches is still little

exploited. Tian et al. [5] proposed a query difficulty prediction

approach for web image search tasks, evaluated on textual

queries. A model to predict the query difficulty through a

machine learning approach is employed. Machine learning

models are also used for query difficult prediction in contextual

image retrieval system [14]. The objective is to annotate

the word/phrase in a document with images. Unsupervised

approaches were proposed [15] for effectiveness estimation of

image-based queries using visual representations of the query

neighborhood.

In this paper, we present a completely unsupervised ap-

proach for estimating the effectiveness of image retrieval tasks.

A reciprocal reference analysis is employed, based on two

measures recently proposed for unsupervised distance learning

tasks [3], [16]. The approach does not require any training



procedure and the computational efforts needed are very low,

since only the top-k results are analyzed. In addition, we

also present an application of discussed measures, proposing

two novel rank aggregation methods, which assign weights

to ranked lists according to their effectiveness estimation. An

experimental evaluation was conducted considering different

datasets and various image descriptors, based on shape, color,

and texture features. Experimental results demonstrate the

capacity of the proposed measures in correctly estimating the

effectiveness of different queries. We show that the linear cor-

relation between the proposed and widely used effectiveness

measures achieves scores up to 0.86 for some descriptors.

The remainder of this paper is organized as follows. Sec-

tion II discusses the image retrieval model. Section III presents

the unsupervised effectiveness estimation measures, while Sec-

tion IV discusses their use in rank aggregation tasks. Section V

presents the conducted experimental evaluation, and, finally,

Section VI discusses the conclusions and draws future work.

II. IMAGE RETRIEVAL MODEL

This section briefly defines the image retrieval model

adopted along the paper. Let C={img1, img2, . . . , imgn} be

an image collection, where n = |C| defines the size of the

collection. Let D be an image descriptor. An image descriptor

can be defined [17] as a tuple (ǫ, ρ):

• ǫ: Î → R
n is a function, which extracts a feature vector

v
Î

from an image Î;

• ρ: Rn×R
n → R is a distance function that computes the

distance between two images according to the distance

between their corresponding feature vectors.

The distance between two images imgi and imgj is given

by the value of ρ(ǫ(imgi), ǫ(imgj)). The notation ρ(i, j)
is used for readability purposes. A distance matrix A can

be computed based on distance among all images, such that

Aij = ρ(i, j).

The ranking model adopted is defined based on ranked

lists [7]. A ranked list τq can be also computed for query image

imgq , based on distance ρ. The ranked list τq=(img1, img2,

. . . , imgn) can be defined as a permutation of the collection

C. A permutation τq is a bijection from the set C onto the set

[N ] = {1, 2, . . . , n}. The position (or rank) of image imgi
in the ranked list τq , is denoted by τq(i). If imgi is ranked

before imgj in the ranked list of imgq , that is, τq(i) < τq(j),
then ρ(q, i) ≤ ρ(q, j).

Taking every image imgi ∈ C as a query image imgq , a set

of ranked lists R can be computed as follows:

R = {τ1, τ2, . . . , τn}. (1)

We can also define a neighborhood set that contains the

most similar images to imgq as N (q, k). For the k-nearest

neighbor query, we have |N (q, k)| = k, which is formally

defined as follows:

N (q, k) = {S ⊆ C, |S| = k ∧ ∀imgi ∈ S, imgj ∈ C − S :

τq(i) < τq(j)}.
(2)

Based on the discussed image model, next section describes

the use of unsupervised measures for effectiveness estimation.

III. UNSUPERVISED EFFECTIVENESS ESTIMATION

MEASURES

The ranked lists are a rich source of information upon

the whole image collection, since they encode comparison

relationships among all images. Our objective is to exploit the

information available in different ranked lists for accurately

estimating the effectiveness of retrieved results.

The cluster hypothesis [18] states that “closely associated

items tend to be relevant to the same requests.” Therefore, it is

expected that images at top positions of a high-effective ranked

list refer to each other at the top positions of their own ranked

lists [3]. In next sub-sections, we discuss two approaches,

based on the analysis of reciprocal references among top

positions of ranked lists. The two discussed measures were

recently proposed as part of unsupervised distance learning

procedures [3], [16]. In this work, we aim at analyzing and

evaluating how effective the density of reciprocal references

computed by these measures is for predicting the effectiveness

of queries.

A. Reciprocal Neighborhood Density

The Reciprocal kNN distance [16] between two images

imgq , imgi ∈ C is computed based on the number of re-

ciprocal neighbors at top positions of their ranked lists τq, τi
∈ R. Two images are considered reciprocal neighbors if

they are in the neighborhood set of each other (formally, if

imgi ∈ N (q, k) ∧ imgq ∈ N (i, k)).
The score based on the number of reciprocal neighbors and

its respectively weights are given by the function nr(q, i),
defined as follows:

nr(q, i) =

∑

j∈N (q,k)

∑

l∈N (i,k) fr(j, l)× wr(q, j)× wr(i, l)

k4
,

(3)

while the function fr(j, l) → {0, 1} determines if the images

imgj , imgl are reciprocal neighbors. A weight is computed

according to the function wr(q, j) = k+1−τq(j). The higher

the weight, the more frequent is the occurrence of reciprocal

neighbors at top positions of ranked lists.

The score based on the number of reciprocal neighbors

nr(q, i) consider two different ranked lists τq and τi. However,

for effectiveness estimation, we are interested in computing the

number of reciprocal neighbors for a single ranked list, e.g.,

the ranked list τ(q), computed for the query imgq , for which

we want to estimate the effectiveness. Therefore, we define a

Reciprocal Neighborhood Density score considering the same

image for the two inputs:



Rs(i) = nr(i, i). (4)

The rationale for using this function relies on the fact that,

if the top-k images are similar to each other, they are also

expected to be reciprocal neighbors.

B. Authority Measure

The references among images defined by ranked lists can

be formally represented by a graph. Let imgq be the query

whose effectiveness we want to estimate and let τq be the

respectively ranked list. Each image in top-k positions of the

ranked list τq defines a node. For each image imgi in top-k

of τq , the ranked list τi is also analyzed. If there are images

in common in ranked lists τq and τi, an edge is created. The

authority score is computed based on the number of created

edges. Figure 1 illustrates the computation of the Authority

Score [3].
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Fig. 1. Example of Authority Score [3] computation for the ranked list
τq obtained for image imgq . The images imgi, imgj represent k-nearest
neighborhs. The Authority Score is defined by the number of references among
the k-nearest neighborhs, represented by the edges, in gray.

In other words, the Authority Score [3] measures the density

of the graph that represents the references among images at

top-k positions. The authority score As(q, k) of the ranked list

τq is formally defined as follows:

As(q, k) =

∑

i∈N (q,k)

∑

j∈N (i,k) fin(j, q)

k2
, (5)

where fin returns 1 if imgj ∈ N (q, k) and 0 otherwise.

The score As is defined in the interval [0, 1]. For a full

connected neighborhood graph (all k images references each

other at top-k positions) this score returns a perfect score

As(q, k) = 1.

IV. RANK AGGREGATION METHODS

Different image retrieval systems and descriptors produce

different retrieval results. The information provided by the

different ranked lists is commonly complementary, and there-

fore, have been used for improving the effectiveness of search

systems. This is the objective of rank aggregation methods,

which aim at combining different ranked lists in order to obtain

a more effective one.

Rank aggregation approaches are often unsupervised, pre-

senting the advantage of requiring no training data. On the

other hand, without any labeled information, such methods

are not capable of distinguishing between high-effective and

low-effective ranked lists [15]. In this scenario, the use of

unsupervised effectiveness estimation measures can be very

useful, as it allows for assigning a relevance score to ranked

lists computed by different image descriptors and improving

the effectiveness of combined results.

The use of unsupervised effectiveness estimation measures

for rank aggregation tasks is illustrated in Figure 2. For

each image descriptor, the set of ranked lists is computed,

based on feature extraction and distance computation steps.

The retrieval results in green and red indicates relevant and

non-relevant images. The effectiveness estimation measures

are also computed independently of each descriptor. Finally,

the rank aggregation method combines the information of

both ranked lists and effectiveness estimation measures for

producing a final rank.

We propose extensions for two rank aggregation meth-

ods: the traditional Borda [19] and the recently proposed

Reciprocal Rank Fusion [20] methods. Both Borda [19] and

Reciprocal [20] methods consider the rank information, i.e.,

the positions of images in ranked lists produced by different

descriptors. Let D={D1, D2, . . . , Dm} be a set of CBIR

descriptors. Let imgq be a query image. Each descriptor

Dj ∈ D compute a different ranked list τqDj
for the query

image imgq . A given image imgi is ranked at different

positions (defined by τqDj
(i)) according to each descriptor

Dj ∈ D. The rank aggregation methods use these different

rank positions aiming at computing a new distance/similarity

score between images imgq and imgi.

Different from the original methods and from other initia-

tives [15], we also exploit the reciprocal rank positions, using

the position of the query image imgq in the ranked lists of

other images. We formally define the proposed methods in

the following.

A. Borda Rank Aggregation Method

The Borda [19] method combines the rank information of

each image in different ranked lists computed by different

descriptors. Specifically, the distance is scored by the number

of images not ranked higher than it in the different ranked

lists [21]. The new distance FB(q, i) between images imgq
and imgi is computed as follows:

FB(q, i) =

m
∑

j=0

τqDj
(i). (6)

The Borda method does not consider the reciprocal position

of the query imgq in the ranked list of image imgi (given

by τqDj
(i)). Rank information provided by high-effective and
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Fig. 2. General workflow of the use of unsupervised estimation measures for rank aggregation tasks.

low-effective ranked lists are also considered in the same way.

We propose to use the rank and the reciprocal rank information

weighted by the discussed effectiveness estimation measures.

The proposed distance is computed as follows:

FBW
(q, i) =

m
∑

j=0

(τqDj
(i)×eDj

(q))+(τiDj
(q)×eDj

(i)), (7)

where the function eDj
(.) is an effectiveness estimation mea-

sure computed by the Reciprocal Neighborhood Density or the

Authority Score.

Notice that the estimation measure is used to determine a

weight for position computed for both images imgq and imgi.

B. Reciprocal Rank Fusion

The Reciprocal Rank Fusion uses the rank information for

computing a similarity score between images imgq and imgi
according to a naive scoring formula:

FR(q, i) =

m
∑

j=0

1

k + τqDj
(i)

, (8)

where k is a constant.

Analogously to the Borda method, the reciprocal rank

position (position of imgq in the ranked list of imgi) is not

exploited. We also propose to use this information combined

with weights defined by the effectiveness estimation measures.

The proposed distance is computed as follows:

FRW
(q, i) =

m
∑

j=0

1

k + (τqDj
(i)× eDj

(q)) + (τiDj
(q)× eDj

(i))
,

(9)

V. EXPERIMENTAL EVALUATION

This section presents conducted experiments for evaluating

the accuracy of proposed approaches. We analyzed the mea-

sures, considering different descriptors and datasets. We also

evaluate the effectiveness of the proposed rank aggregation

methods.

A. Datasets and Descriptors

The datasets and image descriptors used in the experimental

evaluation are briefly described in the following. Three differ-

ent datasets and eleven image descriptors, involving shape,

color, and texture features are considered.

1) Shape: The MPEG-7 [33] dataset, a well-known shape

dataset used for shape descriptors and post-processing meth-

ods evaluation, was used in our experiments. The dataset

is composed of 1400 shapes divided into 70 classes of 20

images each. Five shape descriptors were considered: Segment

Saliences (SS) [22], Beam Angle Statistics (BAS) [23], Inner

Distance Shape Context (IDSC) [25], Contour Features De-

scriptor (CFD) [24], and Aspect Shape Context (ASC) [26].

2) Color: The experiments considering color features were

conducted on a dataset used in [34]. The dataset is composed

of images from 7 soccer teams, containing 40 images per

class. Three color descriptors were considered: Border/Interior

Pixel Classification (BIC) [29], Auto Color Correlograms

(ACC) [28], and Global Color Histogram (GCH) [27].

3) Texture: The Brodatz [35] dataset, a popular dataset

for texture descriptors evaluation was used. The Brodatz

dataset is composed of 111 different textures, divided into 16

blocks pixels of non-overlapping sub images, such that 1776

images are considered. Three well-known texture descriptors



TABLE I
PEARSON CORRELATION OF THE EFFECTIVENESS ESTIMATED MEASURES WITH THE AVERAGE PRECISION (AP) MEASURE

FOR DIFFERENT DESCRIPTORS AND DATASETS.

Image Type Dataset MAP Reciprocal Authority Baselines [15]:

Descriptor Score Density Score NDM NVDM

SS [22] Shape MPEG-7 37.67% 0.86 0.82 0.71 0.81
BAS [23] Shape MPEG-7 71.52% 0.86 0.82 0.79 0.76
CFD [24] Shape MPEG-7 80.71% 0.86 0.84 0.79 0.67
IDSC [25] Shape MPEG-7 81.70% 0.83 0.80 0.76 0.60
ASC [26] Shape MPEG-7 85.28% 0.83 0.77 0.75 0.58

GCH [27] Color Soccer 32.24% 0.18 0.22 0.13 0.26

ACC [28] Color Soccer 37.23% 0.46 0.52 0.28 0.49
BIC [29] Color Soccer 39.26% 0.41 0.47 0.23 0.44

LBP [30] Texture Brodatz 48.40% 0.57 0.63 0.45 0.54
CCOM [31] Texture Brodatz 57.57% 0.72 0.72 0.08 0.71

LAS [32] Texture Brodatz 75.15% 0.78 0.77 0.67 0.71

Average 0.67 0.67 0.51 0.60

were considered in the experiments: Local Binary Patterns

(LBP) [30], Color Co-Occurrence Matrix (CCOM) [31], and

Local Activity Spectrum (LAS) [32].

B. Effectiveness Estimation Accuracy

This section aims at assessing the accuracy of discussed un-

supervised measures for estimating the effectiveness of ranked

lists. We evaluated the correlation between the proposed mea-

sures and ground-truth measures, as the average precision. We

also compared the measures presented in this paper with other

two recently proposed unsupervised measures [15], considered

as baselines.

1) Experimental Protocol: The Average Precision (AP),

which is an effectiveness measure commonly used in infor-

mation retrieval, is considered as ground-truth measure. Let q

be a query item and let Nr be the number of relevant items

in a collection for a given query q. Let 〈ri|i = 1, 2, . . . , d〉 be

a ranked relevance vector to depth d, where ri indicates the

relevance of the ith ranked document scored as either 0 (not

relevant) or 1 (relevant), the AP is defined as follows:

AP =
1

Nr

d
∑

i=1

(

ri

i

i
∑

j=1

rj

)

. (10)

A statistical measure is used to evaluate the magnitude of a

relationship among the effectiveness estimation measures and

the average precision. This relationship was evaluated using

the Pearson’s Correlation Coefficient, defined by:

r =

∑n

i=1(Xi −X)(Yi − Y )
√

∑n

i=1(Xi −X)2
√

∑n

i=1(Yi − Y )2
. (11)

Pearson’s correlation coefficient r for continuous data

ranges from -1 to +1, where r = 1 indicates a perfect positive

linear relationship and r = −1 a perfect decreasing linear

relationship. The closer the coefficient is to 1, the stronger the

correlation between the variables. The employed protocol is

similar to the one used in related work [15], [36].

2) Correlation Results: Table I presents the correlation

results for Reciprocal Neighborhood Density and Authority

Score considering different descriptors and datasets. We also

report the Mean Average Precision (MAP) obtained for each

descriptor and the correlation coefficients obtained for consid-

ered baselines [15]: Neighborhood Distance Measure (NDM)

and Neighborhood Distance Variation Measure (NVDM) mea-

sures.

We can observe that the Reciprocal Neighborhood Density

measure presents very high correlation coefficients for various

descriptors, specially on the MPEG-7 [33] dataset (which

presents the higher MAP scores). The Pearson’s correlation

coefficient achieved 0.86 for some descriptors. The Reciprocal

Neighborhood Density assigns higher weights for top positions

of ranked lists, justifying its better prediction accuracy for

more effective descriptors (with higher MAP scores).

The Authority Score also presents high correlation scores

for various descriptors and datasets. However, different from

the Reciprocal Neighborhood Density, the descriptors which

presented the best results are the descriptors with lower MAP

scores. Notice that the Authority Score assigns the same

weight for all neighbors, benefiting from the prediction for

low-effective descriptors.

Both measures present an average correlation coefficient of

0.67 considering all descriptors and datasets. Considering that

the Pearson’s correlation coefficient is defined in the interval

[−1,+1], we can observe that an accurate prediction of the

retrieval effectiveness performance is achieved. The evaluated

measures also overcome the baselines for all descriptors,

except for the GCH descriptor [27].

C. Rank Aggregation Results

A set of experiments was conducted aiming at evaluating

the effectiveness of the proposed rank aggregation methods.

The two best descriptors of each dataset (shape, color, and

texture) were considered in the experiments.

The Borda and the Reciprocal Rank Fusion were evaluated

considering both the Reciprocal Density and the Authority



TABLE II
MAP SCORES OBTAINED FOR THE PROPOSED RANK AGGREGATION METHODS.

Image Type Dataset Rank Aggregation Effect. Estimate MAP

Descriptor Method Measure Score

CFD [24]
Shape MPEG-7

- - 80.71%
ASC [26] - - 85.28%

CFD [24]+ASC [26] Shape MPEG-7

Borda - 91.12%
Borda Reciprocal Density 94.24%
Borda Authority Score 93.93%

Reciprocal - 93.80%
Reciprocal Reciprocal Density 95.89%

Reciprocal Authority Score 95.85%

ACC [28]
Color Soccer

- - 37.23%
BIC [29] - - 39.26%

BIC [29]+ACC [28] Color Soccer

Borda - 38.81%
Borda Reciprocal Density 42.49%
Borda Authority Score 42.23%

Reciprocal - 38.88%
Reciprocal Reciprocal Density 42.51%

Reciprocal Authority Score 42.26%

CCOM [31]
Texture Brodatz

- - 57.57%
LAS [32] - - 75.15%

LAS [32]+CCOM [31] Texture Brodatz

Borda - 73.92%
Borda Reciprocal Density 77.01%
Borda Authority Score 77.19%

Reciprocal - 75.49%
Reciprocal Reciprocal Density 77.94%
Reciprocal Authority Score 78.04%

Score measures. The results of the proposed rank aggregation

methods are showed in Table II, considering MAP scores. The

results of the image descriptors in isolation and the original

rank aggregation methods (without the use of effectiveness

estimation measures) are also presented.

For all datasets, the proposed rank aggregation methods

presented the best effectiveness results. As we can observe, the

effectiveness results are significantly superior to the original

methods and the best image descriptors in isolation.

D. Graphical Correlation Analysis

In this section, we present a graphical analysis of the

correlation between the effectiveness estimation measures and

the Average Precision (AP). Each point in the graph represents

a collection image, where the position in the x axis is defined

by the effectiveness estimation measure and the position in the

y axis is defined by the average precision of the query.

Figures 3 and 4 illustrate the correlation between effec-

tiveness estimation measures and average precision. Figure 3

presents results for the Reciprocal Density, while Figure 4

shows results for the Authority Score. Both examples con-

sidered the MPEG-7 [33] dataset and the CFD [24] shape

descriptor. Figures 5 and 6 presents analogous results consid-

ering the LAS [32] texture descriptor and the Brodatz [35]

dataset, while Figures 7 and 8 considered the ACC [28] color

descriptor and the Soccer [34] dataset.

Despite the scale variations between the Reciprocal Density

and the Authority Score, we can observe that all graphs ap-

proximate a linear relationship with a positive slope, consistent

with the high correlation coefficients obtained.

VI. CONCLUSIONS

In this work, two unsupervised measures are used for esti-

mating the effectiveness of retrieval results on image retrieval

tasks. Both measures are based on the density of reciprocal

references on top positions of ranked lists. The relationships

among top retrieval results provides a rich source of informa-

tion and can be exploited for estimating the effectiveness of

image retrieval tasks.

Experiments involving shape, color, and texture descrip-

tors demonstrated that the presented approach can provide

accurate prediction of the retrieval effectiveness performance.

Novel rank aggregation methods were proposed based on the

discussed measures, as an application of unsupervised effec-

tiveness estimation approaches. Very effective results were

observed for the proposed rank aggregation methods in various

experiments.

Future work focuses on the evaluation of proposed measures

for effectiveness estimation in other multimedia retrieval tasks,

such as relevance feedback or learning-to-rank approaches.
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Fig. 3. Correlation Results between Authority Score and Average Precision,
considering the CFD [24] shape descriptor.
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Fig. 4. Correlation Results between Reciprocal Density and Average
Precision, considering the CFD [24] shape descriptor.
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Fig. 5. Correlation Results between Authority Score and Average Precision,
considering the LAS [32] texture descriptor.
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Fig. 6. Correlation Results between Reciprocal Density and Average
Precision, considering the LAS [32] texture descriptor.
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Fig. 7. Correlation Results between Authority Score and Average Precision,
considering the ACC [28] color descriptor.
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