
A Particle Filter-based Lane Marker Tracking
Approach using a Cubic Spline Model

Rodrigo Berriel∗, Edilson de Aguiar, Vanderlei Vieira de Souza Filho, Thiago Oliveira-Santos†

Federal University of Espı́rito Santo, Brazil
∗rodrigo.berriel@gmail.com, †todsantos@inf.ufes.br

Fig. 1. Overview of our lane marker tracking system: from a sequence of frames (a), the Inverse Perspective Mapping is applied (b) and the lane marker
is detected and tracked with the use of a particle filter (c). The output (d) are tracked lane markers modeled by cubic splines for each side. Yellow splines
represent all the particles and the red one represents the output, a virtual best particle. The system reports an error of 0.0143 meters with 98.13% of precision.

Abstract—In this paper we present a particle filter-based lane
marker tracking approach using a cubic spline model. The
system can detect the two main lane markers (i.e. lane strips)
of marked roads from a monocular camera mounted on the
top of a vehicle. Traditional lane marker detection and tracking
systems have limitations to properly detect curved roads and
to use temporal information to better estimate and track lane
markers. The proposed system works on a temporal sequence
of images. For each image, one at time, it applies a sequence of
steps comprising an inverse perspective mapping to correct for
perspective distortions, and a particle filter to smoothly track
the lane markers along time. The output of the system is a lane
marker generated by a cubic spline interpolation scheme to fit
a wider range of lanes. Our system can run in real applications
and it was validated with various road and traffic conditions. As
a result, it achieves a high precision (98.13%) and a small error
(0.0143 meters).

Keywords-lane marker tracking, particle filter, cubic splines

I. INTRODUCTION

Lane marking detection and tracking is an important task
that provides useful information for a range of other driving-
related tasks, such as: lane departure warning, lane keeping,
lane centering and others. These lane-related tasks can provide
information for other type of tasks (e.g. driver drowsiness
detection). All these modules are directly correlated with the
capability to minimize accidents and improve safety while
driving, which are the main goals of the so-called self-driving
cars. The importance of such algorithms is reinforced by the

fact that 93% of all crashes are caused totally or partially by
a human factor [1].

Lane marking detection and tracking is a challenging task.
Lane markers are constantly occluded by cars, motocycles,
bicycles and pedestrians. Also, many of these lane markers
are fading after some years of traffic and most of them are
not repainted for many years.

In the self-driving car context, all these issues must be
correctly addressed and many attempts have been made in
order to overcome them. Techniques vary according to the
type of sensor: monocular vision camera [2] [3], stereo vision
camera [4] [5] and LiDAR [6]. Camera-based approaches
have the advantage of being cheaper than laser-based ones
and to natively capture the far-field of vision, but they are
very sensitive to light variation. Laser-based approaches have
the advantage of dealing better with shadows, direct light,
sudden illumination variation (tunnels), dark environments,
but they have a range limit and the data is usually sparse.
Extracting marker lane information using just only one of
these inputs, laser or visual data, can be hard. Therefore, most
recently, sensor fusion methods [7] have also been explored
and its results are promising. The drawback of this technique
is usually the performance related to the enormous amount
of data to process, and the high cost of integration of these
sensors.

Roughly, we can classify the approaches used to model the
lane markers in three categories: linear [8], parabolic [9] [10]

and spline-based [11]. Each model has its advantages, but a
pure linear model has serious limitations and its benefits can
be achieved by the others. Some of these approaches use the
Inverse Perspective Mapping (IPM) [12], also called bird’s-
eye view, to reduce the perspective distortion and to enable
a constant lane width along the image. The lane constancy
helps not only during the detection and tracking phase, but
also during the validation [13] of the results.

The methods above still have limitations in fitting their
models to curve roads, especially with various traffic condi-
tions. Most of them only report qualitative results. Given these
limitations and the need for improved systems nowadays, there
is still need for further investigation of robust and real time
methods for lane marker detection and tracking.

In this context, this paper presents a method to estimate
the lane markers from monocular vision (i.e. a single camera
mounted on top of a vehicle) and to track them along a se-
quence of images. The proposed system receives a sequence of
images as input and uses a combination of Inverse Perspective
Mapping [12], particle filter [14] and cubic spline model [15]
to estimate the two lane markers of each input image. This
system has the advantage of modeling a wider range of lanes
because of the cubic spline model used to represent them.
Moreover, the system is able to improve the tracking using
temporal information. To validate the system, 14045 frames
from 8 different scenes containing all kinds of situations (light
and heavy traffic, lane changes, crosswalks and writings on the
road, etc.) were used and the system reported a mean error of
0.0143 meters with 98.13% of precision.

II. LANE DETECTION SYSTEM

The system works on a sequence of images, one at time,
coming from a monocular forward-looking camera mounted
on the top of a vehicle. For each image, it outputs information
describing the lane marker (i.e. two splines describing the
left and right lane markers). The general steps of the lane
marker tracking system are described in Fig. 2. The system
basically processes one image at a time and each lane marker
individually. Each image is first pre-processed to remove
unnecessary parts and to correct perspective distortions. Subse-
quently, evidences are collected for each lane marker. Finally,
a particle filter is used to average the contributions of the
currently found evidences and the lane markers detected in
the previous frames, i.e. to allow for a smooth track along
time. The filter looks for the cubic spline that better represents
each lane marker, one for left and one for right. The result is
represented by the points of each spline, one point per image
row.

A. Pre-processing

The input of the system is a sequence of frames captured by
a monocular forward-looking camera mounted on the top of a
vehicle. Each frame is firstly converted from color to grayscale
in order to reduce the number of channels and to improve
performance. Subsequently, a region of interest is set in order
to remove irrelevant parts of the image (e.g. sky, horizon, etc).

Fig. 2. The Lane Marker Tracking System: it comprises of three core
modules: pre-processing, generation of the evidence maps and particle filter.
The output of the system is up to two cubic splines that best represents the
left and right lane markers.

Finally, an Inverse Perspective Mapping (IPM) [16] is applied
to correct the problems of the original perspective view (the
width of the lane markers varies according to the distance
from the camera). The IPM is a geometrical transformation
that remaps from a camera perspective view to a view from the
top (also called birds-eye view), where the width of the lane
markers is constant. To use this technique, a 3x3 homography
matrix (H in Eq. 1) is required to transform the points from
the original perspective to the birds-eye view.

(x′, y′, w′) = H ·
[
x y 1

]
(1)

The ground plane is assumed to be constant along the input
frames. Therefore to estimate the matrix H, four fixed points
were manually selected within the lane markers (two in the
left and two in right) of a chosen image and mapped to a
proportional rectangle representing the IPM image. In this
birds-eye view, lane markers tend to have a constant width,
except for the cases where there are road inclination and casual
bumps from the car since the fixed ground plane assumption
fails. The cropped grayscaled IPM image is the result of the
pre-processing.

B. Evidence Map

With the bird’s-eye view image received from the previous
module, the system can search for lane markers candidates.
The goal of this module is to collect evidences of the presence
of lane markers in the image.

Firstly, a temporal blur is applied to help the following
modules to deal with dashed lane markers. The collection
of evidences works with thresholds-based techniques. In this
paper, two techniques are tested: threshold applied on a
Difference of Gaussians [17] and adaptive threshold. In both
cases, we divide (from top to bottom) the input image of
this module into n regions (Fig. 3) and apply the threshold-
based techniques on each of them. The metaparameters (i.e.
the standard deviation for the difference of gaussians approach
and the constant subtracted from the mean in the case of
adaptive threshold, and the thresholds themselves) are set to
better capture the candidates in each region. This is done to
reduce the influence of the increasing blur caused by the IPM,
where near field is less blurred than far field (Fig. 3). The
output of this module comprises two binary images (one image
for the left and one for the right lane markers), where white
dots (i.e. pixels = 255) represent lane marker candidates. The
region of each lane marker was empirically defined to fit most
of the lane models (see Fig. 3).

Fig. 3. Evidence map: the IPM transformation adds a blur to the image
that increases in the vertical axis as it can be seen in the zoomed figures (a)
and (b) of the IPM image. The output of this module is two binary images
that represent the left lane and right lane evidences for the lane markers. The
yellow (c) and the blue (d) regions represent the regions considered for the
left and right lane marker candidates.

C. Particle Filter

Particle filters [14], also known as Sequential Monte Carlo
(SMC) methods, are stochastic sampling approaches used to
estimate the posterior density of the state-space. The particles
are samples from a given distribution and each one of them
has a weight that represents its probability of being sampled
from a density function.

Basically, the filter consists of four steps: initialization,
prediction, weights update and resampling. The initialization
of the filter generates random initial particles from a given
distribution (all with the same weight). Subsequently, a pre-
diction step is applied to estimate the next position of the
particles. Each particle is evaluated considering their new
predicted position, and their weights are updated according to
an error function. The error functions usually gives a measure
of distance from real observations. The weight of a particle
represents the probability of this particle to be sampled for
the next iteration of the filter. Therefore, particles with higher

weights tend to live, whereas particles with lower weights tend
to die after the resampling. With the resampling, the output of
the filter tends to approximate the real observations over time.

In this paper, two independent particle filters were used,
one for each lane marker. The particles were used to model
cubic splines with different configurations (i.e. number of
control points). Therefore, each particle was defined as a N
dimensional point, where N represents the number of control
points c of the spline, where c = (x, y) and x and y are the
coordinates of the control point in the image. The particle is
N dimensional because only the x value of the point is stored
in the particle model, the y value is kept fixed. A particle can
be defined as in Eq. 2:

p = { x1, x2, . . . , xN }, 0 ≤ xi ≤ cols (2)

The y values are equally positioned from the top to bottom.
To generate the splines from a given particle, the yi value of
each control point ci is inferred from following Eq. 3:

yi = i

(
rows

N − 1

)
, 0 ≤ i ≤ N − 1 (3)

The five steps of our particle filter are described in details
below.

1) Initialization: The initialization of the particle filter
aims to estimate initial lane marker candidates. The only
condition to initialize the filter is the presence of at least 30
evidences, i.e. pixels chosen as lane markers candidates. This
was empirically defined based on the number of points needed
in the evidence map so that a lane marker could be estimated.
The number of evidences can be calculated from the previously
generated evidence map. If the number of evidences is above
the defined threshold, the particle filter is initialized with a set
of random particles (Fig. 4.b). As lane markers are expected
to be within a region (assuming car is most likely to be facing
forward to the road), each set of random particles (left and
right lane) is initialized within a normal distribution having the
mean as the center of that region and the standard deviation
large enough to cover the whole region. We used σ = 80/3
because 80 pixels are 80% of the lane width in the IPM image.

2) Prediction: On this step, the filter tries to predict where
the generated particles will be in the current frame considering
their position in the previous frame. In the proposed prediction
model (Fig. 4.c), a particle can randomly move it components
(i.e. x coordinate of each of its control points) independently.
The prediction is based on a normal distribution with the
current particle value as mean and a small standard deviation
(σ = 10/3 was empirically chosen to consider two times the
width of the lane marker).

3) Weights Update: At this stage (Fig. 4.d), a set of
particles (i.e. lane markers possibilities for a specific lane
marker) is already estimated by the particle filter and they all
have the same weight. To calculate the weight of a particle, an
error function needs to be defined. The error function should
be able to measure how well a spline defined by a particle
fits to the evidences. The function proposed in this paper tries
to cope with the presence of outliers in the evidence map by

Fig. 4. Particle filter for lane marker detection and tracking. In the initialization of the particle filter, a set of random particles (b) is generated for the input
evidence map (a). The particles are subsequently moved considering a normal distribution in the prediction step (c), and have their weights calculated (d). In
the resampling (e), particles with higher weight have higher probability to be sampled to the next set of particles. The best particle (f) is represented by a
virtual particle that is generated considering the weighted average contribution of the current set of particles of the filter.

only considering the evidences that best fits to the considered
particle (i.e. lane marker spline). In addition, it tries to ensure
that evidences from the bottom and from the top part of the
evidence map are considered. Therefore, the evidence map is
divided into N regions that are evaluated independently.

Basically, in order to calculate the error (Fig. 5), the first
step is to find the best evidence for each row in the image. The
best evidence is defined as the closest evidence to the spline
generated from the particle being evaluated, when considering
a respective row of the evidence map. The final error E(p)
for a particle is the mean of the best evidences for a map,
when considering only the 50% best evidences for each of the
N regions. Outliers are likely to have larger distances and,
therefore, will be disregarded in the error calculation.

Fig. 5. Illustration of the error calculation function for two regions: in the
black image, blue lines represent the smallest distance between the spline
and the evidences of a given row, and the red lines represent all other higher
distances. For each region, R1 and R2, two sets of the 50% smallest distances,
DR1 and DR2 respectively, are joint in a final set DFRAME . The errorE(p)

is the average of all distances in latter set, DFRAME .

Because the weights assigned to the particles need to repre-

sent a probability, they are defined to be inversely proportional
to the error of their corresponding spline, as showed in Eq. 4.

W ′i =
1

1 + eE(p)
(4)

They are also normalized as showed in Eq. 5.

Wi =
W ′i∑m
j=1W

′
j

(5)

After this normalization,
∑
W = 1 is ensured. With this

set of weighted particles, the best particle of the filter can be
estimated as a virtual particle calculated by Eq. 6, where m
is the number of particles.

pbest =

{ m∑
i=1

Wi x
i
1,

m∑
i=1

Wi x
i
2, . . . ,

m∑
i=1

Wi x
i
N ,

}
(6)

4) Resample: The convergence capability of the filter (i.e.
its ability to approximate to the real observations) highly
depends on the resampling method (Fig. 4.e) that will sample
the particles that will live in the next filter iteration. The re-
sampling is performed considering the weights of the particles
(calculated in the previous step) as a sampling probability for
each particle. This paper uses the Low Variance Sampling
described by Thrun in [18].

5) Restart: In order to deal with situations in which there
are temporarily no lane markers on the road, the filter was
given two states (Fig. 6): enabled or disabled. The filter is
enabled when there are enough evidences in the evidence map
and the error of the best particle is low, i.e. there are likely lane
markers on the road. The filter is disabled when the number
of evidences is low or the error of the best particle is high, i.e.
there are likely no markers in the road or there are only noisy
detection of evidences. An error E(p) > 5 was empirically
defined as high, based our error calculation. When the filter

is being disabled, the current set of particles is stored, and
from that point on it outputs no lanes. If the states goes from
disabled to enabled, the filter restarts [19]. Restarting the filter
means proceeding to the initialization but using the last stored
particles instead of a set of random particles. In case the filter
is initialized and the error stays high for more than 5 frames,
the filter is reinitialized with a set of random particles as in
the first frame.

Fig. 6. Finite-state machine. The particle filter can be disabled if the error is
high or if there is a not enough number of evidences, but to restart the filter
the number of evidences must be enough and the error of the particles should
be low. Another case where restarting happens is when the error is high for
more than 5 sequential frame.

D. Custom Initialization of the Particle Filter

When the filter is initialized for a frame, a set of particles,
randomly generated or representing the last visible lane mark-
ers, are considered and they might not represent the current
lane marker accurately. In order to speed up the convergence
of the filter in a specific frame, the filter iterates up to 10 times
(Fig. 7) on the same frame. Although the filter has to run 10
times, it can still be performed quickly.

Fig. 7. Illustration of the custom initialization of the particle filter. The
custom initialization of the particle filter expects as input an evidence map
and a set of particles. This set of particles can be a random (in case of the
first initialization) or a specific set of particles (e.g. from the last state of the
filter). In order to optimize the first set of particles, the particle filter runs 10
times in the same evidence map given as input.

III. EXPERIMENTS

In order to validate our system, we ran a set of experiments
using datasets recorded under various road conditions and
traffic. The experiments were divided into tuning and testing.
Tuning was used to adjust the system metaparameters, and
test was used to evaluate the performance of the system.

Qualitative and quantitative results are reported. The results
are compared to a hough-based method described in [13] (its
implementation is publicly available1).

A. Setup and Dataset

We used 8 scenes with a total of 14045 frames (Table I)
with 640x480 pixel resolution from the publicly available
dataset [20]. The scenes consist of highway and urban roads
with various traffic conditions, lane variations, lane changes
and all types of lane markers.

TABLE I
DATASET OVERVIEW

Scenes Frames Scenes Frames Scenes Frames
S1C1 1376 S1C2 1300 S2C1 1424
S2C1 1811 S2C4 2373 S2C5 2492
S3C1 1001 S3C4 2268

The datasets were annotated by their authors in the original
perspective view and then mapped by us to the birds-eye view
for evaluation (Fig. 8). The dataset was divided in a validation
set (3 scenes) used to tune the metaparameters and a testing
set (5 scenes) to evaluate the proposed method.

In addition, we also annotated one of the datasets (S1C1
with 1376 frames) directly in the IPM image (purple dots in
the Fig. 8) in order to evaluate the efficiency of our system in
the far-field of vision. We will reference this annotated dataset
as S1C1-IPM. This dataset is publicly available2.

The tests were performed in a laptop with Core i5-3230M
(4x2.6GHz) and 4GB RAM 1600MHz. The algorithm was
implemented in C++ using the open source library OpenCV.

Fig. 8. Regions of interest: (a) red lines are the annotation boundaries and
green lines are the boundaries of our region of interest. (b) The full IPM
image is our region of interest. The blue dots represent the annotation that
came with the dataset, and the purple dots represent our in-house annotation.

B. Tuning

The system was tuned using two approaches to generate the
evidence map: adaptive threshold and difference of gaussians.
Regardless the used approach, a set of metaparameters need
to be tuned in order to get the best of the proposed system:
• Number of particles: has a direct influence in the perfor-

mance of the algorithm as well as balance the running
time with the accuracy;

1http://github.com/mdqyy/DriveAssist
2S1C1-IPM dataset: http://bit.ly/S1C1-IPM or send me an email

(a) Execution Time

(b) Error

Fig. 9. The number of particles is crucial to the performance of the system.
After 100 particles there is no substancial decrease in the error (b), but the
performance (a) starts to be slow.

• Number of control points in each particle: defines how
flexible the lane output can be;

• Number of regions: allows flexibility on the threshold
parameter for different parts of the IPM image;

• With or without temporal blur: includes another temporal
element to the detection phase and it is supposed to im-
prove the detection of evidences for dashed lane markers
(Fig. 12).

The tuning experiments were executed in each dataset from
the validation set and the best set of parameters were used
to evaluate our system and compare with the hough-based
method.

1) Number of Particles: We tested 4 possible numbers
of particles: 25, 50, 100 and 200. Although 200 particles
presented best results, it is not a good choice because its
running time was too high (Fig. 9) for our needs (almost 2x
more than 100 particles). Besides that, the difference between
the mean error of 200 and 100 particles was not enough to
compensate for its performance issue. The best number of
particles, in terms of performance and mean error (Fig. 9),
was 100 particles.

2) Number of Control Points: The control points give
flexibility to the spline curve that models our lane marker
output. We tested 3 possibilities (Fig. 10): 2, 3 and 4 control

Fig. 10. The number of control points defines the flexibility of our output.
We can see that with 4 control points the spline curve starts to adapt too much
to the data, losing its generalization. We decided to use 3 control points. The
number of control points has almost no impact in runtime performance.

Fig. 11. The number of regions has small effect on the error and performance
of the system, but it is important to have at least two regions to ensure that
data from both regions of the image are in the error calculation.

points. With 2 control points, our model is expected to behave
such as a line like in the hough-based methods. With 3 and
4 points, we increase our model flexibility to adapt to a
wider range of lane markers and achieve better results than a
straight line. The result of this tuning experiment showed that
3 control points give the spline model a single inflection point
and performs better than giving two inflection points. With 4
control points the model adapts too much to the evidences and
sometimes tend to follow the outliers.

3) Number of Regions: The Inverse Perspective Mapping
has a side effect: a blur that increases from near-field to the
far-field of vision (Fig. 3). To overcome this side effect, we
decided to divide the image into a small set of regions and
apply different thresholds to generate the evidences in each
region according to its need. We divided the image in 1, 2
and 3 regions (Fig. 11) and the results show that dividing it
in 2 regions provides good results for our purpose.

4) Temporal Blur: Dashed lane markers deserve special
attention in the generation of the evidence map. In order to
deal with them, a temporal blur of 5 frames was applied.
As the horizontal variation in a sequence of IPM images is
too small, the vertical changes are magnified and dashed lane
markers look longer than they really are (Fig. 12). As this
technique can be applied without losing much computational
performance, experiments were run with it.

IV. RESULTS

From the above-mentioned tuning, the best metaparameters
were chosen and experiments were run in the testing set, with

(a) Original IPM Image (b) Temporal Blur

Fig. 12. Effect of a Temporal Blur.

the following configuration:
• Number of particles: 100
• Number of control points: 3
• Number of regions: 2
• Temporal Blur: yes
In this paper, three methods are compared: hough-

based [21], and the proposed system with two variations in
the generation of the evidence map: adaptive threshold and
difference of gaussians.

A. Quantitatively

To evaluate the methods quantitatively, 5 measures were
chosen: error (meters), execution time (milliseconds), preci-
sion, recall and accuracy.

a) Error: The error was calculated using Eq. 7 and 8, as
proposed by [13]:

λ(i,f) = max(|Gt(i,f) −X(i,f)| −
W

2
, 0) (7)

Er(f) =

R∑
i=1

λ(i,f)

R
(8)

In Eq. 7, Gt(i,f) is the ground truth location of the lane marker,
and X(i,f) is its estimate on row i of frame f . W is the width
of the interval around the ground truth location, and λ is the
measured distance. R is the total number of rows and Er(f)
is defined in meters. The proposed system is more consistent
across the test set, reporting lower variance than hough-based
method, as we can see in Fig. 13.

Besides these measures, we used the S1C1-IPM dataset to
evaluate the methods. This dataset was annotated directly in
the IPM images (i.e. it includes the far-field of vision). The
results shown in Table II confirms, with a greater difference,
that our system outperforms the hough-based method.

TABLE II
EVALUATION USING S1C1-IPM DATASET

Method Error (meters)
Hough-based 0.054672
Our system + Adaptive Threshold 0.025297
Our system + Difference of Gaussians 0.015137

b) Precision, Recall and Accuracy: With the proposed
system, we could classify the output as a True Positive
(estimated a lane marker when there was one), True Nega-
tive (estimated no lane marker when there was none), False
Positive (estimated a lane marker when there was none) and
False Negative (estimated no lane marker when there was one).
Using these values, we calculated the next three measures:
precision, recall and accuracy (Fig. 14).

c) Execution Time: Performance is another good mea-
sure, because real applications that benefit from the output of
a lane marker detector usually need to run in real time or
very close to it. In our understanding, an execution time up
to 100 milliseconds per frame is enough for real applications,
especially if using better hardware or GPU. All methods re-
ported good computational performance. However, the Hough-
based method reported slightly better average results (Fig. 15)
because of its simplicity. Althought, it varies more around the
mean value.

B. Qualitatively

As observed in Fig. 16, the proposed system can adapt well
to curved roads. That was one of the motivations of choosing
a spline model. Although hough-based methods can perform
well on straight lanes, they are outperformed in case of curved
roads.

C. Limitations

The application of the IPM is essential to the proposed
method. However, we used a static homography matrix which
might cause an undesired variation in case of bumps or
variations in the slope of the road. This side effect might cause
occasional variations in the IPM.

In addition, further investigation should be performed in
scenes with heavy traffic, cross-walk or pedestrians. Lane
markers are likely to be partially occluded in case of intense
traffic. Cars in the IPM image assume an undesired shape that
can be confused with lane markers. Crosswalks and writings
on the road bring also additional challenge because they are
true road markers and must be avoided in the evidence map.
We plan to improve the robustness of our evidences map
generation in the future.

Fig. 13. The proposed system outperformed the hough-based method

Fig. 14. Precision, recall and accuracy (%).

Fig. 15. The hough-based method runs faster than our method variations,
but the proposed system also performs as fast as needed for real applications

V. CONCLUSION

This paper presents an approach to estimate lane markers
from a single image. The proposed method can be used in
several other systems, such as lane departure warning, lane
keeping assist and lane centering. Our experiments evaluated
the proposed method under real life environments. They
showed that our system is able to model curved roads, and
to achieve good precision, recall, and mean error of 98.13%,
92.97%, and 0.0143 meters respectively. In other words, our
method is able to provide reliable estimates with a high level
of confidence. In addition, the results showed that the proposed
approach outperforms hough-based methods.

ACKNOWLEDGMENT

We would like to thank Universidade Federal do
Espı́rito Santos - UFES (projects COCADOIC - 5384/2014,
20148447DPQ), Fundação de Amparo Pesquisa do Espı́rito
Santo - FAPES (grants 53631242/11 and 60902841/13,
and scholarship 66610354/2014), Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - CAPES (grant
11012/13-7) and Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico - CNPq (298187:12 BRL)

REFERENCES

[1] H. Lum and J. A. Reagan, “Interactive highway safety design model:
accident predictive module,” Public Roads, vol. 58, no. 3, 1995.

[2] D. Pomerleau, “Ralph: rapidly adapting lateral position handler,” in
Intelligent Vehicles ’95 Symposium., Proceedings of the, Sep 1995, pp.
506–511.

[3] J. C. McCall and M. M. Trivedi, “An integrated, robust approach to lane
marking detection and lane tracking,” in Intelligent Vehicles Symposium,
2004 IEEE. IEEE, 2004, pp. 533–537.

[4] M. Bertozzi and A. Broggi, “Gold: a parallel real-time stereo vision
system for generic obstacle and lane detection,” Image Processing, IEEE
Transactions on, vol. 7, no. 1, pp. 62–81, Jan 1998.

Fig. 16. Qualitative comparison: proposed system (red) and houhg-based
(yellow). From left to right, frames: 532 (S1C1), 144 (S2C2), and 565 (S3C1).

[5] S. Nedevschi, F. Oniga, R. Danescu, T. Graf, and R. Schmidt, “Increased
accuracy stereo approach for 3d lane detection,” in Intelligent Vehicles
Symposium, 2006 IEEE. IEEE, 2006, pp. 42–49.

[6] P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Isogai, “Multi-
channel lidar processing for lane detection and estimation,” in Intelligent
Transportation Systems, 2009. ITSC ’09. 12th International IEEE Con-
ference on, Oct 2009, pp. 1–6.

[7] Q. Li, L. Chen, M. Li, S.-L. Shaw, and A. Nuchter, “A sensor-
fusion drivable-region and lane-detection system for autonomous vehicle
navigation in challenging road scenarios,” Vehicular Technology, IEEE
Transactions on, vol. 63, no. 2, pp. 540–555, 2014.

[8] J. G. Kuk, J. H. An, H. Ki, and N. I. Cho, “Fast lane detection amp;
tracking based on hough transform with reduced memory requirement,”
in Intelligent Transportation Systems (ITSC), 2010 13th International
IEEE Conference on, Sept 2010, pp. 1344–1349.

[9] K. H. Lim, K. P. Seng, L.-M. Ang, and S. W. Chin, “Lane detection
and kalman-based linear-parabolic lane tracking,” in Intelligent Human-
Machine Systems and Cybernetics, 2009. IHMSC’09. International Con-
ference on, vol. 2. IEEE, 2009, pp. 351–354.

[10] C. R. Jung and C. R. Kelber, “A lane departure warning system based on
a linear-parabolic lane model,” in Intelligent Vehicles Symposium, 2004
IEEE. IEEE, 2004, pp. 891–895.

[11] Y. Wang, D. Shen, and E. K. Teoh, “Lane detection using spline model,”
Pattern Recognition Letters, vol. 21, no. 8, pp. 677–689, 2000.

[12] D. Seo and K. Jo, “Inverse perspective mapping based road curvature
estimation,” in System Integration (SII), 2014 IEEE/SICE International
Symposium on, Dec 2014, pp. 480–483.

[13] A. Borkar, M. Hayes, and M. T. Smith, “An efficient method to generate
ground truth for evaluating lane detection systems,” in Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference
on. IEEE, 2010, pp. 1090–1093.

[14] A. Doucet, N. De Freitas, and N. Gordon, An introduction to sequential
Monte Carlo methods. Springer, 2001.

[15] C. H. Reinsch, “Smoothing by spline functions,” Numerische mathe-
matik, vol. 10, no. 3, pp. 177–183, 1967.

[16] H. A. Mallot, H. H. Bülthoff, J. Little, and S. Bohrer, “Inverse perspec-
tive mapping simplifies optical flow computation and obstacle detection,”
Biological cybernetics, vol. 64, no. 3, pp. 177–185, 1991.

[17] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of
the Royal Society of London. Series B. Biological Sciences, vol. 207,
no. 1167, pp. 187–217, 1980.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[19] B. Turgut and R. Martin, “Restarting particle filters: An approach to
improve the performance of dynamic indoor localization,” in Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, Nov
2009, pp. 1–7.

[20] A. Borkar, M. Hayes, and M. Smith, “A novel lane detection system with
efficient ground truth generation,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 13, no. 1, pp. 365–374, March 2012.

[21] X. Li, E. Seignez, and P. Loonis, “Reliability-based driver drowsiness
detection using dempster-shafer theory,” in Control Automation Robotics
& Vision (ICARCV), 2012 12th International Conference on. IEEE,
2012, pp. 1059–1064.

