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Fig. 1.

Practical application in the context of video snippet visualization. (a) High-dimensional data is generated taking as input the Youtube’s query

“Peru” (120 instances) and, then, mapped to the visual space using a multidimensional projection technique. (b) Textual video snippets are embedded into
rectangular boxes positioned according to the projected points. Boxes containing snippets overlap considerably, hampering visualization. (c¢) Our technique
(MIOLA) is, then, applied in order to rearrange the boxes while still preserving neighborhood structures.

Abstract—Arranging geometric entities in a two-dimensional
layout is a common task for most information visualization appli-
cations, where existing algorithms typically rely on heuristics to
position shapes such as boxes or discs in a visual space. Geometric
entities are used as a visual resource to convey information
contained in data such as textual documents or videos and the
challenge is to place objects with similar content close to each
other while still avoiding overlap. In this work we present a novel
mechanism to arrange rectangular boxes in a two-dimensional
layout which copes with the two properties above, that is, it keeps
similar object close and prevents overlap. In contrast to heuristic
techniques, our approach relies on mixed integer quadratic
programming, resulting in well structured arrangements which
can easily be tuned to take different forms. We show the
effectiveness of our methodology through a comprehensive set of
comparisons against state-of-art methods. Moreover, we employ
the proposed technique in video data visualization, attesting its
usefulness in a practical application.
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I. INTRODUCTION

Arranging geometric entities in a two-dimensional space
while avoiding overlaps is an NP-Hard problem investigated
in many different contexts. The optimization community, for
instance, faces the problem when solving the bin packing prob-

lem [[1]], [2]], typically through constraint optimization. Overlap
removal is also investigated in the context of graph drawing,
where physical models such as force-based schemes [3], [4],
[5] and spring systems [6]], [7] are the methods used to position
geometric entities representing graph nodes in the visual space.
Overlap removal algorithms for bin packing optimization and
graph drawing differ as to the mathematical formulation as
well as the nature of overlap removal problem. More precisely,
graph drawing has an additional constraint related to the
closeness (and distance) of nodes, that is, nodes have to be
placed in the visual space such that the neighborhood of the
nodes are preserved as much as possible. Another issue with
the physical-inspired overlap removal techniques is the lack
of guarantees as to convergence and quality of the resulting
layout. Such issue is addressed by optimal graph drawing
techniques such as the ones proposed by Dwyer et al. [§]]
and Marriott et al. [9]], both of which relying on quadratic
optimization. The main problem with these optimal approaches
is that the energy to be minimized depends on intersection
tests, thus introducing several cases to be handled by the
algorithm. An interesting discussion about graph drawing
literature can be found in [[10].



The overlap removal problem also appears in the context
of information visualization as a mechanism to generate
data classification [11], word clouds [12], [13]] and visual
boards [14]. In contrast to optimal and physical-based meth-
ods, most of the techniques used in information visualization
rely on heuristic algorithms to build the layout. Heuristics
such as Rolled-out Wordles [15] can even take into account
information of similarity to place similar objects close to each
other while avoiding overlaps. The main advantage of heuristic
techniques is their low computational cost, which enable to
build large layouts quite efficiently but there is no guarantee
in always finding a unique solution.

In this work we propose a novel technique to tackle the
problem of arranging rectangular boxes in the visual space so
as to place objects representing similar content close to each
other while avoiding overlaps. We formulate the problem as
a Mixed Integer Quadratic Programming Problem (MIQP),
which enables well structured layouts. In contrast to other
optimal methods that take into account the similarity between
instances, our approach does not rely on intersection tests,
making the algorithm simpler to implement. Moreover, our
technique is quite flexible, being able to generate different
layouts by just handling optimization constraints.

The practical usefulness of our method is demonstrated in
a video data set visualization application. Textual information
associated to each video is used to measure the similarity
between them, that is, the similarity between videos is com-
puted using bag-of-words derived from textural information
and the cosine metric. The similarity measure is, then, used
by a multidimensional projection technique that maps the data
to the visual space, where the boxes representing the videos are
arranged by the proposed optimization mechanism, generating
the final layout.

Contributions
work are:

¢ A new mathematical formulation, which we call MIOLA
(Mixed Integer Optimization for Layout Arrangement),
for the problem of arranging rectangular boxes in the
visual space so as to place similar entities close while
avoiding overlaps.

e MIOLA combines flexibility and capability in generating
different layouts while still solving the box-overlap re-
moval problem.

e A video visualization application using MIOLA that al-
lows for handling and exploring video data sets.

In summary, the main contributions of this

II. OVERLAP REMOVAL BY OPTIMIZATION

Let B = {By,Bs,...,B,} be a set of n rectangular
boxes arranged in the visual space such that the neighbor-
hood structure of the boxes reflects a property of interest.
For instance, if a data set is mapped to the visual space
using a multidimensional projection technique and a box is
centered on each projected data, the resulting arrangement
makes neighbor boxes correspond to similar data. Boxes in
this arrangement, however, should overlap considerably, im-
pairing the visualization of individual boxes. In order to make

each box visible, one has to displace the boxes in the two-
dimensional space so as to remove overlaps, but preserving the
initial neighborhood structures to keep similar objects close to
each other. As described next, we formulate the problem above
as a mixed integer quadratic programming optimization.

A. Problem Statement

Let B = {By, Bo, ..., B, } be a set of n rectangular boxes
initially positioned in a two-dimensional space. Each box B; is
specified by a four dimensional vector B; = (z;, y;, w;, h;) €
R*, where (x;,9;), w; > 0, h; > 0 are the centroid, width
and height of B;, respectively (see Fig. [2(a)). Two boxes B;
and B; do not overlap if and only if one of the following
inequalities holds:

h; + hj
5 )]

We refer to the inequalities in (1) as non-overlap con-
straints.

Moreover, the boxes must respect the bounds of the visual-
ization window during displacement, that is,

lwj — 2| > —5— or |y; —uyi| >

w;
2
h

% hz
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where bz, lby, ubz, uby are lower and upper visualization
window bounds (constants) in x and y directions. If needed,
visualization window bounds can also assume independent
values for each box.

Equations (I)) and () provide the conditions to be held so
as to guarantee that boxes do not overlap and are inside a
visualization window. However, those equations do not take
into account neighborhood structures, thus neighbor boxes
can be placed far apart from each other after the overlap
removal process. One useful way to keep up the neighborhood

+ lbx < z; < ubxr — % (x lower/upper bounds)
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(a) Input layout. (b) Optimized layout.
Fig. 2. Inequalities (Z) ensure that no boxes will not displayed offscreen

while inequalities (3) preserve the order of the coordinates w.r.t. initial layout.
(a) Input layout and (b) result after layout arrangement (orthogonal ordering:
Tp; < Tp;yq1,P1 = 2,p2 = 3,p3 = 1, pa = 4; similarity for y case).



relationships is to preserve the relative order of the centroids
of boxes, that is,

Tp, < Tp, < ... <@y, (X orthogonal order)

Yoo < Ygo < oo LYy, (v orthogonal order) )

where p,q: {1,2,...,n} — {1,2,...,n} are permutations of
indices obtained by sorting the coordinates x and y of the
centroids of boxes in the visual space (see Fig. [2).
Therefore, by moving the centroid of the boxes while
ensuring Equations (I), (2), and (@) can generate an overlap
free layout that preserves the initial neighborhood structures.

B. The MIQP Formulation

The problem of positioning the boxes B; in the visual
space so as to ensure that Equations (I), (2), and (3) hold
can be formulated as a Mixed Integer Quadratic Programming
Problem [16] as follows:

mzin f(z) = %ZTQZ = Z Z Dist*(B;, B;)

i=1 j=i+1
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” ; x = (z1,72,...,7,) €R"
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where z is the sought solution, Dist(B;, B;) denotes the
euclidian distance between (x;, y;) and (z;,y;), and vectors b
(lower bounds) and ub (upper bounds) are the visualization
window bounds as defined in the inequalities (Z). Q is the
positive semi-definite matrix composed by blocks L given by:

,  L=mnl;—ones(n,n),

where I is the identity matrix and ones(n,n) is the n X n
matrix with all entries equal one.

Matrix A and vector b are defined so as to incorporate the
constraints (T) and (3). Precisely, the ordering given by (3)
allows us to write:

Tp, STp, <. Ky, = Ty, —Tp,, S0, 1=1..n—1, (5)

with a similar expression holding for y. Additionally, the
sorting also allows us to get rid of the absolute value function
in (I, that is,

Ty, < Tp, = |Tp, — Tp,| = Tp; — Xp,. Thus,

Wy, + Wy ) )
:L'Pi*xpj § 7“)172%)’ ’L<j, (6)
with a similar expression holding for y. The variables 7;;
allows for incorporating the OR condition defined in (T)) into

the optimization problem as follows:

7
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(a) Original layout.
Fig. 3.

(b) Standard optimized layout.

Result of our method to rearrange boxes with overlaps.

where w;; =
very large constant. The rationale behind the construction in
Equation (7) is that if 7;; = 0, the constraint x), — ), < w;;
becomes mandatory while y,, — vy, < hi; + M is naturally
satisfied as M is a large number (if r;; = 1, we have the
opposite situation, instead). Therefore, optimizing the centroid
positions and the decision variables 7;; simultaneously allows
us to find the optimal position for the boxes while respecting
all the constraints as stated in Equations (1), (), and (3).

Equations (3) and (7) are incorporated into matrix A using
the auxiliar matrices Cy, Cy, D,, D, as follows:

(wp,; +wp . ) (hg;+hg.) .
— 5 hyy = ——5— and M is a

where [C;|Cy|c] and [D;|D,|d] are built from constraints
(3) and (7), respectively. Notice that vector c¢ is null as
stated in (]§[) However, this constraint can be relaxed so as
to introduce more flexibility into the layout, as explained in
subsection [[I-C} Fig. [3] illustrates the resulting layout from
solving the standard MIQP (@). Notice that the orthogonal
order is accurately preserved while the boxes are thoroughly
spread in the visualization window.

C. Relaxation of constraints

Besides providing accuracy and robustness when dealing
with complex layouts, formulation (@) enables great flexibility
in generating a variety of non-overlap arrangements. Different
layouts can be easily obtained by introducing relaxation con-
stants within lower 1b and upper ub bounds in Equations ()
and/or vector b = [c|d]T in (§) as follows:

lbrelaz =1Ib+ E» Ubrelaa: =ub + E (9)

Crelaz = C+C, drelaz =d+ a7 (10)

where 1b = (Ib;), ub = (ub;), € = (¢) and d = (d;) are
the relaxation constants. Notice that relaxation constants can
be individually chosen for each box in (9) or for each pair of
boxes defined in @) Moreover, each coordinate of 1b, ub,
€ and d can assume both positive and negative values.
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Fig. 4. Geometric interpretation of relaxation constants. Fig.(a) shows
the input layout while Fig.(b) depicts the optimization result after setting
upper bound relaxation (< 0) in both directions. Fig.(c)-(d) show the
maximum distance tolerance when violating the orthogonal order constraints
and imposing a displacement between boxes, respectively (in x-direction).
Fig.(e)-(f) yield the same previous conclusion w.r.t. non-overlap constraints
but obtained by handling y-direction relaxation.

While 1b and ub regulate the effective visual space of the
boxes, b and € control the relaxation distances of orthogo-
nal ordering and non-overlap constraints. Fig. ] depicts the

geometric interpretation when handling Equations (@)-(T0).

ITI. RESULTS, COMPARISONS AND EVALUATION

We start this section showing the usefulness of our method-
ology in a practical application devoted to video data visualiza-
tion. The flexibility to generate different layouts by just tuning
the constraints in the optimization is illustrated in several ex-
amples. Finally, we show the effectiveness of MIOLA by com-
paring it against state-of-art overlap removal techniques typi-
cally employed in information visualization applications. We
denote the pair of numbers V.S = ([-S;, Sy], [—Sy, Sy]) :=
(Sz,Sy) as the lower and upper bound constants in (9).
Orthogonal order as well as non-overlap relaxation constants
in are denoted by the numbers OO and NOL. The mini-
mization problem (@) is solved by an extension of the Linear-
Programming based Branch-and-Bound Algorithm [17], avail-
able from the Gurobi library at http://www.gurobi.com/. Our
code was implemented in MATLAB with support to C++ MEX
routines and free optimization interface provided by [18]].

A. Applications

Video Snippet Visualization Fig. [5] shows the layout
resulting from MIOLA applied to video snippet visualization.

Fig. [a) depicts the initial layout just after projecting video
data obtained from Youtube, using the word “SIBGRAPI”
as query. The projection is generated by applying the LSP
multidimensional projection technique [19], measuring the
similarity between video snippets through the cosine metric
applied to feature vectors extracted from the textual data
associated to the videos. More precisely, feature vectors are
generated by extracting a bag-of-words [20] from the text
associated to each video. Fig. [5|b) shows the resulting layout
after optimization. Notice that SIBGRAPI’s Fast Forward
videos are nicely grouped on top left while videos related
to volume rendering, modeling and graphics are arranged on
middle/bottom left. Top right snippets in Fig. [5(b) are mainly
related to videos presented in SIBGRAPI’s Video Festival
while bottom right videos are related to “dancing animation”.
The video visualization application clearly shows that MIOLA
is able to arrange the video snippets in the visual space
avoiding overlaps while preserving the proximity relation
among videos.

B. Flexibility to generate different layouts

Flexibility and Adaptability Fig. [6[a)-(e) show the flex-
ibility of MIOLA in producing different layouts by just
modifying constraints in the optimization. Fig. [f(a) shows the
original layout while Fig. [6(b) displays the resulting layout
when no relaxation is used during optimization. Changing
the constraints that define the lower and upper bounds of the
visualization window give rise to a more compact layout, as
shown in Fig. [6[c). We use colors and numbers to label the
boxes, from which one can clearly see that MIOLA preserves
neighborhoods quite nicely. An even more compact layout can
be obtained by further squishing the visualization window and
relaxing the orthogonality constraints, as depicted in Fig. [6(d).
Fig. [6(e) shows an extreme case where the visualization
window is set to be one-dimensional, that is, the centroid of
each box must be place in a horizontal line. Notice that even
in this drastic situation the algorithm was able to arrange the
square respecting neighborhoods.

Shrinking scattered layouts MIOLA can also be used
for shrinking sparse layouts. Fig. [7(b) shows the result of
optimizing the spread layout depicted in Fig. [7(a). One can
see that the optimization produces a pleasant layout in terms
of compactness and organization. Moreover, neighborhood
structures have also been nicely preserved.

C. Comparisons against state-of-art methods

The effectiveness of MIOLA is assessed by quantitatively
measuring its accuracy as to layout organization, neighborhood
preserving and compactness against state-of-art methods. The
quantitative measures are computed as follows:

Euclidean distance (E): let p and p; be the original and final
position of the center of each box. The Euclidean distance
metric is defined as

1 o
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(a) Input layout. (b) Optimized layout after applying MIOLA without relaxation constants.

Fig. 5. Result of our method when applying on a content layout taken from Youtube’s search engine.

(a) Original layout. (b) Optimized layout without relaxation (VS
= (750, 220)).

(a) Layout with scattered boxes. (b) Result after layout adjustment.

Fig. 7. Optimizing sparse layouts with MIOLA.

where n is the number of boxes and d is the Euclidean dis-
tance. This metric gives an estimative of how much the boxes
displace during the overlap removal process. Less movement is
preferred, since the original configuration is better preserved.

Layout similarity (o): quantifies how much neighborhoods

are affected by the overlap removal mechanisms. The idea is

(c) Optimized layout with small com- (d) Optimized layout with moder- t h in the 1 th of Del d ted
pactness (VS = (250, 400)). ate compactness and OO relaxation O.measure ¢ ange.s ?Il € length of De aunay.e £¢s, compute
(00 =120; VS = (10, 230)). with respect to original layout. In mathematical terms, let [7;

and /;; denote the lengths of the Delaunay edges before and
after overlap removal. The layout similarity is then given by

(e) Optimized layout with hard compactness and NOL relaxation (NOL =

10; VS = (3800, 5)). VO (ri —7)2) /m

g =

2T
Fig. 6. Flexibility and adaptability of the proposed formulation. I m (12)

T

where r;; = ;; /lfj and m is the number of edges in the
Delaunay triangulation. The closer to zero the better.



Orthogonal ordering (O): quantifies how much the con-
straints @ are violated. In numerical terms, this metric
measures the number of changes in the relative order of the
boxes, in the horizontal as well as vertical directions. More
precisely, positions are sorted in increasing order for x and y
coordinates, and the number of inversions in the lists gives us
the ordering measure. In mathematical terms:

o= > > inv,j),
se{x,y} i<j

1, if (xgt) - mg-t)).(xl(-tfl) - a:;t*l)) <0
0, otherwise

13)

i (i, f) = {
(14)

where 7, j are indexes of the sorted lists and invl(f)(i, j) is

defined analogously to invfct)(z’, 7). Small values are better.

Size increase (5): given the convex hulls C'° and C' of the
original and final layouts, the size increase is measured as:
area(C
g = areal@) (15)
area(C?)
determining the relative changes in size as well as the com-
pactness of the representation. Values closer to 1 are better.

Neighborhood preservation (/): computes the average per-
centage of the k-nearest neighbors of each box that are
preserved in the final layout. The higher the curve the better.

Measures above allow us to quantitatively compare our tech-
nique against the following well-established overlap removal
methods: VPSC [8], PRISM [10]], Voronoi-based [11]] and
RWordle-C [15].

Fig. |8 shows the resulting layout after applying MIOLA and
the four techniques we compare against on five different data
sets containing textual information gotten from web search
engines. The first three data sets, namely, “Scientific Visual-
ization” (50 instances), “Sibgrapi” (32 instances) and “Pur-
ple”(100 instances), were generated using fixed-size square
boxes while the last two datasets - “Wave” (64 instances)
and “Batman” (50 instances) - were created taking rectangles
with sizes given by the rank of the document (the rank is
provided by the search engine). Larger rectangles have higher
rank. One can note that the Voronoi-based method results in
unstructured overlap-free layouts when compared to the other
methods. PRISM preserves relevant parts of the initial shape,
but with the disadvantage of excessive use of space, hampering
data exploration. The layouts produced by VPSC are quite
structured, helping readability, however, it is prone to stretch
the layout vertically (see the “Wave” and “Batman” results).
RWordle-C produced satisfactory layouts preserving, in some
cases, clusters visually identified by the user (see the “Wave”
result), but still leaving some expressive empty spaces when
compared with MIOLA. Moreover, the orthogonal ordering
is considerably affected by RWordle-C. In contrast, MIOLA
produces very well-organized and compact layouts while still
respecting the orthogonal order in a satisfactory way.

Fig. 0] summarizes the quantitative results of the metrics
described above. Notice that MIOLA produces more compact

RWordle-C
Best ® Worst

< L]
SqmoLA PR.ISM
VPSC

e
Verenoi

Average
X o g

—

Fig. 10.  Comparison of overlap removal techniques respecting the five
metrics simultaneously. Red points represent the evaluated techniques while
the blue points show the worst, average and best points artificially produced.

layouts measured by Euclidian distance and Size increase,
being fairly stable as to other metrics.

Fig. plots a map that considers all metrics simul-
taneously. Each overlap removal technique has been rep-
resented as a five-dimensional vector (E,,04, 04, Sa,ka),
where E,, 04,04, Sq, k, are the average values of the metrics
(T3)-(TT) and k-nearest neighbors computed for each tech-
nique, over all data sets from Fig[8] The blue points denoted by
“Best”, “Average”, and “Worst” in were created artificially
as five-dimensional vectors containing the better, average and
worst values taken from the results of all methods. We use
the multidimensional projection method LAMP [21] to project
the five dimensional data to the visual space. The technique
mapped closest to “Best” is the one that, on average, has shown
the best performance, relative to all metrics. Clearly, one can
observe that MIOLA is the technique closer to the best result.

IV. DISCUSSION AND LIMITATIONS

Comparisons presented in Section clearly show the
effectiveness of the proposed optimization method, surpassing,
in terms of accuracy, existing methods. As shown in Fig. [6]
MIOLA turns out to be flexible and capable of producing a
variety of layouts, a characteristic not present in any other
state-of-art method. The snippet video application depicted
in Fig. [ indicates that MIOLA can be used to remove
overlaps while keeping similar entities close to each other,
thus preserving the similarity relations introduced during the
multidimensional projection.

Despite good results and solid mathematical foundation,
there are two aspects to be observed when using MIOLA. First,
the visualization window as well as the number of boxes to
be displayed simultaneously can affect the readability of the
visualization. Easy to read layouts depend on the screen size.
Finding out a good trade off between clean/pleasant layouts
and the relaxation parameters is another issue that deserves
further investigation.

V. CONCLUSION AND FUTURE WORK

In this work we proposed a new technique for solving the
box overlap removal problem. The evaluation we provided
shows that the propose method, called MIOLA, outperforms
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Fig. 8. Layouts produced by our approach (MIOLA), VPSC, PRISM, Voronoi-based, and RWordle-C for five distinct data sets.
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existing methods in terms of producing well structured layout.
MIOLA turns out to be effective in practical application and
quite flexible to generate different layouts by just tuning pa-
rameters, rending it a very attractive overlap removal approach.

We are currently extending MIOLA to work with geometric
entities other than boxes, in addition to combine the relaxation
parameters with strategies for clustering snippets.
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