A Flexible Framework for Fusing Image Collections
into Panoramas

Wathsala Widanagamaachchi, Paul Rosen, Valerio Pascucci
Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, UT, USA
Email: wathsy@sci.utah.edu, prosen@sci.utah.edu, pascucci @sci.utah.edu

Centipede Panorama

A
*

\Wi/2

S

(s}

(a) Centipede constructor

Fig. 1.

(b) Series of centipede panoramas

The centipede panorama is a hybrid of the 360° and street panoramas with wide angle views towards the end (sections A and B) and composite

viewpoints in-between (sections C and D). The blue star indicates the middle of the panoramic image.

Abstract—Panoramas create summary views of multiple im-
ages, which make them a valuable means of analyzing huge
quantities of image and video data. This paper introduces the Ray
Graph - a general framework for panorama construction. With
rays as its vertices, the Ray Graph uses its edges to specify a set
of coherency relationships among all input rays. Consequently,
by using a set of simple graph traversal rules, a diverse set of
panorama structures can be enumerated, which can be used to
efficiently and robustly generate panoramic images from image
collections. To demonstrate this framework, we first use it to
recreate both 360° and street panoramas. We further introduce
two new panorama models, the centipede panorama - a hybrid
of 360° and street panoramas, and the storytelling panorama - a
time encoding panorama. Finally, we demonstrate the flexibility
of this framework by enabling interactive brushing of panoramic
regions for removal of undesired features such as occlusions and
moving objects.

Keywords-panoramas; image fusion; image analysis;

I. INTRODUCTION

A surge of image and video data has surfaced as cameras
have become increasingly affordable. Managing, displaying

and analyzing this abundance of data continues to be challeng-
ing. One promising approach for addressing these challenges
is panoramic imaging. Panoramas are wide-area or wide-
angle views of a physical space which enable a photo-realistic
environment that is more comprehensive than a conventional
image. Panoramic imaging has its first roots in 19th century
paintings, but more recently, they have been used in a variety
of applications such as virtual reality [1], telepresence [2] and
situational awareness [3].

Most panorama techniques achieve continuity in the output
image by maintaining smooth transition of view position and
direction between neighboring pixels. For example, the 360°
panorama [4] consists of single viewpoint whose continuity
comes from the smooth change in viewing direction. The
street panorama [5], on the other hand, fuses multiple images
by collecting parallel rays from nearby viewpoints. A wide
variety of research continues to be performed in the area
of panorama generation; however, there is still a need for a
general technique which can assemble a diverse variety of
panoramas.

In this paper, we present a new approach to generalize the
construction of panoramas. The core of our methodology is the
Ray Graph structure, which defines coherency relationships
between two rays from a single or multiple images. These
coherency relationships are then extended to arbitrarily large
sets of images where the relationships between all sets of rays
are considered to be a weighted graph. Traversals within these
weighted graphs are then defined to create arbitrarily-shaped
panoramas from input image data. Our approach enables quick
and easy creation of both 360° and street panoramas.

In addition, we develop two new forms of panorama, the
centipede and storytelling panoramas. The centipede panorama
is a hybrid of 360° and street panoramas, which stretches the
viewpoint of the 360° panorama into a view segment providing
a longitudinal and circumscribing view of the physical space.
Fig. 1(a) shows an example centipede panorama built from
images taken from a car driving down the street. The centipede
panorama captures the objects on the sides of the road using
nearly parallel views and captures a wide field-of-view, both
forward and backward, resulting in an omni-directional output
image. The storytelling panorama captures temporal events
into a panorama for summarizing the past.

Finally, to further demonstrate the potential of our frame-
work, we use this Ray Graph structure for interactive modifi-
cation of panoramas to allow removal of undesirable features.

In summary, the contributions of this paper are:

+ Ray Graph model, which unifies panorama construction
into a single flexible framework for creating panoramas
of arbitrary shape;

+ Two new forms of panoramas, the centipede panorama
and the storytelling panorama, which demonstrate the
utility of this framework; and

« A semi-automatic panoramic modification method, which
uses brushing of panoramic regions to remove undesirable
features in panoramas.

II. RELATED WORK
A. Panoramic Images

360° panoramas [4] encode all directions visible from a
single viewpoint. The single viewpoint constraint was later
relaxed by mosaicing nearly coincident viewpoints [6]. Sub-
sequent improvements to mosaicing include better correspon-
dence finding [7], reduced ghosting from parallax [8], and
using depth for better stitching [9], [10]. 360° panoramas pro-
duce good summary views but lack flexibility in construction.
However, they are reproducible by Ray Graphs.

Street panoramas [5], [11], route panoramas [12], and
multiple center-of-projection images [13] integrate multiple
viewpoints using a vertical push-broom camera to capture
scenes, such as building facades along a street. Later, by
applying a crossed-silt projection [14] along with scene geom-
etry estimations, the perspective of the street panorama was
dynamically varied to compensate for distortions [15], [16].
Just as with 360° panoramas, street panoramas are a natural
subset of panoramas reproducible by Ray Graphs.

The most closely related work for time-varying panoramas
is that of resampling a video cube, a stack of images gathered
by a video camera, either stationary or moving, along a con-
tinuous path [17], [18]. Arbitrary cuts through the video cube
are used to produce time-varying panoramas. This video cube
has been used for impressionism, cubism and abstract aesthetic
video effects [19]. Space-time scene manifolds [20] similarly
allow cuts through what amounts to a video cube. There is
also a body of work for generating 360° video panoramas of
scenes with periodic motion [21]. In addition to these, time-
lapse approaches have also been used to produce time-varying
panoramas for fixed viewpoints [22]. These systems, while not
as general as Ray Graphs, still observe coherency between rays
when producing imagery.

There are also a number of methods available to capture
single shot panoramic images. The most popular means is
by using a camera with special optics such as hexagonal
pyramidal mirrors [23], paraboloidal mirrors [24], hyperbolic
mirrors [2], using a camera with wide field-of-view lens such
as a fisheye lens [25], or multiple synchronized cameras [26].
The images produced can not only be used in their raw form,
but also as input data to create other types of panoramas. For
example, we use a hyperbolic mirror to capture our data (see
Section V-A).

B. Ray-based Image Representations

Some of the first ray-based representations of data from
multiple images were the light field and lumigraph [27], [28].
These methods capture multiple images into a dense set of rays
which are later used to reconstruct novel views of the data.
Though these novel views were generally not panoramas, there
is no fundamental limitation in these approaches which would
prevent such reconstructions. Concentric mosaics is another
ray-based representation which can render novel views by
combining rays at rendering time [29]. We consider these
representations to be a subset of the Ray Graph, since the
Ray Graph could also be used to encode light ficld data and
reconstruct novel conventional views. Additionally, since it can
use both dense and sparse sets of rays to produce panoramas,
we consider the Ray Graph a more flexible representation.

General Linear Cameras (GLCs) [30], [31], [32] parti-
tion an image plane into triangular images. Each GLC is
constructed from three given rays, so it offers some ray
modeling flexibility. By blending rays of neighboring GL.Cs
[33], a continuous ray space is generated for images with
the perspective varying smoothly. This gives GLCs the ability
to model potentially complex camera structure. Furthermore,
GLCs allow for specifying cameras at a coarser granularity
than the Ray Graph. However, the Ray Graph gives a greater
flexibility in design than GLCs.

The Graph Camera [34] combines sparse sets of viewpoints
to produce panoramic images by generalizing camera rays into
piecewise linear splines and connecting them. To the best of
our knowledge, this is the only panoramic imaging technique
not reproducible using a Ray Graph.

Camera Rays
Edge
Coherency e

» -~ - <

Decreases

Ray Graph

@0as |

Camera Rays Ray Graph

OOy Ot
s [N [o [*o 1

3 ¢ Ry Ry
A R (O O O=C

5 N A L] L]

I R AN AN

& D S e
Co® OC, - 12 j¢-H 13

(a) Partial Ray Graph for directional edges only

Fig. 2.

III. RAY GRAPHS

A Ray Graph is an implicit weighted graph structure which
defines the coherency between all pairs of rays within a set
of images. In the graph, rays serve as the vertices which
are connected by edges weighted by tuples whose members
each refer to a coherency relationship: directional, spatial,
temporal, etc. To produce output images from these weighted
graphs, simple traversal algorithms are created that walk the
Ray Graph selecting rays to be used in the output image.
The following explanations are within the context of a 1D
output image (i.e. a row of pixels). However, the actual
implementation is for a 2D image.

A. Coherency Relationships

Directional Coherency: The directional coherency between
rays within a single image can be considered strong if both
rays point in the same direction. We define the strength of
the directional coherency (sp) between the two rays 7,7y
using the following: sp (rg,71) = 1— UTZ’)H.WTIH . This way, two
neighboring rays have a stronger directional coherency (closer
to 0) than the rays pointing in opposite directions (towards 2).
Fig. 2(a) shows a single camera Ray Graph. A ray, such as r,
has the strongest directional coherency with itself. When 1
is considered with 7, they have a slightly weaker directional
coherency, while rays further apart, like rays oy and r3, have
very low directional coherency.

Spatial Coherency: Comparing the direction of rays is suffi-
cient for describing the relationship between rays of a single
image, but it is insufficient to describe the relationships
between multiple images. For multiple images, the relative
positions of their centers of projection have to be considered
as well. To support this, the Euclidean distance between two
viewpoints is used as the second coherency measure. Thus
the spatial coherency (sp) between two viewpoints Cp, Cy
is found by using: sp (Co,C1) = ||Co — C4]|. Given this
metric, images taken next to each other have a stronger spatial
coherency (closer to 0) than the images farther away. Fig. 2(b)
shows a Ray Graph involving two images where the self-
referencing spatial coherency is 0. Still, the spatial coherency
between the two cameras is strong since they are relatively
close to one another.

(b) Partial Ray Graph for positional/directional (top/bottom) edges

Partial Ray Graphs with positional and directional coherencies. A complete Ray Graph would connect all nodes.

Temporal Coherency: Ray Graphs can encode temporal
events as well. For example, a pedestrian walking with a
handheld camera pauses at a stop light. Such an event would
be lost by the two aforementioned metrics. To capture temporal
coherency (sr) between rays from two times ty,t; we define:
st (to,t1) = t1 —to. This bi-directional metric allows consec-
utive times to have a stronger temporal coherency (closer to
0) than the rays from distant times while also encoding future
(positive valued) and past (negative valued) events.

The final edge coherency is the tuple formed by {sp, sp, sT}.

B. Retrieving Images from a Ray Graph

An output image is formed by traversing a path through
the Ray Graph. Given that the graph is dense, there are
many potential paths. Therefore, producing images requires
a meaningful traversal algorithm to be specified. Our traversal
algorithms are defined with the use of a simple set of rules.
These rules are specified in terms of a root ray and a reference
coordinate system (an origin, view direction/root ray, and up
direction) that is associated with the root pixel in the output
image. Starting from the root ray, the graph is traversed,
selecting the rays associated with each pixel in the output
image. At each pixel, the algorithm queries the Ray Graph for
the closest matching ray for a desired edge condition (specified
by ray direction, viewpoint and time), and the selected ray is
used for that pixel.

Given a reference coordinate system, the user is given
a set of simple commands for selecting the next ray lo-
cation. For position changes, the options include left/right,
forward/backward, and up/down with a user specified dis-
tance. For direction changes, the options include left/right and
up/down with a user specified angle. For time, forward and
backward options are given for a user specified amount of
time. The user is also given access to the reference coordinate
system for the option of more complex paths, though none of
our panoramas required that functionality.

Fig. 3 shows a simple graph traversal where two im-
ages are integrated seamlessly by crossing the edge between
ro2 and ri2. The algorithm for this traversal is outlined in
Integrate_Two_Images (Fig. 3(a)). The traversal starts from
the root ray, qo/roo and obtains rays for each pixel in the

rGrth Traversal Algorithm
Name :integrate_Two_Images
Input :Ray Graph, R and Root Ray, rg
Output : Array of pixels, po,...,ps
o= Foo
Select q; = Ray(qo, same viewpoint, direction to right, same time) => ry;
Select g, = Ray(q;, same viewpoint, direction to right, same time) => ro,
Select q; = Ray(qy, right viewpoint, same direction, same time)=>r;,
Select g4 = Ray(g3, same viewpoint, direction to right, same time) =>r3
Select g5 = Ray(q4, same viewpoint, direction to right, same time) =>ry,

foreach Pixel p; (from 0 to 5)
Set the color of p; from q;

\end

(a) Pseudo-coded graph traversal algorithm

Fig. 3.
again by view direction.

output image. It starts by finding the ray which has the same
viewpoint, time and a right direction to gy (i.e. Ray(qo, same
viewpoint, direction to right, same time). This newly identified
ray is used to obtain the next ray, and so on. Finally, colors
for each pixel are set by using the rays selected.

C. Implementation

Ray Graph is stored implicitly with edge weights calculated
at runtime based on queries set forth by the traversal algorithm.
The input to the Ray Graph is a set of images and their
associated camera parameters, including intrinsic and extrin-
sic parameters. When traversing the graph, a desired ray is
specified by its viewpoint, direction and time. That ray is then
used to query the Ray Graph for the closest matching ray and
associated pixel color, from the ray database. When queried,
the Ray Graph first identifies images with similar time to the
query, next within that time the closest viewpoint is selected,
and then the best ray within that viewpoint is identified. If
desired data is unavailable, the Ray Graph query will look
for the next best data available. This is done by expanding
the range of acceptable times, then viewpoints, and finally ray
directions.

To perform these queries, well known data structures and
algorithms are used. Temporal coherency (st) relationships
are processed by storing the viewpoints in a list ordered by
time and accessing them appropriately. Spatial coherency (sp)
relationships are found by storing all viewpoints within a k-
nearest neighbor graph. When queried, the graph returns an
ordered list of viewpoints that best matches the desired loca-
tion. Finally, directional coherency (sp) relationships between
two rays are found by using the intrinsic and extrinsic camera
parameters. The direction of the desired ray is simply projected
and the matching ray is returned with subpixel interpolation.

IV. PANORAMA CONSTRUCTION & MODIFICATION

We demonstrate the use of the Ray Graph framework by
creating four types of panoramas: two pre-existing panoramas
and two new panoramas. In addition to creating arbitrarily-
shaped panoramas, Ray Graph structure can also be used to
modify them. As such, we present an interactive panoramic
modification method for removing undesirable features.

\

=

Camera Rays

p
» » - -~ - -

Ray Grapl

OO O G

C® ©C,

§ §

(b) Output image rays (left) and graph traversal (right)

The two images from Fig. 2(b) are integrated seamlessly, beginning at the root ray (rgq), first by varying view direction, followed by viewpoint and

A. 360° Panorama

The graph traversal algorithm used for creating the 360°
panorama maintains directional coherency by varying the view
direction (see Fig. 4(a)). First, we select the root ray to be the
center pixel of the output image. Then the algorithm traverses
edges by varying the view direction between neighboring
rays within the same viewpoint. Fig. 4(b) shows a series of
examples.

B. Street Panorama

The traversal algorithm used for constructing the street
panorama maintains directional and spatial coherency by se-
lecting rays in the same direction, from different viewpoints
(see Fig. 5(a)). The algorithm starts at a selected root ray (left
most pixel in the output image) and traverses along parallel
rays until it reaches the end of the image. Example images are
shown in Fig. 5(b).

C. Centipede Panorama

The centipede panorama, whose name is derived from the
visualization of its rays (Fig. 1(a)), integrates both wide-
angle and wide-area views. As seen in Fig. 1(a), the traversal
algorithm used for the centipede panorama is divided into four
sections. The section A is set to be the middle of the output
image. The number of output image pixels associated with
each section is specified at construction time.

Sections A and B, each uses a single viewpoint where
view direction is varied between neighboring rays. The angle
between the rays used depends on the number of pixels
available to cach section, along with their desired field-of-
views. Edges in sections C and D alternate between view
directional variation and spatial variation. There, the number
of intermediate viewpoints used and the rays per viewpoint
are adjustable and are partially based on the number of pixels
and field-of-view available. To avoid redundancy within the
output image, the combined field-of-view for all sections is
set to be 360°. Fig. 6 shows an example where the number of
intermediate viewpoints is modified and the field-of-view for
the viewpoints is adapted.

Fig. 1(b) shows a series of centipede panorama images
that capture a forward and backward view, along with an

()™

»

»

-G,
4

X

®

A

®
c

360° Panorama

~®

N

v

@,

l

"™

«{

\4 <
ORI OS

(a) 360° constructor

(b) Series of 360° panoramas

Fig. 4. A series of 360° panoramas constructed by varying the view direction within a single viewpoint.

Street Panorama

@-0-&-0-®

o Co o C: o C; o (C; L yon

(a) Street constructor

(b) Series of street panoramas

Fig. 5. A series of street panoramas constructed with parallel rays traversed by varying the viewpoint.

extended view of the sides of the road, resulting in an omni-
directional panoramic image. Here, each section (A, B, C,
and D) receive one quarter of the output image pixels. Since
centipede panorama maintains a 360° field-of-view while
integrating multiple views, it combines the advantages of both
360° and street panoramas.

Fig. 6. Centipede panoramas where the number of intermediate viewpoints is
increased (top to bottom) and the field-of-view for the viewpoints is adapted.

D. Storytelling Panorama

The final form of panorama we introduce, the storytelling
panorama, is used to fuse a set of images that vary over time.
This panorama has two sections, one for the present and the
other for the past (see Fig. 7(a)).

The middle of the output image captures the present time
(section A) by using rays with view directional variation. The
remainder of the image, corresponding to the past (section B),
is where composite viewpoints with small directional varia-
tions are separated by increasingly ordered temporal variation
edges, moving further into the past. As the panorama moves
deeper into time, the proportion of rays from the distant past
is decreased. The result is that older history occupies an ever
shrinking portion of the output image, making space for newer
information. Fig. 7(b) shows a series of storytelling panorama
images as time advances (top to bottom).

Unlike the above example, if there is a very distinctive
landscape, that landscape information will be retained through-
out the storytelling panorama. However, it will occupy in-
creasingly smaller portions of the image. Moving objects will
occupy a smaller or a larger portion in section B depending

Storytelling Panorama

juasald

T

2
=

-
B

15ed

(a) Storytelling constructor

Fig. 7.
(oldest time) with smaller view directional variations for past events.

upon the amount of time they are visible in the original input
images.

E. Panoramic Modification

In a given panoramic image, there can be any number of
undesirable features visible due to capture conditions (i.e. lens
flares, occlusions, or moving objects). The Ray Graph can
easily be extended to support interactive panoramic modifi-
cation. Our method consists of a stroke-based interface that
allows repeated brushing of panoramic regions to remove such
features. As a user selects a particular region on the panorama,
the rays represented by those arcas are flagged and their
weights are increased, causing the Ray Graph to attempt to
avoid them in the future. After each brush, the output image
is re-calculated, with flagged rays avoided and replaced with
unflagged rays. The user can repeat the brushing as many times
as needed, flagging additional rays to be excluded from the
output image. Fig. 8 shows several such examples where this
semi-automatic modification method has been used to remove
occluding objects from panoramas.

V. RESULTS & DISCUSSION
A. Data

Three datasets were used in our examples. The first 2
datasets were collected using the 0-360 Panoramic Optic, a
hyperbolic panoramic lens system, attached to a Canon Rebel
XS DSLR camera. The first dataset (Fig. 4(top), Fig. 5(top),
Fig. 6, Fig. 7, Fig. 8, Fig. 9 and supplemental material)
consisted of 1,300 panoramic images (25 GB and ~5.45
billion rays) captured by attaching the system to a tripod and
dolly. The second dataset (Fig. 1, Fig. 4 bottom, Fig. 5(mid-
dle), Fig. 5(bottom) and supplemental material) contained 127
images (1.7 GB of data) captured using the same imaging
system mounted on a vehicle. The final dataset (Fig. 4(middle)
and supplemental material) is the publicly available New

(b) Series of storytelling panoramas

As the storytelling panorama moves through time (top to bottom), time is mapped from the center of the image (current time) to the outer edge

College [35] dataset, captured using a ladybug camera attached
to a robot. The dataset contains over 39,000 images (9.7
GB of data), but we only experimented with a subset of
300 images. As the first two datasets were taken in more
active environments, they contained more moving objects like
vehicles and pedestrians than the third. Apart from those the
first dataset also contained some lens flares. For creating a
denser dataset, optical flow [36] was used (see Section V-C).
Although only a single camera was used to capture each of
these datasets, there is no limitation in the Ray Graph to
handle images acquired from multiple cameras with different
resolutions.

B. Performance

Our system operated on a PC with a 3.2GHz Intel i7 CPU
and 4.0GB of RAM.

Data Preprocessing: Before being fed into the Ray Graph
system, data must be preprocessed by the optical flow and
camera pose systems. The optical flow typically takes 90 sec-
onds to calculate and a few seconds to generate a new image.
The pose estimation takes 15-60 seconds per image, depending
upon a number of conditions. It is certainly important to speed
up this processing time, but it remains outside the immediate
scope of this work.

Ray Graph: The creation of the Ray Graph structure requires
a minimal amount of load time, 5-30 seconds depending upon
the number of images in the database. The speed of the
construction algorithms depends heavily upon the complexity
of analysis needed during this construction, but all of our
methods are fast, producing the 2D grid of rays between a
few frames per second up to hundreds of frames per second.

Rendering Images: The final component of the pipeline is
the rendering of the output image. Once the Ray Graph is
specified, a common functionality is used to render the final

(b) Second example of occlusion removal before (top) and after (bottom)

Fig. 8.

image. The color value for each ray in the output image
is retrieved from the original source data. We built a small
caching system for accessing these image data. Cold cache
performance was in the order of minutes, but warm cache
performance was less than 1 frame per second or faster for
all 4 types of panorama at 1280 x 720 output resolution. Still,
cache misses were extremely expensive in our system. With
additional design considerations to the database, this process
could be improved to tens or hundreds of frames per second.

C. Limitations

Ray Graphs are capable of produce images at a high-quality.
However, some of the panorama constructors are more or less
sensitive to the quality of the input data. For example, the street
panorama is sensitive to the density of viewpoint spacing.
On the other hand, the centipede panorama needs fewer input
images (when compared to street panorama), making it more
robust to sparse input data.

This lead to temporal and spatial sparsity of data being
a potential limitation. Our photographs were taken at both
temporally and spatially sparse locations. To compensate for
this, we used optical flow to generate intermediate viewpoints.
Fig. 9 shows a comparison of panoramas with and without
the optical flow. Both images are similar from an information
content perspective, but the visual quality is significantly better
with optical flow. This limitation and the need for optical
flow is primarily due to our capturing system and would be
alleviated with better sensors.

The other limitation to the Ray Graph system is its sensi-
tivity to the quality of pose information. The output images
tend to be robust to low frequency errors in the camera
pose, but sensitive to high frequency errors. In other words,
two viewpoints next to each other must have relatively well
coordinated poses; however, if there is some global distortion,
image quality will still remain high.

(c) Zoom of Fig. 8(a)

Two examples where brushing has been used to remove occlusions. The regions of modification are shown in the red boxes.

VI. CONCLUSION

In conclusion, we have presented the Ray Graph, a system
for unifying panorama construction. One of our intended future
applications for the Ray Graphs framework is real-time image
fusion from multiple sensors. In such an environment, the
Ray Graph’s ability to handle both sparse and dense image
sets in producing arbitrarily-shaped panoramas is extremely
advantageous.

We see many avenues of future work which will expand
the capabilities of Ray Graphs. One obvious missing piece
of the current Ray Graph system is the lack of depth in the
representation. This approach is already common among street
panoramas, where the depth is used to automatically adjust
the perspective. As such, we would like to enhance the Ray
Graph with additional coherency relationships including depth
measurements. We would also like to pursue the idea of de-
veloping automatic panorama construction techniques. These
methods would use simple rules of operation to perform some
kind of search or an optimization on the Ray Graph. However,
this also needs further study to determine the best possible
traversal algorithms for encoding the most information into
meaningful panoramas, along with the appropriate user studies
to test comprehension and usability.

ACKNOWLEDGMENT

This work is supported in part by NSF OCI-0906379,
NSF OCI-0904631, DOE/NEUP 120341, DOE/MAPD
DESC000192, DOE/LLNL B597476, DOE/Codesign
P01180734, and DOE/SciDAC DESC0007446.

REFERENCES

[1] D. Chapman and A. Deacon, “Panoramic imaging and virtual reality
— filling the gaps between the lines,” ISPRS J. of Photogram. and R.
Sensing, vol. 53, no. 6, pp. 311-319, 1998.

(b) Second example of street panorama with (top) and without (bottom) optical flow

(c) Zoom of Fig. 9(b)

Fig. 9. A comparison of results with and without using optical flow to create denser data. Although, optical flow does not change the information content
of images, it does result in higher quality images.

(2]

(3]

(4]
(5]

(6]

(71
(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Y. Onoe, K. Yamazawa, H. Takemura, and N. Yokoya, “Telepresence by
real-time view-dependent image generation from omnidirectional video
streams,” Computer Vision and Image Understanding, vol. 71, no. 2, pp.
154 — 165, 1998.

M. Plumlee, C. Ware, R. Arsenault, and R. T. Brennan, “Panoramic
images for situational awareness in a 3d chart-of-the-future display,” in
U.S. Hydro. Conf., 2005.

S. E. Chen, “Quicktime VR: An image-based approach to virtual
environment navigation,” in SIGGRAPH ’95, 1995, pp. 29-38.

A. Roman, G. Garg, and M. Levoy, “Interactive design of multi-
perspective images for visualizing urban landscapes,” in VIS '04, 2004,
pp. 537-544.

R. Szeliski and H.-Y. Shum, “Creating full view panoramic image
mosaics and environment maps,” in SIGGRAPH 97, 1997, pp. 251—
258.

M. Brown and D. G. Lowe, “Recognising panoramas,” in ICCV 03,
2003.

S. B. Kang, R. Szeliski, and M. Uyttendaele, “Seamless stitching using
multi-perspective plane sweep,” 2004.

J. Gao, S. J. Kim, and M. Brown, “Constructing image panoramas using
dual-homography warping,” in IEEE Conference on CVPR 11, 2011,
pp- 49-56.

K. C. Zheng, S. B. Kang, M. F. Cohen, and R. Szeliski, “Layered depth
panoramas,” in CVPR. IEEE Computer Society, 2007.

A. Agarwala, M. Agrawala, M. Cohen, D. Salesin, and R. Szeliski,
“Photographing long scenes with multi-viewpoint panoramas,” ACM
TOG, vol. 25, no. 3, pp. 853-861, 2006.

J. Zheng and M. Shi, “Scanning depth of route panorama based on
stationary blur,” International Journal of Computer Vision, vol. 78, pp.
169-186, 2008.

P. Rademacher and G. Bishop, “Multiple-center-of-projection images,”
in SIGGRAPH 98, 1998, pp. 199-206.

A. Zomet, D. Feldman, S. Peleg, and D. Weinshall, “Mosaicing new
views: The crossed-slits projection,” IEEE Trans. on Pattern Anal. and
Machine Intel., vol. 25, no. 6, pp. 741-754, 2003.

A. Roman and H. P. A. Lensch, “Automatic multiperspective images,”
in EGSR 06, 2006, pp. 161-171.

A. Rav-Acha, G. Engel, and S. Peleg, “Minimal aspect distortion (mad)
mosaicing of long scenes,” Int. J. Comput. Vision, vol. 78, no. 2-3, pp.
187-206, Jul. 2008.

S. M. Seitz and J. Kim, “Multiperspective imaging,” IEEE CG&A,
vol. 23, no. 6, pp. 16-19, 2003.

E. P. Bennett and L. McMillan, “Proscenium: a framework for spatio-
temporal video editing,” in ACM Multimedia, 2003, pp. 177-184.

[19]
[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

[36]

A. W. Klein, P.-P. J. Sloan, A. Finkelstein, and M. F. Cohen, “Stylized
video cubes,” in SCA ’02, 2002, pp. 15-22.

Y. Wexler and D. Simakov, “Space-time scene manifolds,” in /CCV ’05,
2005, pp. 858-863.

A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless,
D. Salesin, and R. Szeliski, “Panoramic video textures,” ACM TOG,
vol. 24, pp. 821-827, 2005.

M. Terry, G. Brostow, G. Ou, J. Tyman, and D. Gromala, “Making space
for time in time-lapse photography,” in SIGGRAPH Technical Sketches,
2004.

T. Kawanishi, K. Yamazawa, H. Iwasa, H. Takemura, and N. Yokoya,
“Generation of high-resolution stereo panoramic images by omnidirec-
tional imaging sensor using hexagonal pyramidal mirrors,” in Intern.
Conf. on Patt. Recog., 1998, pp. 485-489.

S. K. Nayar, “Catadioptric omnidirectional camera,” in CVPR ’97, 1997,
pp. 482-488.

Y. Xiong and K. Turkowski, “Creating image-based VR using a self-
calibrating fisheye lens,” in CVPR 97, 1997, p. 237.

M. Uyttendaele, A. Criminisi, S. Kang, S. Winder, R. Szeliski, and
R. Hartley, “Image-based interactive exploration of real-world environ-
ments,” IEEE CG&A, vol. 24, no. 3, pp. 52 — 63, 2004.

M. Levoy and P. Hanrahan, “Light field rendering,” in SIGGRAPH ’96,
1996, pp. 31-42.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The
lumigraph,” in SIGGRAPH ’96, 1996, pp. 43-54.

H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics,” ser.
SIGGRAPH ’99, 1999, pp. 299-306.

J. Yu and L. McMillan, “General linear cameras,” in ECCV, vol. 2, 2004,
pp. 14-27.

J. Ponce, “What is a camera?” in CVPR 09, 2009, pp. 1526 —1533.

J. Yu and S. Leonard, “Muliperspective modeling, rendering, and imag-
ing,” in Proceedings of Eurographics 2010, Computer Graphics Forum,
2010, pp. 227-246.

J. Yu and L. McMillan, “Modeling reflections via multiperspective
imaging,” in CVPR ’05, vol. 1, 2005, pp. 117-124.

V. Popescu, P. Rosen, and N. Adamo-Villani, “The graph camera,” ACM
TOG, vol. 28, pp. 158:1-158:8, December 2009.

M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The new
college vision and laser data set,” International J. of Robotics Research,
vol. 28, no. 5, pp. 595-599, May 2009.

C. Liu, “Exploring new representations and applications for motion
analysis beyond pixels,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2009.

