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Abstract—Multiple-labeling classification approaches attempt McCallum [4] proposed a Bayesian approach to the problem
to handle applications that associate more than one label ta of multi-label document classification, where a probatidis
given sample. Since we have an increasing number of systemsyiyyre model was assumed to generate each document, and
that are guided by such assumption, in this paper we have - S ’
presented a multiple-labeling approach for the Optimum-Pah ar,‘ EXpeCta_t'on'MaX'm'Zat'OE[S].Stra}tng was used to Iehen
Forest (OPF) classifier based on the problem transformation Mixture weights and word distribution in each one of them.
method. In order to validate our proposal, a multi-labeled video  Additionally, Zhou and Zhang [6] adapted the algorithm of
classification dataset has been used to compare OPF againstee the k-nearest neighbour classification in the context of multi-
other classifiers and another variant of the OPF classifier bsed labeling, which is called MLsNN (Multi-label-k-NN).

on ak-neighborhqu. The resqlts haye shown .the.validity of the However, in many cases, the employed learning mechanism
OPF-based classifiers for multi-labeling classification poblems. ' ! &

produces a ranking functiorf’ : S x £ — R, such that,
for a given instances € S, the label set in{ should be
ordered according t¢”’(z,-). Thus, a label; is considered
better ranked than another lablgl if f'(x,71) > f'(z,72).

In this fashion, a ranking of labels requires post processin
Traditional pattern recognition techniques employ a trgjn in order to provide a set of labels with the highest score
set S in order to learn a functio € A that maps a given according to some loss function. When the labels in a dataset

feature vectos € S to a labell € £, obtained from a set of belong to a hierarchical structure, i.e., the set of labels f
labels £ [1]. In this context, we havés : S — L, where{ a given sample can be represented as a tree, where each
is the set of all functions. If we havel| = 2, the learning node indicates a possible class, then we have a multi-label
problem is often referred as a binary classification problemierarchical classification task. Jin and Ghahramani [Tihee
while we have a multi-class problem whef)| > 2. a problem of multiple labels as an unsupervised classificati

In the context of multi-label classification, each samplgroblem, where each instance is associated with more than
s can be associated with a label s€t C £. One of the one class, but only one of them is the true class.
main reasons for using techniques that support multiplel$ab In this work, we propose to evaluate the Optimum-Path For-
concerns with applications that associate with a given samgst (OPF) classifief [8].[9][]10] for multi-label learningsks,
more than one label, e.g., systems to aid medical diagnosisce OPF has never been studied in this context. OPF is a
and text categorization. In the first case, a patient may beaph-based approach widely used in several applicatBns [
affected by more than one disease, while in the case [B], [10]. The use of OPF is motivated by its fast training and
categorizing documents, a newspaper article, for instanctassification procedures, as well its good recognitioesat
may be categorized, at the same time, as belonging with twaother point is that OPF can easily handle different distan
different areas (e.g., religion and arts). metrics, which is very important in the context of classtiica

Currently, new applications that require methods with supasks.
port to multiple labels have grown widely. Ogihara and[Lli,[2] In our study concerning the use of OPF in multi-label
for example, employed such approaches to categorize sortgsks, we have employed a public multi-label video dataset
Boutell et al. [3] performed semantic classification of ssgn composed of human actions and scenes, and two different
since a picture can be labeled as being a beach and also wdeo descriptors were used to extract the video contengs. W
have buildings at the same time (city). The idea of their wordso used two OPF variants for comparison purposes together
is to reduce the problem of learning with multiple labels imith a decision three, a Bayesian classifier and a Support
various sorts of binary problems, where each imag®as Vector Machines (SVM) classifier. It is also important to
associated with a s#;, such thatB;| = |£|. In this case, each highlight that OPF has never been applied for video content
elementb; € B; had the valuel if the image was associatedclassification.
with a classj, and0 otherwise. The remainder of the paper is organized as follows. In
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Sectior 1] and Sectiof Il we revisit the Optimum-Path Fores

theory background. SectignllV ahd V introduce the video con- Precision(h) = 1 i |h(si) N L] 3)
tent dataset and the video descriptors employed in this work m 4= |ci
respectively. Experimental results are discussed in Q& =t
m /
Finally, conclusions are stated in Sectfon]VII. Recall(h) — 1 Z |h(s;) N L] @
Il. MULTI-LABEL CLASSIFICATION mi  |h(si)l

Multi-class classification aims to associate a samyple 1 Ih(s;) N L3
S = {s1,...sm} with a single label; € £ = {l4,...,1,}, for F-measuréh) = — 22 X h_liﬁf_, (5)
m = |S| andn = |£|. Unlike, the multi-label classification miz h(s)l+] £
task may associate; with a set of labelsC’ C L. Mathe- 4ng
matically, a multi-label classifier aims to build a functién m
s; — L}. In this context, multi-label classification algorithms Subset accuragyt) = — Zf(h(si) = L}), (6)
can be categorized into two different group$ [1];pipblem i=1

transformation methodand ii) algorithm adaptation methods where, I(true) = 1 e I(false) = 0. This is a very strict
Problem transformation methods handle with a multi-label/aluation measure as it requires an exact match of the

problem by transforming it into one or more single-labgbredicted and true set of labels.

classification task. Binary Relevance (BR) is a populargran

formation method that maps the original multi-labeled data I1l. OPTIMUM-PATH FOREST CLASSIFIERS

into |£| binary _clas_sification problems. However, BR suffers 1ne oPF classifier works by modeling the problem of pat-

from not considering the dependency between the labelg recognition as a graph partition in a given feature epac

Label Powerset (LP) is also a transformation method, whiGhere the graph nodes are represented by feature vectas. Th

considers a set of labels” as a unique label, allowing the nrition of the graph is carried out by a competition praces

dataset to be handled as multi-classes problem. As SUgRyveen some key samples (prototypes), which offer optimum

consider a set of labels as a unique class, LP takes into abc_%’aths to the remaining nodes of the graph. Each prototype

the dependency between the labels. However, LP may b“"%é}nple defines its optimum-path tree (OPT), and the cadlect

large amount of classes with a small number of samples By 4| OpTs defines an optimum-path forest, which gives the
each class, which may increase the classification complexi, s me to the classifieF[8]9].

_ Algorithm adaptation methods extend and customize exist-the OpF can be seen as a generalization of the well-known
ing machine learning algorithm for the multi-label taskl[11 pjysira's algorithm to compute optimum paths from a source
Boosting, k-nearest neighbors, decision trees and neural ng;qe to the remaining ones [12]. The main difference relies
works are examples of machine learning algorithms extendsq ihe fact that OPF uses a set of source nodes (prototypes)
to multi-label domain. The most famous adaptation method, i, any smooth path-cost function [13]. In case of Dijkitra

the Multi-label k-Nearest Neighbours 6], which is derived,jgqrithm, a function that summed the arc-weights along a
from the traditionalk-NN algorithm and uses maximum 8path was applied.

pos_teriqri (MAP) principle to determine the label set for a | o , _ ZiU ZyU Zs U Zy
testing instance.

be a dataset labeled with a
function A, in which 7, Z5, Z3 and Z, are, respectively, a
training, learning, evaluating, and test sets. Ke€ Z; a set
, ) ) of prototype samples. Essentially, the OPF classifier eseat
~In order to evaluate experiments using multi-label classt giscrete optimal partition of the feature space such that
fication methods, the reader can face several different % samples € Z, U Zs U Z, can be classified according
contrastive measures [11]. In what follows, we introduc®eo 1, “this partition. This partition is an optimum path forest
of the most common evaluation measures, which are used(@PF) computed iMR" by the Image Foresting Transform
our experiments. The following formulations briefly deberi (IFT) algorithm [13]. The OPF algorithm works with a traigin
the measures: and a testing phase. In the former step, the competition
L process begins with the prototypes computation. The OPF
Hamming losgh) = — Z — |h(si) ALY, (1) algorithm may be used with angmoothpath-cost function
mi4 £] which can group samples with similar properties][13]. Next,

A. Multi-label evaluation measures

where A denotes the symmetric difference between two SBE introduce two ex_amples Of_ path C_OSt functions employed
of labels. Thus, the lower hamming loss the higher classifieP"! ﬂ;]e OPF SngrY'SEd classifiers with complete &rdN
efficacy. For the following measures, greater values indicad™@P". respectively:

better performance:

1N [h(s:) N L)) Fmax((s) = {O A

5i) N L} max - +o00 otherwise
Accuracy(h) = — Y 2
y() mglh(si)uﬁél’ @) Fmax (T (s,8)) = max{fmax(7),d(s, 1)} 7)



and k-nearest neighborhood as adjacency relation, and both arcs
1o ifseS and nodes are weighted [10]. The basic difference between
fmin((s)) = { 0 otherwise OPFKNN and the standard OPF is the fact the latter estimates
. the prototypes at the boundaries of the classes, while ORFkN
Frmin(m - {s,8)) = mind fmin(7), d(s, 1)}, (8) estimates the prototypes on the regions with high concémtra
in which d(s,t) means the distance between sampieand of samples. To fulfill this task, a probability density fuioct is
t, and a pathr is defined as a sequence of adjacent samplésed to estimate the density of each sample. Figure 2a gispla
In such a way, we have that,.,(7) computes the maximum & k-NN optimum-path forest with two prototypes (bounded
distance between adjacent samples,iwhenr is not a trivial nhodes). For the classification phase, the probability dgnsi
path; andfui.(7) computes the minimum distance betweeff a testing sample is computed, and then the testing sample

adjacent samples in, whenr is not a trivial path. is connected with it¢: nearest neighborhood (Figurk 2b). The
_ training node that offered the maximum path-cost will coerqu
A. OPF with complete graph the test sample, as shown in Figllle 2c.

We are interested in finding the elements that fall on the
boundary of the classes with different labels. For that psep
we can compute a Minimum Spanning Tree (MST) over th
original graph (Figurd]la) and then mark as prototypes thi
connected elements with different labels. Figule 1b digpla
the MST with the prototypes at the boundary. After that, we
can begin the competition process between prototypes irord
to build the optimum-path forest, as displayed in Figlure 1c.
The classification phase is conducted by taking a sample from
the test set (orange diamond in Figlile 1d) and connecting it
to all training samples. The distance to all training nodes a
computed and used to weight the edges. Finally, each tgainin
node offers to the test sample a cost given by a path-cost
function (maximum arc-weight along a path - Equafibn 7), and
the training node that has offered the minimum path-cost WHig. 2. OPFkNN pipeline: (a) optimum-path forest generatethe final of

conquer the test sample. This procedure is shown in Figure #&ining step, in which the bounded nodes are the prototyigesthe nodes
with the maximum densities (b) classification process (e)dtange diamond
sample is associated to the green circle class. The vdlueg) above the
nodes are their density value and class label, respectively

IV. DATASET DESCRIPTION

In this work, we use a benchmarking dataset, namely
HOLLYWOOD-2f, composed of video clips from 69 different
movies. The dataset is divided into image videos with 12
classes of human actions and 10 classes of scenes digfribute
over 3669 video clips and approximately 20.1 hours of video
in total. It contains approximately 150 samples per actiass
and 130 samples per scene class in training and test sub-
sets[[14]. Figur&l3 shows some samples from HOLLYWOOD-
2 dataset.

Action samples were collected by means of automatic
script-to-video alignment in combination with text-basedpt
classification [[16]. Video samples generated from training
movies correspond to the automatic training (AUTO-TRAIN)
Fig. 1. OPF pipeline: (a) complete graph, (b) MST and pratetybounded, g hset with noisy action labels. Based on this subset a clean
(c) optimum-path forest generated at the final of trainiregp s{d) classification L . . .
process and (e) the orange diamond sample is associated tyen circle  training (CLEAN-TRAIN) subset is constructed with action
class. The values above the nodes are their costs aftengaand the values labels manually verified to be correct. The test subset i3 als
above the edges stand for the distance between their condisg nodes. composed of action labels manually checked.

Scene classes are selected automatically from scripts such
B. OPF with k-NN graph as to maximize co-occurrence with the given action classes

) and to capture action context as reported_in [14]. Sceneovide
The OPF withk-NN graph (OPFKNN) also models the

training samples as graph nodes. However, it makes use of thtattp://www.di.ens.fr¥lapteviactions/hollywood?/

()
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TABLE I
SCENES DATASET DESCRIPTION

Feature # Training subset  # Test subset
(automatic) clean
EXT-House 81 140
EXT-Road 81 114
INT-Bedroom 67 69
INT-Car 44 68
INT-Hotel 59 37
INT-Kitchen 38 24
INT-LivingRoom 30 51
INT-Office 114 110
INT-Restaurant 44 36
INT-Shop 47 28
Total samples 570 582

Fig. 3. Examples of samples from HOLLYWOOD-2 dataset: (ajnga
coffee, (b) eating-kitchen, (c) running-road and (d) rugpstreet[[15].

Interest Points (STIP)[18] combined with HOG/HOF descrip-

samples are then generated using script-to-video alignméﬂrs (16].

The labels of test scene samples are manually verified to bd" the BoF framework, visual words [19] are obtained
correct. by quantizing local feature descriptors according to a pre-

Finally, another interesting characteristic of this datds ©amed dictionary. Thus, a video sequence is represested a

that samples may contain instances of several actions. Bopormalized frequency histogram of visual words assogiate

instance, a sample may belong to both kissing and huggiWﬁh each local feature. In this work, we construct a visual

classes, which make HOLLYWOOD-2 handleable by method¥ctionary L_’Sing K-Means with K = 4000 visual words, as
with multi-label support. Table8 | arid Il provide informzai  Suggested in[14]/116].
about each subset, as well as the distribution of the classeg. Histogram of Motion Patterns (HMP)

TABLE | Besides encoding visual properties using a bag-of-feature
ACTION DATASET DESCRIPTION model, we also adopted a simple and fast algorithm to compare
— — video sequences described in1[17]. It consists of three main
Feature # Training subset #Tralnlng subset  # Test subset steps: (1) partial decoding; (2) feature extraction; an)j (3
(clean) (automatic) clean . .
- signature generation.
AnswerPhone 66 59 64 . . .
Drivecar 20 ) 3 For each frame of. an input video, motion featu_res are
Eat 54 33 70 extracted from the video stream. For th&t,x 2 ordinal
ggfgpeéson 521 ;‘g f; matrices are obtained by ranking the intensity values of the
etOutCar H H
HandShake o4 0 o6 four luminance (Y) blocl_<s of each macroplock. This strategy
HugPerson 135 187 103 is employed for computing both the spatial feature of the 4-
Kiss 104 87 108 blocks of a macroblock and the temporal feature of corre-
Run 24 26 37 . . .
SitDown 132 133 146 sponding b_Iocks in threg frames (prev_lous, current, ami)nex
SitUp 823 810 884 Each possible combination of the ordinal measures is ueate
StandUp 66 59 64 as an individual pattern of 16-bits (i.e., 2-bits for eactneént
Total samples 823 810 884 of the ordinal matrices). Finally, the spatio-temporalat of

all the macroblocks of the video sequence are accumulated to

form a normalized histogram. For a detailed discussionisf th
V. VIDEO REPRESENTATION procedure, refer td [17].

To encode visual properties from the video content, we have

used two main approaches. One encodes local spatio-tempora
features and is based on thag-of-featuresapproach[[14].  In this section we present the experiments to evaluate the
The other approach specifically encodes motion informatidfbustness of OPF-based classifiers in multi-label tasks.

by usinghistogram of motion patternd.7]. A. Classification methods

A. Bag-of-Features (BoF) In order to evaluate the performance of OPF-based clas-
Following previous works on action and scene recognitiogifiers, we compare them against with three different base
we built a Bag-of-Features (BoF) model upon local spacsingle-label classifiers, being them implemented in Weka Ja
time features, as described n[14]. For that, we extraaiedl| Frameworld. We chose the J48 classifier, which is a decision
features using the on-line implementacmc Spatio-temporal tree learning algorithm and the well-known Naive Bayes YNB

VI. EXPERIMENTAL RESULTS

Zhttp:/lwww.di.ens.frFlaptev/download. html Shttp://www.cs.waikato.ac.nz/ml/weka/
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TABLE Il
PERFORMANCE OVER THEACTIONS DATA WITH AUTO-TRAIN SUBSET

Evaluation J48 NB OPF OPFKkNN SMO

BR LP BR LP BR LP BR LP BR LP
Accuracy 0.1037  0.1162 0.1312 0.1482 0.1586 0.164R.1604 0.1604  0.1246 0.2511
F2-score 0.1244  0.1241 0.1581 0.15160.1716 0.1736 0.1696 0.1696  0.1339 0.2581
Hamming Loss 0.1593 0.1631 0.1794 0.1486 0.1628 0.1522 28.150.1524 0.1194 0.1304
Precision 0.1113  0.1243 0.1387 0.1584 0.1714 0.1778.1735 0.1735 0.1339 0.2698
Recall 0.1652  0.1318 0.2206 0.1482 0.1844 0.1787 0.1742 0.1742  0.14310.2540

Subset Accuracy  0.0509  0.0950 0.0679  0.1380 0.1210  0.13@01335 0.1335 0.0973 0.2308

TABLE IV
PERFORMANCE OVER THEACTIONS DATA WITH CLEAN-TRAIN SUBSET

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP
Accuracy 0.1315 0.1296 0.1460 0.2521  0.2175 0.2320.2289 0.2289  0.1833 0.3273
F2-score 0.1518 0.1364 0.1703  0.25660.2392 0.2488 0.2385 0.2385  0.1923 0.3362
Hamming Loss 0.1414 0.1580 0.1316 0.1308 0.1554 0.1439 78.130.1375 0.0916 0.1179
Precision 0.1408 0.1399 0.1502 0.2653 0.2310  0.2478.2459 0.2459  0.1934 0.3473
Recall 0.1861 0.1401  0.2285 0.25260.2713 0.2668  0.2410 0.2410  0.2002 0.3337

Subset Accuracy  0.0769  0.1109 0.0871  0.2387 0.1595  0.18%52014 0.2014  0.1561 0.3009

TABLE V
PERFORMANCE OVER THESCENES DATA WITHAUTO-TRAIN SUBSET

Evaluation J48 NB OPF OPFKkNN SMO

BR LP BR LP BR LP BR LP BR LP
Accuracy 0.1278 0.1690 0.2082  0.2431 0.2148 0.224P.2182 0.2182 0.0972 0.2706
F2-score 0.1507  0.1813 0.2439 0.2560 0.2415 0.2360 0.2314 0.2314  0.10890.2847
Hamming Loss 0.1787 0.1804 0.1753 0.1600 0.1885 0.1680 6R.160.1662 0.1244  0.1538
Precision 0.1436  0.2010 0.2249  0.2818  0.2413.2552 0.2552  0.2552  0.1148 0.3127
Recall 0.1787 0.1735 0.3153 0.2431 0.2698 0.2285 0.2208 0.2208  0.11340.2706

Subset Accuracy  0.0670  0.1323  0.1168 0.2045 0.1409  0.18®W01787 0.1787 0.0636 0.2285

and the support vector machines SMO learning algorithnteeasures, performing better only than J48, which was the
Those classifiers are used in most of the works that addreawst classifier again. NB achieved the highest recall faie,
multi-label classification tasks with transformation nuth. did not perform well, specially according to Hamming Loss.

In order to deal with multi-label, we use two transformation grom TabldT¥, we can see the classifiers’ results over the
methods: Binary Relevance (BR) and Label Powerset (LRActions dataset, but now with CLEAN-TRAIN as training
Both methods are implemented in Mulan Java library fafet As expected, the CLEAN-TRAIN set provided better
multi-label learning classification results than AUTO-TRAIN set. The classifiers
B. Experiments with HMP descriptor presented thglsame behavior opserved over AUTO-TR_AIN,
. . but the classification rates were improved for all classfier
Table[ displays the classifier performances over the A

. . .- N€ ASMO was the best combined to LP method, and the OPF-
tions dataset with AUTO-TRAIN as training set. ConS|der|ng sed classifers were the best performers considering e B

the LP method, we notice that the SMO classifier achiev%(? thod
the best results for all measures. OPF and OPFKNN achieveg ' ) -~
the second and third best results, respectively. NB peddrm  1able [M displays the classifiers’ performances over the
slightly better than OPF classifiers considering the HangmirpCeNes dataset. As we can note, SMO with LP achieved the
Loss and Subset Accuracy measures. The J48 classifier BBSt classification rates according all measures, and NB was
tained the lowest results, which can be evidenced spediglly thg second best performer. The OPF-based classifiers were th
the low rate according to Subset Accuracy. For the BR methdfird best ones, followed by J48. For BR method, OPF and
the OPF classifiers were the best performers in almost SPFKNN achieved the best classification rates, respegtivel
measures, being them more balanced considering all meas/WB Were the second, with the highest values according to F2-
Although SMO achieved a low Hamming Loss rate, we catf°re® and Recall. We can see that both SMO and J48 had
note it performed unsatisfactorily according to the rermgn difficulties to dealing with the binary classifications pided
by BR, since they achieved low classification rates, splgcial
“4http://mulan.sourceforge.ngt/ SMO, which was the worst performer.
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TABLE VI
PERFORMANCE OVER THEACTIONS DATA WITH AUTO-TRAIN SUBSET

Evaluation J48 NB OPF OPFKkNN SMO

BR LP BR LP BR LP BR LP BR LP
Accuracy 0.1180 0.1713 0.2112 0.3113 0.1708 0.1719 0.1557 0.1557 0.2099  0.3026
F2-score 0.1359 0.1788 0.2417 0.3186 0.1831 0.1833 0.1663 0.1663 0.2322 0.3120
Hamming Loss 0.1548  0.1496 0.1230 0.1196 0.1532  0.1520 0.1580 0.1580  0.1237  0.1212
Precision 0.1221  0.1823  0.2214 0.3331 0.1876  0.1887 0.1702  0.1702 0.2227 0.3284
Recall 0.1740  0.1827 0.3092 0.3118 0.1933 0.1910 0.1752 0.1752 0.2656  0.3056

Subset Accuracy ~ 0.0747  0.1493  0.13240.2896 0.1369  0.1403 0.1267 0.1267 0.1471 0.2749

TABLE VIl
PERFORMANCE OVER THEACTIONS DATA WITH TRAIN SUBSET

Evaluation J48 NB OPF OPFkNN SMO

BR LP BR LP BR LP BR LP BR LP
Accuracy 0.1878 0.2186 0.2544 0.3865 0.2809 0.2836  0.28532858 0.3096  0.4595
F2-score 0.2151  0.2280 0.2951 0.3956  0.2988  0.2999  0.3011301D 0.3261  0.4695
Hamming Loss 0.1352  0.1412 0.1215 0.1062 0.1357 0.1345 58.130.1354 0.0900 0.0952
Precision 0.1971  0.2336  0.2674 0.4135 0.2964 0.2994  0.30@D3000 0.3217  0.4847
Recall 0.2651  0.2311 0.3861 0.3871 0.3181 0.3158 0.3169 0.3169  0.34990.4646

Subset Accuracy ~ 0.1154  0.1912  0.1527 0.3597 0.2296  0.2364239® 0.2398 0.2636  0.4299

TABLE VIl
PERFORMANCE OVER THESCENES DATA WITHAUTO-TRAIN SUBSET

Evaluation J48 NB OPF OPFKkNN SMO

BR LP BR LP BR LP BR LP BR LP
Accuracy 0.1507 0.1604 0.1932 0.2543 0.1720 0.1744 0.1589 0.1589  0.14650.2732
F2-score 0.1740  0.1675 0.2448 0.2703 0.1837 0.1850 0.1667 0.1667  0.16600.2858
Hamming Loss 0.1686  0.1869 0.2332 0.1558 0.1818 0.1794 28.180.1823 0.1416  0.1548
Precision 0.1682 0.1770 0.2116 0.3024 0.1964 0.1993 0.1778 0.1778  0.163%0.3110
Recall 0.2027 0.1649 0.3952 0.2543 0.1821 0.1813 0.1632 0.1632  0.18730.2732

Subset Accuracy  0.0911  0.1392 0.0773  0.20620.1375 0.1426  0.1357 0.1357  0.0945 0.2354

C. Experiments with BoF descriptor transformation, NB achieved the best rates in four of six

Considering BoF descriptor, all classifiers have improvéqeas_u_res. Howgver, we can note that NB was the worst
their classification rates. Table]VI displays the resulterov® a§S|f|er according to Hamming LQSS and Subset Accurz_;\cy,
Actions dataset with AUTO-TRAIN as training set. As on hich shows an unbalance, spemally whether we consider
can note, the NB classifier was the best performer, esp}zcid .lOW .value for Subset Accuracy, which demonstrates some
when allied with the LP method, achieving the best rates fficulties to _pred|ct an exactly set .Of label to a sample.GM .
all measures. NB also kept the highest recall using BR d J48 achieved the pest Hamming Loss rates, but they did
transformation method. SMO was the second best regardin § p_e_rform We_” regarding the other measures. The OPFebas_e
LP, and improved considerably its results with BR, compar ssifiers achieved the best Subset Accuracy rate, showing
to those presented with HMP descriptor. The OPF-bas y were good performers to match exactly a set of label.
classifiers were the third best ones, and they also kept IIBe . . .
similarity between them. Finally, J48 was the worst perferm ~- Analysis and considerations

With the CLEAN-TRAIN as training set, the classification As the reader may have noticed, the OPFKNN perform
rates were even better, as can be seen in Table VII. Howewagually using both LP and BR methods. This may happen
SMO achieved the best recognition rates with both LP amtie to the fact that OPFKNN generates the same collection
BR. OPFKNN and OPF achieved similar classification ratesf optimum-path trees for both cases, where the same set
being them the second best using BR. NB was the second bafsprototypes propagates their labels when the trainings@ha
allied to the LP methods, and the best with BR according twcurs. Even when BR is employed, the propagated labels
the Recall measure. always form the same set of label that compose the Label

Finally, TableLVIIl shows the classification rates over Seen Powerset for a given training sample.
dataset. Considering the LP method, SMO and NB were theUnlike, the traditional OPF with BR method may generate
first and second best classifiers, respectively. OPF peedrndifferent optimum-path trees for each binary classifietnesy
slight better than OPFKNN and J48. In regard to the BBy BR. This behaviour is determined by the prototypes set,
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