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Abstract

In this article we present an algorithm for the following problem: Obtain a continuous transformation of any simple
p:)lygon(L(O)) into another (L(1)) with the same number of vertices, generating only simple polygons in between, that
is: without introducing contour loops or whiskers during the transformation.The transformation should also take every
vertex of one polygon into a corresponding one on the other. None of the best known strategies for Contour Shape
Interpolation can solve the general version of this problem, although simple multi-stage transformation methods can do
it. Multi-stages transformations however, generate intermediate polygons whose shape is not correlated to those of the
extreme ones. The approach which will be presented here although elaborate, offers much better possibilities of getting a
real blend of the extreme polygons shape at any intermediate instance. A Continuous Transformation obtained by that
method is derived from another one between two Fields of Directions(D(i),i=0,1) defined on the same Triangulation T
of an Annular Region(U) containing the given polygons. Every trajectory of D(i) cross L(i) exactly once what allows
us to define an homeomorphism between L(i) and the graph of a continuous function defined on the external border
of U. Besides finding the D(i)s and transforming one into the other the method makes use of three more interpolation
steps. The overall complexity of the non-optimized version of the algorithm that will be described here, is o(|T?).

Interpolation can satisfy (ii) for every possible case.

1.INTRODUCTION.

The objective of this work is to present a method for
solving the following problem( PROBLEM P1)
Given two simple polygons L(i1) = [vi1, Vi2,..., Vim,
vi1], 1 = 0,1 with the same number of vertices and
whose interiors have a non-empty intersection R, we
want obtain a continuous transformation (w € [0,1]
—L(w)) of L(0) into (L(1)) such that:

1)For k=1,... m, the vertex vo) of L(0) is taken into
the vertex vix of L(1). Suppose that (v;1,vio,...,
Vim, Vi1)s 1 = 0,1 are ordered counterclockwisely.
i1)V w € [0,1] L(w) is a simple polygon. This in par-
ticular means that topological artifacts such as loops
and whiskers do not appear in an intermediate contour
generated by the transformation.

None of the most used strategies for Contour Shape:

In those strategies we are including, the simple Lin-
ear Interpolation of the extreme polygons correspond-
ing vertices, Turtle-Geometry Interpolation of these
corresponding vertices[SED93], Minkowsky Sum Inter-
polation Method and related ones using Set Opera-
tors[ROS91] , Contour Morphing methods inspired in
Active Contour or based on other Physical Models
[SED92] and Skeleton transforming methods. [SED92]
presents a method for Shape Interpolation which does
not introduce whiskers but which is not loop-proof. Al-
though none of the methodologies mentioned above
are able to solve all instances of P1, it can al-
ways be solved by means of relatively simple multiple
stages approaches. An example: We can continuously
transform L(0) into its convex hull(co(L(0)))through
the method presented in [OLIV93], then co(L(0))
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into co(L(1)) using the Minkowsky Sun Interpolation
Method and finally co(L(1)) into L(1) by using the
first method again. All in between polygons generated
will be simple ones and the overall time complexity of
the three stages is O(m) which is of course, optimal.
Multiple stages methods, however, generate intermedi-
ate polygons whose shape is completely uncorrelated
with those of both extreme ones instead of being a
blend of those polygons shape as a convincing morph-
ing requires.

In this work we will introduce a methodology for
solving problem P1 which can get reasonable results
concerning to the shape blending quality, when ap-
plied to get a continous transformation between poly-
gons with many concavities.On the other hand, as it
is elaborate, it is certainly, not a good option for sim-
ple instances of the problem. Our main objective is
to indicate how Fields of Directions defined on
a Triangulation(Tfds) which are simply, functions
associating a direction in R? to any triangle of a trian-
gulation, can be used for solving P1.

2. BACKGROUND

To describe how the method works to solve problem P1
we will need some definitions which are given below. A
first group of them is relative to general Tfds: Let D
be a Tfd defined on a triangulation T of a set U, t
a triangle of T and v a vertex of t. We will say that
D(t) points to t at v(Alternatively: v is pointed
by D(t)) if the trajectory through v deternined by D
contains other points of t reached after(before, re-
spect.)v. See figure 1. If D(t) is parallel to an edge
of t, at one vertex of that edge D(t) points to t and
the other is pointed by D(t). Otherwise, either t has
a single vertex at which D(t) points to t or t has a
single vertex which is pointed by D(t).

We will call a D-Assignment to a function associating

Pointing

N

to every triangle of T, one of its vertices, at which D(t)
points to t or is pointed by D(t). A D-Assignment is
completely determined, except for the triangles where
D(.) is parallel to an edge. Given two subsets V; and
V3 of U, we will say that V, >p V; if all trajectories
reaching Vi, meet V, after. A sequence of U sub-
sets (V1,Va,...,V,;) will be called D-increasing if
Vi1 >p Vi, k=1,...m-1Ife is an edge of a triangle

Fig 1

Pointed
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t,define i-o type(t,e) asinputift >p e, and out-

put, otherwise. In the text below, when there will be
no doubts about the Tfd being refered we will omit the
reference to the Tfd in the denominations above and
will simply say: v points to t, an Assignment etc .
If t has a vertex v which points to t(Alternatively:
is pointed by t) we will say that its vertex-type
will be pointing(pointed, respect.)

We need also some definitions to specify two classes
of Tfds used by the method. In all of them and in
the remainder of this text, U will be a polygonal man-
ifold of genus one whose interior contains L(i), i =0,1

and whose hole is contained in 102 The Outer Bor-

der(Alternatively: the Inner Border) of U will be

refered by Uoy¢(Uijn,resp.). Also, as all Tfds refered

from now on, will be defined on a triangulation of U

we will not necessarily make reference to that anymore.
A Tfd D will be called Admissible if the system

of its trajectories satisfy the two following properties:
i) All trajectories determined by D start at a point

onU,,; and end at U;,.

il)No two trajectories determined by D intersect each

other.

An admissible Tfd has neither singularities, nor closed

trajectories and can be equivalently defined as one sat-

isfying the following properties:

i) Every vertex v on U,,; points to a single triangle

and is pointed by none.

ii) Every vertex on Uj, is pointed by a single triangle

and points to none.

iii)Every vertex in (} points to a single triangle and is

pointed by only one other. See figure 2. An admissi-

ble Tfd D will be said a convexer for L(i), i = 0.1
if any trajectory determined by D intersects L(i) onl-
once(See figure 3). If the triangulation where D is
fined is constrained by L(i) then D will be a convexe:
for L(i) iff every vertex of L(i) points to a triang|:
inside L(i) and is pointed by a triangle outside .

Finally, let D be an Admissible Tfd defined on a t-.s
gulation T of U and call T to the set of these 1 fiis.
The four functions presented below are well defin«

i)sp: U— Uy, such that sp(p)is the starting .
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of the trajectory through p determined by D.

ii)Ap: U— [0,1] | Ap(p) £ the ratio between the
length of the part from sp(p) to p of the trajectory
through p determined by D, and the total length of
that trajectory.

iii) Hp:U— Uoux[0,1] | Hp(p) £(sn(p),Ab(p)).
Hp is a piecewise rational homeomorphism composed
of less than | T | 2 rational functions.

iv)["Tr — I'(T7) | T(D) = Hp. T is continuous con-
sidering any norm for both domain and image since
their dimensions are finite.

3. THE METHOD.
The approach for solving problem P1 mentioned be-
fore can now be outlined as follows:

First of all we get a convexer D(i) for each L(i), i
= 0,1. Both D(i)s have to be defined on the same
triangulation of U. Call P1.1 to the problem of find-
ing these convexers. We must observe that the two
L(i)s may not have a common convexer but, ade-
quately translating one of them it is always possible
to get that property. However we will consider here
that the L(i)s have already been properly positioned
to favour their shapes blending during the transfor-
mation and for that reason we do not think about
moving them. Having the convexers we determine, for
1=0,1, the functions s; = sp(i) and A; = Ap(;y which
are the coordinate functions of the homeomorphism
H(i)=Hp(;). Call P1.2 to the problem of having an
Admissible Tfd D, determine finite representations of
the functions sp and Ap, which we have to solve for
each D(i). Also observe that H(i) takes L(i) onto the
graph G(i) of the function f(i):U,u:— [0,1] such that
f(i)(si(g)) = Ai(g) ¥ q € L(i). See fig.4. Now, let
(P = (si(v}), Ai(v})));k =1,...,m; i= 0,1 and con-
sider the following two problems:

P1.3) Obtain a continuous transformation of G(0)
into G(1), which takes p into p} k =1,...,m and such
that any G(w) generated in between is the a graph of
a function f(w):Ugy: — [0,1].

P1.4) Obtain a continuous transformation of home-
omorphism H(0) into H(1), such that any H(w) gen-
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erated in between is also an homeomorphism between
U and U,y x [0,1] . Since the function T given above
is continuous we can solve this problem by:

i)Find a continuous transformation of D(0) into
D(1), such that any D(w) generated in between is
also an admissible Tfd.

ii) Obtain H(w) as I'(D(w)), what means solving
problem P1.2 for D=D(w).

L’(w) = H(w)~!(G(w)) is certainly a simple closed
curve but the fact of A, (.) not being linear implies that
it is not in general a polygon. For that reason to get a
solution of P1 we obtain an appropriate polygonal ap-
proximation (L(w)) of H(w)~1(G(w))whose contour
has no self intersections and which varies continuously
with w. Call P1.5 to the problem of obtaining that
approximation from H(w) and G(w).

To help the comprehension of the method description
given above we will rewrite it in a slightly different way.

- Through the convexer D(i) we obtain a system of
reference S(i) for U where the coordinates of the points
on L(i) form a set G(i) which is a Graph of a piecewise
rational function defined on Ugys; i = 0,1. Geomet-
rically speaking G(i), i = 0,1 can be interpreted as
the image of L(i) obtained by an homeomorphism of
U onto the bounded cylindrical surface U,,; x [0,1]
which takes the D(i)-trajectories into linear segments
parallel to e3 = (0,0,1). The simple fact of the lines
parallel to e3 crossing the G(i)s at a single point makes
solving problem P1 for the G(i)s much simpler than
for the L(i)s, i = 0,1. In fact for the G(i)s the prob-
lem can be solved simply employing adequate linear
interpolations with the only possible difficulty coming
from the fact of U,y being a closed curve as it will be
seen in section 6.

If $(0) = S(1)= S, once G(w), w € [0,1] is found,
L’(w) can be obtained as the set of points in U whose
coordinates in S are in G(w).. Otherwise, we need
to transform S(0) into S(1)(Problem P1.4) simulta-
neously with transforming G(0)into G(1) and L’(w)
will be obtained as above but in relation to a variable
system S(w). As L’(w)is not in general a polygon it
is replaced by one, L(w), approximating it. This ap-
proximation has to be obtained in such a way that the
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function (we[0,1]—L(w)) is continuous.
The remainder of this article is dedicated to show how
to solve all the five subproblems defined above.

4. P1.1 - GETING CONVEXERS.
First of all we find for i=0,1 a triangulation(T;)of U
whose n vertices are those of L;, U;, and U,,; and
which is constrained by the edges of the three polyg-
onal lines. This can be done in O(n) time by using
Chazelle’s algorithm. For sake of simplicity , we will
suppose that no triangle of T; has all three vertices on
U;, or U,,t, what always can be made. The next step
is to find a convexer(D}) for L; defined on T; using the
procedure Convexer given below. Finally we get con-
vexers for each L; defined on the same triangulation
through the following steps:
1) Get S, the subdivision of U whose faces are the
intersections of Ty and T triangles.
i1) Obtain a triangulation T of U, by interpolating
every face of S.
iii)For i=0,1 and any triangle t of T define D;(t)
= D/(t;), where t; is the triangle of T; containing t.
The process above can generate very ill conditioned
triangles what can require a further treatment. Alter-
native, more elaborate methods for generating convex-
ers can be used to reduce the ocurrence of this problem.
Procedure Convexer given at the end of this section,
obtains the definition of a convexer for a polygon L,
supposed to be one of the L(i)s, restricted to one of
the regions delimited by L and one of the U border
components. This region is identified by the param-
eter border. If border is in(Alternatively: out),
Convexer generates a Tfd D where all vertices of L
points to a single triangle(are pointed by a single trian-
gle, respect.) in the region inside(outside,respect.) L
and all vertices of Uj, (U,y:, respect.) are pointed by
a single triangle( points to a single triangle, respect.).
Procedure Convexer(border € {in, out}, L sim-
ple polygon like the L(i), i = 0,1 defined above,
T triangulation; like the T(i), i = 0,1 also defined
above)
/* Consider that the vertices of L(Alternatively:
Uporder) are ordered counterclockwisely, in a list.
POL(i), i=0,.. ., |L|-1 (BORDER(i), i=0,.. .,
[Usorder|-1,respect.) i
Function Direction( vy, v,, v3 : 2D vectors) 2
unit vector of (2 vy - (v 5 + v3))
{If(border = in) signborder = 1
else signborder = -1;
Find Thorder be the set of triangles of T which are
in the region delimited by L and Ubordars
Find an edge [vo,vj] such that v, € L and
V6 = Uborder;
Reorder (POL(i)) and (BORDER(i)) to make
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POL(0) = vp and BORDER(0) = vg;
Find ichange = the least i such that [vo,POL[i]]
is an edge met after e when we rotate around vg
starting at [vo,POL[1]] in the cclock. direction;
For every tringle t in Tpopger do.
If (All three vertices of t are in L) do:
{Let POL(i) ,POL(j) and POL(k),
i < j <k be the vertices of t;
If (i = 0 and k > ichange ) make D(t) be
Direction(POL(k), POL(j), vo )
* signborder ;
Else make D(t) be signbordersx
Direction(POL(j), POL(i), POL(k));}
Else
{Put the vertices of t in a list (v(i),
1=1,2,3) in such a way that
[v(1),v(2)] and [v(1),v(3)] do not
belong to L or Uperger and the angle
<v[2],v[1],v[3]> is positive. Let t;,
be the other triangle adjacent to
[v(1),v(i)] ,i=2,3 and make j=1;
While(v(j) £ t2 or v(j)e t3) j=j+1;
Let v/ and v/1) be the vertices of
t different to v(j);
Make D(t;) =signborder *
Direction(v(j),v/,v/1);
If v(j) € Uporger make D(t2) = -D(t2). }}

Knowing the assignment of a triangle t and its
vertex-type, we use signborder and the function Di-
rection to generate D(t). The vertex type of t 1is
determined in function of signborder and the polyg-
onal line where the vertex assigned to t is on. A less
straightforward task is assigning vertices to triangles.
For doing that, Convexer divides the set of triangles
into two classes according to they have all vertices on
L or not. Each class is treated differently, as follows.

i) If the three vertices of a triangle t are on L, then,
considering only the side of L where t is, it has an edge
which separates it from Upopger. Thus, Convexer as-
signs the triangle to the vertex opposite to that edge.
Considering that the L vertices are ordered counter-
clockwisely in a list POL the identification of the ver-

tex above can be made in function of the t vertices
position in that list.

' i1)The triangles having vertices on Uborder, form a
circular sequence. Suppose we traverse this sequence
in the counterclockwise direction. A triangle t of that
sequence is assigned by Convexer to the unique of its
vertices, which is still a vertex of the next triangle but

does not belong to the one following the next. See fig.5
below.
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5. P1.2 - OBTAINING G(i);i=0,1

To describe the process used for solving this problem
and P1.3, we need at first to introduce the following
notation

Given two points p and q on U,,; we will
represent the segment traversed when going from
p to q along Uy, moving in the counter-
clockwise(Alternatively: clockwise) direction by
[p,a,cclock]y,,,( [p,q,clock]y,,,,respect.)

We will also need the four functions below:

i) Dist. Uour:  (Uow)? x {counterclockwise,
clockwise} | Dist. U, (p,q,s) = the length of
[p7Q7S]U.,u¢

ii) Interp. U,u:: (Uout)? x [0,1] x { counter-
clockwise, clockwise} | Interp. U,,:(p,q,w,s) is
the point r such that Dist. U,y (p,r,s) = w x
Dist. U,yu:(p,q,s)- _

iii)For any w € [0,1],6:"( Alternatively: §2%*):U—
R* | 6in(p)(Alternatively: 62“*(p)) is the length of
the D(w)-trajectory through p from p to U;,(Uoyt,
respect.)

Back to problem P1.2 we observe, first of all, that
to generate the graphs G;, i = 0,1 we only need to
describe the functions s;, §i"and §?“'on L;, since by
definition G(i) is the graph of the function f(i): U,y
— [0,1] | £(1)(si(p)) = A(p) = 6(p) / (6(p) +
62"*(p)).Due to the piecewise linearity of those func-
tions, for having that description we only need to know
these functions at the vertices of L; and at the points
where the trajectories through vertices of U;,, and U,y
cross L;. It is reasonable suppose that U;, and U,,;
are convex polygonal approximations of the circle with
a bounded number of edges. Thus, finding these cross-
ing points is sublinear in time. Having found one of
these crossing points(v) on the open segment (v ,vi +1)
C L;, we make it correspond to a point v/ on the
open segment (v,lc_i,v,lc:_"l) on L;_; . The restriction
of v/ to (v,lc"'.,v,lc;’-l) is sufficient for the topology of
the extreme scenes continue being the same after the
inclusion of (v, v’) in the set of pairs of points to
be matched. That inclusion will make simpler find-
ing G(w), w € (0,1). Points like v or v/ which are
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on L;, together with the original vertices of L;, are all
ordered counterclockwisely and put into a list (y%,),
i = 0,1.. As for the L;,U;, and U,y,;, the vertices
are already given in counterclockwise order, every (y*.)
can be obtained through a merging process. For every
yi.we find then s;(yi,),6i"(yi,) and 6%4(yi,). Hav-
ing these three last lists G(i)can be fully determined.
To make explicit how this can be done, we observe
that f(i) is a piecewise rational fuction whose breaking
points are included in (s;(y%,)) and such that for any
point q on the segment [s;(y%,),si(¥i41), cclock]y,,,
the value of f(i)(q) can be expressed as follows: Let
A be (1 / Dist. Uout(si(¥7,)s 8i(¥inq1) cclock.)) x
Dist._U,u:(si(y!,),q,cclock.). Then:
£(a) = (A7 (Fhr 1) + (1-0)-87(75,))/ 0657 (3 41)
O (Y ) (1X).(87(5) + B(yi)).
Exploring the parallelism of the D(i)-trajectories in-
side a same triangle finding all s;(y%,), 6{"(yi,) and
6¢%(yi,) can be made in linear time without the ne-
cessity of entirely traversing the trajectories through

every yi,-

6. P1.3 - OBTAINING G(w), w ¢ [0,1]
Obtained the lists, (si(y%,)), (6:"(y%,)) and (62t (y% )
introduced in the last section we are ready to determine
G(w) by means of the following steps:

i)For every pair (so(y?2,),s1(yL,)) choose a direction
dir,,(counterclockwise or clockwise) and make z,, (w)
= Interp—Uout(SO(ygm):sl(y}n)>w9 dirm)-

ii)Also determine ¥V m 62! (z,(w)) = w. 8¢ (yl)
+(1-w) 65“*(y%,) and obtain §:"(z,, (w)) in an analo-
gous way.

iii) Then obtain G(w) from (z,, (w)) , (g,’;,"(zm (w)))
and (6zlm(zm(w.))) in the way described for obtaining
G(i) from (si(¥,)), (67(y%,)) and (52 (y3,)), respec.
tively, at the end of the last section. Replace also f(i)
by a function f(w) with the same characteristics. The

Z(SFL |(5) Fig, 6

only possible difficulty concerns to the choice of the
directions dir,, to avoid the situation pictured in fig-
ure 6, where due to a wrong choice of dir; we will
have that z,(.5) = z3(.5), In situations like that the
method used for computing f(w) on U,y can issue
more than one value for the same point. Due to the
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fact that both (so(y2,)) and s;(y2,) are counterclock-
wisely ordered, situations like that of the example will
not happen if we satisfy the condition below for any
pair (so(ym),81(¥m)) :

"If for any dir, [so(ym).s1(¥m).dirly,,., C
[so(y9),s1(yd),dir]y,,, then dir,, = dir and.dir, #
dir. Otherwise dir,, = dirp.”

If the condition above is true for one m, all dir,,, will
be perfectly determined. If it is always false, all dir,,
should be equal and its determination can be made
through a geometrical criterium like:

"If Y (Dist. Ugue(so(y%),s1(y%), cclock.)) >
Yo (Dist. Uuui(so(y%,),s1(yL,), clock.)) then for all
m, dir,, = clockwise else dir,, = counterclockwise.
7. P1.4 - TRANSFORMING TFDs.

A continuous transformation of one Admissible Tfd
D(0) into another D(1) which mantains that property
for the intermediate Tfds generated, will be called in
this section an Admissible Transformation. During
an Admissible Transformation, the only possible way
of the Assignment of a triangle t changing is the follow-
ing(See fig. 7): 1)At a time w €[0,1] of the transfor-

¥ v,

Y,

t t t Fig.7

V1 aw V1 awt

mation, for an edge (e=[vy,v3]) of t which separates it
from an adjacent triangle t’ , we have that: D(w)(t)
are D(w)(t’) equal and parallel to e.

2) A little before at w~, t is assigned to one of
the v;s,(say: vi)and t’ is assigned to the other(vs). t
and t’ have different vertex-types and D(w~(t)) and
D(w™)(t’) are almost equal to an unit vector( u.) par-
allel to e. Both are on the same side in relation to that
vector.

3) A little after at wt,t is assigned to v, and t’ to
v1. With respect to the situation at w~, we can notice
that t and t’ have exchanged both their assignments
and vertex-types. Also, D(w*(t)) and D(wt)(t')
are now, both on the other side of u,.

We will call an exchange of assignments occuring in
the conditions above an event and the edge where it
happens, the event edge.

Now, let II be an Admissible Transformation and
(en) be the sequence of edges where the events deter-
mined by II occur, ordered according to the time of
the event to which they are related. Knowing (e,), al-
though it is not necessarily possible to recover I, it is

o awe
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always possible to determine another Admissible Tran-
formation . Hence we can concentrate on finding at
first an appropriate sequence of event edges and then
obtain from it an Admissible Transformation. This last
step is a simple interpolation problem which will not be
seen here. The Algorithm A given below, constructs
that appropriate sequence of edges, if, for both i
0,1, there is a D(i)-increasing sequence of triangles
from one adjacent to U,y; to one adjacent to U;,.This
can always be made true if the D(i) have no cicles, by
refining the triangulation along a selected trajectory of
each D(i). If this condition is true then every set of
triangles has an element which is minimal for >p(;)
in the set.

Algorithm A labels triangles Solved or Un-
solved. The label Solved, means that the current
Assignment and vertex-type of the triangle are already
those of D(1). The Main Loop of Algorithm A is very
simple: The algorithm chooses a triangle which is mini-
mal for >p(;) among the Unsolved ones and by means
of a sequence of events determined by the recursive
routine Events_finding, it makes the assignment and
vertex-type of that triangle be those of D(1).Then the
triangle is labeled Solved and the cycle is repeated
until all triangles are Solved. Choosing to solve a
minimal for >p(;) Unsolved triangle we manage to
restrict the action of the routine Events_finding to
the set of Unsolved triangles. Thus, if a triangle is
made Solved, its Assignment and vertex-type will not
be changed anymore.

ALGORITHM A:
Input: Two Admissible Tfds D(i), i = 0,1, such
that there is a D(i)-increasing sequence of triangles
from U,yy: to Ujy,.
D(i)-Assignments A (i), i = 0,1.
Main Procedure
{Label all triangles of T Unsolved ;
For all t ¢ T Make a(t) = A(0)(t) and v_t(t) =
D(0)-vertex-type(t);
While there are Unsolved triangles do:
{Pick a Unsolved D(1)-minimal triangle T;
If a(7) # A(1)(7) do
{Make e = [A(7),A(1)(7 )] and execute
Events_Finding(e, 7)}
Label 7 Solved.}}

The routine Events_finding giving below makes use
of the following operator: Consider two adjacent trian-
gles t and t’ and let e be their common edge. The
Reflection by e of another edge €’ of t’(Alternatively:
t) is the edge of t(t’, respect.) having a vertex in com-
mon with €’ which is not e .
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Procedure Events Finding(r: triangle, e: edge
of 7)}
{Make 7’ be the triangle separated from 7 by e and €’
be the edge of ' opposite to a(7’).
Make L(7’,i), i=0,1 be an ordered pair containing the
edges of 7/ different from e and | if &’ # e then L(7’,2)
=e€'.
Fori =1 to 2 do

If (io-type(r’,L(7’,7) ) # io-type(r,Reflection
by e of L(7’,7) )

Events_Finding(e’, 7');

Exchange the values of () and a(7") and of v_t(r)
and v_t(7');
Append e to the List_of Events_Edges and Return}.

Ko(t) §é\o(t): ot)
) Fgs

) i) un v il

Refer simply by Condition to the only condition
checked by Events Finding.. The text below is re-
lated to the fig. 8

Given a triangle t and an edge e adjacent to
a(t), Events_Finding generates a sequence of events
such that performing the Triangles Assignment Ex-
changes associated to them we make «(t) be the
other vertex adjacent to e. Hence, after applying
Events_Finding to (7, [a(7),A(1)(7)]) we will have:
a(t)= A(1)(7). In the last Assignment Exchange per-
formed by Events_Finding(r,e = [a(7),v]) the trian-
gles taking part should be 7 and 7/, the other triangle
adjacent to e. For that be possible we should have
a(r")=v. This will be the case iff Condition will be
false for both L(7’,i). In this case Events Finding
outputs e and returns(See fig.8.1). If a(r’) # v con-
sider at first, the case where Condition is true for
only one L(7',i) = €. This will only happen iff a(7’)
is the vertex of 7/ opposite to e and €' = [v,a(7)].
In this case we can make a(7’) become v by call-
ing Events_Finding(7’,¢')(See fig.8-ii). If Condi-
tion is true for both L(7/,i) then a(7’) = a( 7) and
L(7',1)(Alternatively L(7',2)) is the edge of 7’ adja-
cent to a(7)(v,respect.) and opposite to v(a(7), re-
spect) In this case we cannot obtain a(7') = v, by
applying Events_Finding to 7’ and a single L(7',i).
We should instead apply it to (7/,L(7’,1)) to obtain
a(r’) = v/, the vertex of 7/ opposite to e. As a(7’)
has become adjacent to L(7’,2) and we can now apply
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Events_Finding(r', L(7',2)) to ﬁnally make a(7') =
v.(See fig. 8-iii).

Among several results relative to the convergence
and complexity of Algorithm A and to the topology
of its output, the most important are the following;:

i)Call Stack to the stack of parameters of calls to
Events_Finding not yet completed at a moment of
Algorithm A execution. Then Stack has no repeated
edges or triangles and never contains a Solved triangle
nor an edge of one of them. From that we can derive
the finite termination of Algorithm A.

ii)Let D be any admissible Tfd having a(.) as a D-
Assignment and the vertex-type of the triangles given
by v_t(.) Then D has no cycles..

i) Ifn = |T| and X =

max¢.7{ minimumnumber of T triangles that a path
from t to the U-border has to cross)}

then Algorithm A is O(n)) in time and O(n) in
space.

8. P1.5 - CONSTRUCTING L(w).

Recall that H(w): U — Ugy X [0,1] is the function
which takes a point p €U into (sp(w)(P), AD(,,,) (p)
- 6aut(p) / 6°“t(p)+5m(p))) SD(w)» 6out and ém are
all linear functions on each componnent of a partition
P of U. Those components can be:

1) trapezia delimited by the intersections of two
D(w)-trajectories through T-vertices with a triangle
t of T and by two edges of that triangle .

ii) triangles, when one of the two D(w)-trajectories
mentioned above is the one through a vertex of t.

We can find a simple polygonal line L(w) which is
an approximation of H(w)~!(G(w)) and satisfies the
properties that (w € [0,1] — L(w)) is a continuous
function and its limit when w — i is L(i), i = 0,1.

At first we determine precisely the intersection of
H(w)~!(G(w) with every D(w)-trajectory through a
vertex of T, what can be made through the following
steps.

oFor every vertex v of the triangulation T starting
at v and moving always in the direction of -D(w) (Al-
ternatively: in the direction of D(w)) until Uyy:(U;n,
respect.) is reached, determine s, (v) and accumulat-
ing the length of the linear segments traversed obtain
6o t(v)(63 (v)respect). Make 8014 (s,,(v)) = 624t (v)
+ 8,1 (v).

eOrder the set { s, (v) | v € T} to obtain alist (z/,),
where these points on U,,; appear in counterclockwise
order.

eFor every z, let J be
such that [z j(w),z;41(W), cclock]U”, contains z,, (w)
and A € [0,1] be (Dist._ U,u(2;(W),sw(v), cclock)
/ Dist. Uy:(2z; (W), 2z;41(w),cclock). The sequence
(z m(w)) has been obtained when we solved problem
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PL3. _

Obtain 320 (z,(w)) = A 33(z341(w)) + (I- )
g,‘,’,’”(z]—(w)) and 5,’,,"(z£,(w)) in an anlogous way.
Then make A, (vy )= (z,(w)) / (5i"z. (w)) +
bouty! n(w))) and starting at z/,(w) and moving along

the D(w) -trajectory through z,(w) a distance of

Ay (vw,n)-651%2, (w)) determine vy, ,,. See fig. 9.

Fig.9

S,(vis)

The list (vy,n) will contain the intersections of

H(w) }(G(w)) with the D(w)-trajectories through
vertices of T ordered counterclockwisely. Now, we
will determine a polygonal line L,(w) from vy (,_1)
to vy n, completely contained in the region delimited
by the D(w)-trajectories through these points which
does not contain any other vy, j, j # n-1,n. Hence L,
(w) does not cross L; (w), j#n . The determination of
L,(w) can be made by the following procedure:
Procedure Finding Ln(w)
Let Ry n—1 be the P set containing Vu(n-1) an, d
having vertices on the D(w)-trajectory through v, ,.
Make R = Ry n-1, Ln(w)(0) = v = vy(n_1), k = 0
and execute:

While(L,(w)(k)#vw )

{k=k + 1;
If R has an edge e = [qn_1,9s] such that q;
€ D(w)-trajectory through vy ; ,j =n-1, n
and ( Ay (V) - Aw(@n-1). (Auw(Vu,n) - Au(an))
< 0 then make:
{2 = (Auw(Vu,n) - Aulan ) /
(Au(v) - Aw(an-1))- ( Au(Vu,n)-Av(an));
Ln(w)(k)= Agn-1 + (( 1- X)) @n,
V = gn-1 and R be the other P set adjacent
to e.}}

Making L(w) be the union of all L,, (w) we will have
all the properties required. The overall complexity of
the whole process above can, of course, be O(|T|?).
Figures 10, 11 and 12 below shows a simple applica-
tion of the methodology described in this article.
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