Image Analysis of Porous Media by 3-D Mathematical Morphology
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Abstract. This paper presents Mathematical Morphology tools for 3-D image analysis, namely,
the geodesic granulometries and the neck histogram. The family of openings which constitutes
the geodesic granulometries is parameterized by the radius of the digital disks utilized as struc-
turing elements. We demonstrate the validity of the granulometry thus obtained. The resulting
granulometric distributions are determined by the underlying metric associated with the digital
disks. Next we propose an algorithm to compute the neck histogram, which is an analysis tool
that gives statistical information concerning the occurrence of constrictions in the object studied.
Finally we demonstrate the application of the proposed analysis tools in the characterization of a
three-dimensional experimental sample designed as a model for a porous medium.

1 Introduction

With the availability of incresingly sophisticated com-
putational resources and imaging equipment in the
recent years, 3-D techniques have become a subjec-
t of busy research in image processing and analy-
sis. These techniques deal directly with the three-
dimensional structure of the real-world objects, with-
out requiring the application of geometric probability
concepts, like stereometric correction.

This paper presents Mathematical Morphology
tools for 3-D image analysis, namely, the geodesic
granulometries and the neck histogram. The applica-
tion we aimed at is the characterization of porous me-
dia, a traditional application of Mathematical Mor-
phology, being of great value in several economical-
ly important areas like petrophysics, oil engineering,
reservatory engineering, soil analysis and crystalog-
raphy. ,

First we present a brief review of concepts re-
lated to 3-D Mathematical Morphology, introducing
the notation used in the paper and defining some
important notions for the forthcoming development,
like connectivity and the digital disks.

Then we discuss the geodesic granulometries,

which are a classical tool in morphological image
analysis. But, unlike the traditional approach, we
use as structuring elements for the geodesic open-
ings digital disks according to different metrics, pa-
rameterizing the granulometry by the disk radius.
We demostrate that this leads to a valid granulom-
etry, which is not true in the case of morphological
openings. The geodesic granulometric distribution-
s obtained are determined by the underlying metric
associated with the digital disks.

Next we propose an algorithm to compute the
neck histogram. This tool, like the granulometries, is
based on the “transformation-measure” paradigm of
Mathematical Morphology, and gives statistical in-
formation concerning the occurrence of constrictions
in the object studied.

Finally we show the application of the tools pro-
posed in the analysis of a three-dimensional exper-
imental sample designed as a model for a porous
medium. We have based our implementation on the
Khoros system. We have used two Khoros toolboxes:
MMach, for implementing the Mathematical Mor-
phology operators presented, and V3DTools, for ob-
taining the renderings displayed in this paper.
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2 Notions of 3-D Mathematical Morphology

The first question to be asked about any 3-D image
analysis method is which digital grid is to be uti-
lized. Unlike the bidimensional case, many 3-D dig-
ital grids have been proposed in the literature [11].
We have selected the cubic grid, which despite some
difficulties, like the low number of neighbours, is the
simplest and most efficient to implement in digital
computers and is also perfectly isotropic. The cubic
grid is sometimes called the Vozel model. The voxel-
s (from volume element), are small cubes of uniform
size and orientation which form a regular subdivision
of 3-D space. We limit our attention to a region of
interest, a subset of Z3, which we will call the voxel
space FE.

The choice of the digital grid determines the
topology of the digital 3-D space. The 6-, 18- and 26-
neighbours of a given voxel are the voxels which share
respectively a face, an edge and a vertice with it. A
path of length n is a sequence vy, vy, ..., v, of voxels
in which v; is a neighbour of v;_; for i = 1,...,n.
Depending on which neighborhood is considered, we
can have 6-, 18- or 26-paths. Let S C E and u,v € S
then u and v are connected if there is a path start-
ing at » and ending at v lying entirely in S. Given a
voxel v € E| the set of voxels connected to it define a
connected component of S. Obviously, we can define
6-, 18- or 26-connected components of S.

A distance is any function d : £ x E — R which
has the properties of a metric, that is, given any
voxels u,v,w € E,

d(u,v) > 0 (d(u,v) =0 < u=v) (1)
d(u,v) = d(v,u) (2)
d(u,v) < d(u,w)+d(w,v) (3)

We consider the direct three-dimensional extensions
of three well known distances [7]: the city-block, eu-
clidean and chessboard distances, which we denote
respectively by d,, d. and d,,,. It is possible to show
that

dm < d. < d, (4)

The concept of distance allows us to define dig-
ital disks in E:

Dd(o,r):{uEEld(o,u)gr} (5)

where o € E'is the disk center and r € Z*, its radius.
It follows from eq. 4 that

qu C Dde [ de (6)

We can see easily that the digital disks associated
with the euclidean, city-block and chessboard dis-
tances are respectively octahedra, spheres and cubes.
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Consider now the set P(E) of all subsets of E,
which is partially ordered by the set inclusion rela-
tion C. The set (P(E),C) provided with the usual
union, intersection and complementation set opera-
tions is a complete lattice [2]. The elements of P(E)
are the objects of interest in the voxel space, and
the set inclusion relation expresses the kind of rela-
tionship typical to Mathematical Morphology. The
mappings between P(E) and itself are the binary
morphological operators.

Let A, B € P(E), the latter being called a struc-
turing element. The binary erosion and dilation op-
erators can be defined respectively as:

GB(A) =
ép(A) =

{ue E|(B+u)C A} (7)
U(B+u), Yu e A (8)

where B 4 u denotes the translation of B by the
voxel u. The binary erosion and dilation are the
fundamental operators of binary Mathematical Mor-

phology [1].

3 Geodesic Granulometries

The granulometries provide a powerful tool for de-
scribing shape and size in image analysis. The me-
thod is based on “sieving” of an image followed by
measure of the residue left on the sieve. The com-
position of transformation followed by measure rep-
resents the fundamental paradigm of image analysis
in Mathematical Morphology [13].

According to Matheron’s formalization [10], a
family of transformations {1}, parameterized by
A > 0 (with ¢o(A) = A) constitutes a granulometry
if it is a size criterion, that is, it obbeys Matheron’s
Axioms:

) ¥a(A) C 4 (9)
1) ACC = ¥a(4) Ca(C) (10)
D) YA[Yu(A)] = Yul¥a(4)] = Ymax(r,w)(4) (11)

for all A, u > 0.

Let A € P(E) and let V(A) be the number of
voxels in ¥y (A), for A > 0. For a family {v,} sat-
isfying Matheron’s axioms, V() will be a monoton
decreasing function. Further, A being finite entails
that V(A) = 0 for some A > A € Z*. The function
® :Z1t — R defined as:

4G

M”:1_me

A>0 (12)

is therefore monoton increasing in the interval [0, 1],
so it may be viewed as a cumulative probability dis-
tribution. Its associated probability density function
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is given by the following discrete derivative:

FA)=®A+1)—®(N), A>0 (13)

Due to the properties of ®(A) mentioned above,
the function I'(A) is non-negative and becomes null
for A > A. The functions ®(\) and I'(A) are known as
the granulometric distributions associated with the
granulometry. The function T'(\) is also known as
the pattern spectrum. It 1s a powerful tool for char-
acterizing shape and size in image analysis [9]. In a
manner reminiscent of the Fourier spectrum, it shows
the decomposition of a given object in terms of a fun-
damental shape “scaled” by the increasing values of
the parameter A. So we can define a useful analysis

parameter, the average size, which is the expected"

value of the pattern spectrum:

A
X=> AT (14)
A=0
Morphological openings vp, = €p,ép, are of-

ten used as the transformations v,. Usually, one
starts with a convex primitive structuring element
B and then defines By as the composition of A — 1
Minkowski sums of B. It is easy to show that this
parameterization of the morphological openings fol-
lows Matheron’s Axioms and constitutes thus a valid
granulometry [4]. We call these families of transfor-
mations morphological granulometries.

However, we would like to use as structuring el-
ements the digital disks defined in section 2 and the
disk radius r as the parameterization for the family
of transformations. But if we try this with the mor-
phological openings, we run into trouble, for unlike
the city-block and chessboard disks, the euclidean
disk has not a decomposition in terms of Minkowski
sums of a convex primitive structuring element. In
fact, the morphological openings by digital euclidean
disks, as opposed to the continuous case, do not con-
stitute a granulometry, due to the digitization error
associated with the disks. Further, the morphologi-
cal openings have the well-known effect of distorting
the edges of objects in a image, therefore it does not
represent a “true” real-world sieve.

So we use instead another class of openings. Let
A,B,C € P(E) . We define the conditional dilation
of A by the structuring element B, given the mask
C, as:

6B,C(A) = (53(/1) nC (15)

The reconstruction of A by a set of markers M €
P(E) is given by:

pB,M(A):‘SB,A ((5371; ((637A(M)))) (16)

where the iterated composition of conditional dila-
tions is performed until stability is achieved. Consid-
er now the reconstruction-based operator given by:

(17)

where first a erosion of A is performed and the result
is used as markers for the reconstruction using the
original A as mask. The structuring element B,
expresses the kind of connectivity assumed and is in
general different from B . It can be shown that the
operator defined in (17) is an opening [14], which we
call a geodesic opening.

VB,Brec(A) = PB,oc en(a)(A)

Theorem 3.1 The family of transformations {¢, =
YB, B,..}, 7 > 0, where the structuring elements { B, }
form a monoton non-decreasing sequence, By C By,

t > s> 0, constitutes a valid granulometry.

Proof. The first two Matheron’s axioms are satisfied,
for the transformations v, are openings. To prove
the third axiom, we note that from the definition of
erosion in (7),

Bs; C B = ¢p,(A) Cep,(4), t>s>0 (18)
Also, from the definition of the reconstruction oper-
ator in (16),

MCN = pp,..m(4) C pB,..,N(4) (19)
From (18) and (19) above,
7BS1Brec(A) g 7Bt,Brec(A)’ t 2 s Z 0 (20)

Now it is a property of the openings [12] that
7t(A) C7:(4) © 115 (A)] = 75 [1(A4)] = 1(4) (21)

From (20) and (21), the third axiom is satisfied. O

We call the above families of transformations
geodesic granulometries. As a corolary from Theo-
rem 1, we can use digital disks, including the eu-
clidean disk, as structuring elements for geodesic gra-
nulometries, for they always form a monoton non-
decreasing sequence. In this way we obtain geodesic
granulometric distributions ®(r) and I'(r) as a func-
tion of the digital disk radius, and also an average
radius as the expected value of the geodesic pattern
spectrum.

We remark that there is a result by Heijmans
[8][prop: 9.50] which states that if a family of trans-
formations is a granulometry, then the family of the
same transformations folowed by reconstruction is al-
so a granulometry. Now even if we replaced the ero-

~sion by a morphological opening in eq. (17), which
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would be a equivalent definition of the geodesic open-
ing, obviously we could not use Heijman’s proposi-
tion to arrive at theorem 1. For instance, the mor-
phological openings by digital disks do not, in gener-
al, constitute a granulometry in the first place.

Note that the use of digital disks as structur-
ing elements for the geodesic granulometries allows
us to have a very natural concept of discrete size,
which is induced by the underlying metric associated
with the digital disks. In fact, we can speak of city-
block, euclidean or chessboard geodesic granulomet-
ric distributions. Further, we get rid of the annoying
edge-distorting effect presented by the morphological
granulometries, for the geodesic opening represents
a pure “cleaning” operation, removing some object-
s but leaving the rest unaltered. In this sense, the
geodesic granulometries approach a true real-world
sleving operation.

However, the trade-off is that the geodesic open-
ings are sensitive to the connectivity of the objects.
To cope with this problem, we must do the binary
segmentation of the image, disconnecting the over-
lapping objects. Towards this, we make use of the
geodesic watershed method [14, 16].

We will illustrate these concepts with a two-
dimensional image, a planar section of the 3-D ex-
perimental sample studied in section 5. In fig. 1,
we see the original image, showing several overlap-
ping particles, the manually obtained markers for the
geodesic watershed method superposed in the orig-
inal image and the resulting segmented image. In
fig. 2, we utilize the same image as in fig. 1 to illus-
trate the edge-distorting effect of the morphological
opening, contrasting it to the information-preserving
geodesic opening. Note that applying the geodesic
opening to the original unsegmented image yields a
useless result.

4 Neck Histograms

The neck histogram is a statistical distribution which
indicates the occurence of necks in a object as a func-
tion of a size parameter. The neck histogram, like the
granulometric distributions, is an analysis tool that
follows the fundamental paradigm of transformation-
measure of Mathematical Morphology.

By neck we mean a constriction in a connected
component. Now an erosion by a sufficiently large
strucutring element can detect such constrictions, as
we can see in fig. 3. We prefer to use erosions rather
than openings, not only because the former are less
expensive computationally, but also because they are
more convenient for the algorithm to build the neck
histogram we propose, as it will be seen.

The concept of digital size we utilize is the same
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of the morphological granulometries mentioned in
section 3. Starting from a primitive structuring ele-
ment B € P(E) we say that sB, defined by

o (origin) , 5s=0
B, s=1 .
sB=4{ Bg.. 0B, > 2 (22)
s — 1 times

has size s (where the operator ¢ denotes the Minkows-
ki sum). Now it is a well-known property of erosions
that

(23) -

€B1 EBQ .. -CB,. = 631%‘32%4-4&‘371

so that succesive erosions by the same fundamental
structuring element B is equivalent to a single ero-
sion by sB.

The outline of an algorithm to compute the neck
histogram is then to perform succesive erosions by a
given primitive structuring element and count the
number of connected components left after each ero-
sion, obtaining thus a cumulative distribution Q(s)
as a function of the size s of the necks detected at
each step. Much in the same way as the pattern spec-
trum, the neck histogram is then found by computing
the discrete derivative of the cumulative distribution:

T(s) =Qs+1)—Q(s), s>0 (24)
Also, the expected value of the neck histogram yields
the average neck size:

Note that different neck histograms, conveying
sometimes complementary information, can be ob-
tained by varying the fundamental structuring ele-
ment B.

The counting is performed by taking the maxi-
mum value of the labelled image after each erosion.
Letting A € P(E'), we define the labelling transfor-

mation as:

0 ifue A

abljiu) = { ! if u € I-th conn. comp. (26)
for all v € E, where [ > 1 is the label given to each
connected component. The neighborhood used in the
labelling algorithm determines which connectivity (6,
18 or 26) 1s assumed, which must be the same as the
one used in the reconstruction step of the geodesic
opening.
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Figure 1: Binary segmentation via geodesic watersheds: (a) original image (b) manual markers superposed

to original image (c) segmentation result

(a)

(c)

Figure 2: Openings by a euclidean digital disk of radius » = 15: (a) morphological opening of original image
(b) geodesic opening of original image (c) geodesic opening of segmented image

Original object

Eroded object

Figure 3: Object about to disconnect after erosion
by the largest disk inscribable in the neck

Now a very important detail is that we cannot
afford to let any component disappear after an ero-
sion at any step, for then the counting would ob-
viously cease to give the number of necks detected.
(The cumulative distribution £(s) might even turn
decreasing, producing negative values in the neck his-
togram!). So we must utilize conditional erosions
which are defined analogously to the conditional di-
lations in eq. (15):

egc(A)=ep(A)UC (27)

where the mask C' is the set of components that
would disappear after an erosion of size s. Note that
there is no such thing as a “conditional opening”,
and that is one of the reasons why the algorithm 1s
based on erosions.

To find the mask for the conditional erosion we
make use of the geodesic opening defined in eq. (17):
the difference between the original set and its geodesic
opening by the primitive structuring element B yield-
s the components that would vanish after the erosion
by B. We call this operator a geodesic top-hat:

&g =1-1vB3,.. (28)

The result of the geodesic top-hat is used at each
step as mask for the conditional erosion. After a
finite number of steps, the eroded image becomes
equal to the mask, and the algorithm stops. Note
that the use of erosions instead of openings allows us
to have this convenient stopping criterion.

The pseudo-code in the next page implements
the algorithm for computing the neck histogram we
have proposed in this section.
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e Data:

— L, Input binary image
— M, Work image to store the mask

— g[], Array to store the accumulated distri-
bution Q(s)

— h[], Array to store the neck histogram Y(s)

e Accumulated distribution ©(s) computation:
Fori—0,1,2,...
g[i] — max {lab(L)}
M — ¢p(L)
L — 6B,M(L)
If (L = M) exit loop;
Else, go through the loop again

e Neck histogram T(s) computation:
Fori1—0,1,2,...,5 -1
h[i] — gfi+1] - gfi]

5 Experimental Results: 3-D Analysis of a
Porous Medium

In this section we demonstrate the application of the
proposed 3-D analysis tools in the analysis of a three-
dimensional experimental sample, an artificial model
of a porous medium. The experimental sample is an
aproximately cylindrical object made of plaster with
small chalk pieces of several sizes and shapes inserted
in it. The highly packed chalk pieces are intendend
to model the solid phase of a porous medium, which
1s the material itself, whereas the plaster plays the
role of the porous phase, the open spaces through
which fluids can flow altering the physical properties
of the medium.

We have implemented the described 3-D anal-
ysis tools on the Khoros image processing platfor-
m. This system is an open package developed at
New Mexico University and freely available through
anonymous ftp. We have based our implementa-
tion on the MMach Khoros toolbox [3], also available
through anonymous ftp at Sao Paulo University. We
have extended the MMach toolbox to handle 3-D
data sets, adding new subroutines for implement-
ing three-dimensional dilation, erosion, watershed,
labelling and distance function and reconstruction
operators. Most of these subroutines are based on
FIFO queue algorithms, which are very convenient
to implement multidimensional morphological oper-
ators.

We have sectioned the experimental sample and
, acquired each slice using a common scanner. Then
we have employed an original registration method
[5, 6] to bring the slices into alignment. After a seg-
mentation step, we have interpolated the sections as-
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sociated with the porous and solid phases. The out-
put of the above 3-D reconstruction procedure was
the two binary volumes rendered in fig. 4.

The 3-D binary segmentation of the solid phase
required for applying the geodesic granulometries was
a difficult step, due to the high compactness of the
chalk pieces representing the grains in the solid phase.
We have employed the geodesic watershed method,
using as markers for the segmentation the regional
maxima of a filtered version of the 3-D distance func-
tion [15]. In fig. 5 we see the geodesic pattern spectra
and associated average radii of the solid phase ob-
tained by utilizing the digital disks defined in section
2. The geodesic pattern spectra give information on
the morphological structure of the constituent grain-
s of the solid phase. As pointed out in section 3,
the sizes measured by the geodesic pattern spectra
are determined by the underlying metric associated
with each digital disk. In fact, we can see that the
maximum value of the spectra as well as the average
radii are decreasing, as would be expected from eq.
(4).

Next we applied the algorithm proposed in sec-
tion 4 to compute the neck histograms and associat-
ed neck average sizes of the solid and porous phas-
es, which we see in figs. 6 and 7, respectively. The
characterization of the neck distribution in a porous
medium is very useful, for it indicates the degree of
opposition the medium offers to percolation by flu-
ids. We have used as primitive structuring elements
the city-block and chessboard digital disks of radius
1, which are respectively the 3 x 3 x 3 “3-D cross”
and cube. Since the composition sB of these primi-
tive structuring elements gives rise to the respective
digital disks of radius s, the neck histograms com-
puted, like the geodesic pattern spectra of fig. 5, can
be said to be function of the underlying metric.

6 Conclusion

In this work we have proposed Mathematical Mor-
phology tools for 3-D image analysys. The use of
digital disks as structuring elements enabled us to
get geodesic granulometries which are determined
by the underlying metric associated with the disks.
We have presented also an algorithm to compute the
neck histogram, a tool which gives statistical infor-
mation concerning the occurrence of constrictions in
the object studied. We demostrated the application
of the tools proposed in the characterization of a 3-D
experimental sample designed as a model of a porous
medium.

The metrics associated with the digital disks
need not be limited to the city-block, euclidean and
chessboard. Other choices may lead to interesting re-
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(b)

Rendering of the binary (a) porous phase (b) solid phase after 3-D reconstruction
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Figure 5: (a) City-block, (b) euclidean and (c) chessboard pattern spectra and associated average radii of

the solid phase

sults, offering new interpretation of the granulomet-
ric distributions. The use of other kinds of digital
grids may also improve some critical issues, like the
3-D binary segmentation required by the geodesic
granulometries.
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