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Abstract. Morphological filtering is a very important branch of Mathematical Morphology, where
theoretical advances are made and new useful practical applications are discovered at a fast pace.
On the other hand, adaptive-neighborhood techniques have been utilized with success for some
time in the image processing field. In this work we propose the extension of a well-known class
of morphological filters, the Alternating Sequential Filters (ASFs), to include the paradigm of
adaptive-neighborhood image processing, leading to what we have called the Adaptive Alternating
Sequential Filters (AASFs). By using synthetic and real images to which Gaussian noise was
added, we demonstrate the better performance of the open-close and close-open AASFs against the
correspondent ASFs, both from a quantitative and qualitative point of view.

1 Introduction

Morphological filtering is a traditional and impor-
tant branch of Mathematical Morphology [8, 11]. It-
s importance derives not only from the many use-
ful practical applications it finds in image processing
problems, but also from the theoretical richness of
the subject.

One of the best-known classes of morphological
filters are the Alternating Sequential Filters (ASFs)
[10, 12]. ASFs are based on compositions of in-
creasingly more severe openings and closings, and
have been utilized for a long time by practitioners
of Mathematical Morphology as an effective tool for
the removal of noise in corrupted images. However,
though the structuring elements used in the classi-
cal ASFs can be selected heuristically to match the
global characteristics of the image, it is assumed the
latter is spatial stationary, which is not always true.
Image processing techniques which have this feature
are often called fixed or non-adaptive.

In this work, we propose the construction of
morphological filters which are based on the concept
of adaptive-neighborhood image processing (ANIP).
This is a well-known paradigm in the general im-
age processing field [6], but we suspect that its apli-
cation to morphological image processing has been
overlooked so far. In this paper we show how to ap-
ply the ANIP principle in the definition of Adaptive
Alternating Sequential Filters (AASFs). We define
the AASFs rigorously as the composition of the ba-
sic (adaptive) operations of erosion and dilation, and
demonstrate that they constitute valid morphologi-

cal filters. We also offer some comments on the im-
plementation of AASFs.

Finally, we utilize synthetic and real images to
which Gaussian noise was added in order to show
the application of AASFs to noise-removal. By using
test 1mages, we demonstrate the better performance
of the open-close and close-open AASFs against the
correspondent ASFs, both from a quantitative and
qualitative point of view.

2 Morphological Filters

In this section we will deVelop briefly the theoretical
aspects of Morphological Filters which will be need-
ed to the definition of AASFs in section 4. For the
proofs of all the propositions in this and the next
sections, please refer to [4].

To formalize the concept of gray-level morpho-
logical filters, it is necessary first to define gray-level
images in the context of lattice theory [3], the math-
ematical underpinning of morphological operations.

Definition 2.1 We define a gray-level image as an
element of the set KE of mappings f : E — K, where
E C R? is the usually rectangular domain of defini-
tion of images and K = [0,k] is a closed interval
of Z. The set KE is provided with the partial order-
ing relation <, defined in terms of the usual ordering
relation < of integers:

f <9 flz) <g(2),
for f,g € KE.

The partially-ordered set (K, <) is a complete
lattice, that is, there is a least and a greatest element,

Ve e E (1)
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which are respectively the constant functions f = 0
and f = k.

Now we can define the concept of morpholog:-
cal filter [11], one of the most important themes in
Mathematical Morphology, both from the theoretical
and practical point of view.

Definition 2.2 A morphological filter is any oper-
ator v defined in KE which satisfies the following
requirements:

1. ¢ is increasing: f < g = ¥(f) < ¢¥(9)
2. 1 is idempotent: Y[Y(f)] = ¥(f)
forall f,g € KE.

The first requirement makes very clear the dis-
tiction between morphological filters and classical
linear filters. The latter preserve addition, which is
very appropriate when dealing, for instance, with a-
coustic or electrical signals. The visual world, howev-
er, 1s not translucid, but rather composed of opaque
objects which hide one another. This situation is
best handled by morphological filters, which are in-
creasing, that is, preserve inclusion, rather than ad-
dition. On the other hand, increasing operators gen-
erally produce a loss of information, that is, as op-
posed to the linear case, the original image cannot
be recovered after the filter is applied. The second
requirement controls this loss of information, by de-
manding that the simplification action of a morpho-
logical filter stops at the first iteraction. Morpho-
logical filters will be henceforth referred to as simply
filters.

The first step towards defining the filters we are
interested in is the notion of structuring functions,
which in turn allow us to define the specific kind of
eroston and dilation operators we utilize in this work.

Definition 2.3 Let P(E) denote the set of all sub-
sets of E. A structuring function is an element of
the set A of mappings E — P(E). In other words,
a structuring function assigns to each point x € E a
subset of E, which we call a structuring region.

We will restrict our attention in this work to
symmetrical structuring functions:

Definition 2.4 A symmetrical structuring function

I' is an element of the set A* C A, such that for all
z,yEeE,

yel(z) @ zeT(y) (2)

Now we utilize symmetrical structuring func-

tions to define the basic operators of erosion and
dilation.
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Definition 2.5 The erosion and dilation of an im-
age f € KE by a symmetrical structuring function
I' € A* are given respectively by:

er(f)(z) = min{f(y), VyeT(z)}  (3)
se(f)(z) = max{f(y), Vyel(x)}  (4)
for each x € E.

Next we define an important kind of duality.

Definition 2.6 We say that two operators ¢ and ¢
are morphological duals f:

e Y is an increasing operator
e © is an increasing operator

e The composition o is anti-extensive, that is,
p < 1, whereas the composition Yy s erten-
sive, that is, 1 < 1), where 1 denotes the identity
operator.

The pair < ¥, ¢ > is also called an adjunction,
or still they are said to form a Galois connection
between (K, <) and its dual lattice (KE,>).

Proposition 2.1 For a given symmetrical structurig
function T, the erosion er and dilation ép are mor-
phological duals.

The symmetry of the structuring function I' is
essential in establishing the morphological duality of
the erosion and dilation operators, for they guaran-
tee the anti-extensiveness and extensiveness of the
compositions érer and epér, respectively. Actually,
these compositions are so important in Mathematical
Morphology that they receive special names:

Definition 2.7 Let I' € A*. A morphological open-
ing s the operator defined by

r = érer (5)
whereas the morphological closing is given by:
ér = erdr (6)

For the sake of brevity, we shall refer to mor-
phological openings and closings as simply openings
and closings.

The most important property of openings and
closings is stated in the following proposition.

Proposition 2.2 Openings yrand closings ¢rare fil-
ters.

The following proposition limits (and guides)
the way in which we can combine openings and clos-
ings by composition in order to generate other useful
filters (see also [9])
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Proposition 2.3 Given a structuring function T' €
A*, ¢érr, rer, 1rérr and éryrer are filters.
Further, these are the only four distinct ways of com-
bining openings and closings by composition.

Hereafter, the operators ¢rvyr, yrér, yrérir
and ¢ryr¢r will be called respectively the open-close,
close-open, open-close-open and close-open-close fil-
ters.

3 Alternating Sequential Filters

Alternating sequential filters (ASF) have been uti-
lized for a long time by practitioners of Mathemati-
cal Morphology as an effective tool for the removal of
noise in corrupted images [10, 12]. ASFs constitute
a class of filters which are based on compositions of
increasingly more severe openings and closings. In
what follows, we shall define ASFs in the context of
the filters we have developed in section 2.

Definition 3.1 Let Q@ C A* be any finite family
of symmetrical structuring functions {I';}, for i =
0,1,2,...,N, such that

[;<Ty, Vi,jwith0<i<j<N (7)

in the sense that I';(xz) C Ij(x),Yz € E. The follow-
ing operators are the Alternating Sequential Filters
(ASFs):

Na = npgynry_, ---0r, (8)
Mn = MmpryMry_,..-Mmr, (9)
Sq = SIySCy_y---ST (10)
Ro = 7rryTDy_y---TT (11)
where

nr, = érr,

mr;, = 7r,¢r;

sr. = T,

T, = ¢r,m.ér,

The operators Nq, Mg, Sq and Rq are called re-
spectively the open-close, close-open, open-close-open
and close-open-close ASFs.

Theorem 3.1 The ASFs defined in (8)-(11) are fil-
ters.

For the proof of the above theorem, see [10,
pages 205-206].

The working principle of ASFs may be described
by the following argument. The definition of the
family of structuring functions 2 implies that ASFs
are compositions of openings and closings of increas-
ing “size”, that is, increasing severity. The “largest”
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openings and closings are the most effective in sup-
pressing noise, but on the other hand they introduce
the greatest distortion in the image features. The
application of the “smaller” openings and closings
before the “larger” ones has the property of mini-
mizing the distortion caused by the latter.

In practice, the most usual and almost only con-
sidered case of ASFs is the one in which each struc-
turing function I'; € Q is constant over the image,
that 1is, for all z € E:

F,(l‘) =B+ (12)
where “+” denotes the translation operation and B; €

P(E) (for i =0,1,...,N) are symmetrical structur-
ing elements (see defs. 4.5 and 4.6 below), with

Bi CBj, Vi,jwith0<i<j<N (13)

Usually, the family € is generated from a single
small convex symmetrical structuring element B €
P(FE) by letting By = B and B; given by i Minkowski
additions (denoted by the symbol “®”) of B by itself:

Bi=B®...¢B
i times

Therefore, the structuring regions (see def. 2.3)

correspondent to the usual ASFs are “fixed” all over

the image. Although the primitive structuring ele-

ment B in (14) can be selected heuristically to match

the global characteristics of the image [12], usual

ASFs assume a spatial stationarity of the image which

is not always true. Image processing techniques which

have this feature are often called fixed or non-adap-
tive.

(14)

4 Adaptive Alternating Sequential Filters

In this work, we propose a new approach to ASFs,
based on the concept of adaptive-neigborhood image
processing (ANIP). This is a well-known paradigm
in the general image processing field [6], but we sus-
pect that its aplication to morphological image pro-
cessing has been overlooked so far. According to the
ANIP principle, image operations should not assume
spatial stationarity, but rather be fitted to the local
contextual details of the image.

Applied to morphological operators like the ones
we defined in section 2, the ANIP principle means
that the structuring regions should be defined adap-
tively, taking into account the local features of the
image. The adaptive structuring regions should not
transcend natural edges of the image, so that these
edges are not degraded by the filter, and should be
overlapping, so that artificial edges are not intro-
duced. Applying the ANIP principle to the construc-
tion of ASFs yields the operators that we have called
Adaptive Alternating Sequential Filters (AASFs).
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The approach we have adopted in this particu-
lar paper is to build adaptive structuring functions
basically by a region growing process [5]. For a giv-
en point of the image, the corresponding adaptive
structuring region is grown by aggregating adjacent
points to the given point according to a similarity
criterion.

In order to make these notions formal, we must
define the concept of connected regions, which in
turn needs the concept of neighborhood. As is point-
ed out in [1], the easiest way to do this is to assume
that there is a bijection between a retangular sub-
set of Z2 and the domain of definition of images F|
so that we can can associate a pair of coordinates
(a,b) € Z* to each point = € E.

Definition 4.1 Let © = (a,b) € E. The sets Ny(x)
and Ng(z) defined as:

Na(z) = {(a,b—1), (a+1,b), (a,b+1),(a=1,b)} N E

Ns(z) = {(a,b—1), (a+1,b—1), (a+1,b), (a+1,b+1),
(a,b+1), (a—1,b+1),(a=1,b),(a—1,b—1)} N E

are called respectively the /- and 8-neighborhood as-
sociated to x.

For convenience of notation, we will denote an
either 4- or 8-neighborhood by simply N(z).

Definition 4.2 A path Pr(zq,2;) of length L (L €
Z%) is a sequence of L+1 points {xo,x1,...,2.} € E
such that x; € N(x; — 1), fori=1,...,L

Of course, there can be either 4- or 8-paths, de-
pending on the kind of neighborhood N(z) consid-
ered.

We are now able to define the following impor-
tant concept of connectedness for gray-level images:

Definition 4.3 Let f € K be a gray-level image
and z,y € E. We say the points x and y are con-
nected of order m (m € Z7%), which we denote by
2 ﬁf y. if and only if there is a path Pr(xq,xr) with
xo = and vy =y, such that

|f(z:) — f(zo)| <m, fori=1,...,L

where the | - | operator denotes the usual absolute func-
tion for integers. If two points x and y are connected
of order m, we also say simply that they are connect-
ed, and write x —; y.

Two points x,y can be therefore either 4- or 8-
connected, depending on the neighborhood consid-
ered. We remark also that if f is a binary image,
fejo, 1]E. then connectedness of order 0 reduces to
the ordinary binary connectedness case.

Anais do VIII SIBGRAPI, outubro de 1995

ULIssES DE MENDONGCA BRAGA NETO

Note that the gray-level connectedness relation-
al operator <y is not a class of equivalence. It is
obviously reflexive, that is, 2 —; #, and symmet-
rical, r —; y & y —; ¥, but it is not in general
transitive, x —; y, y—;z F & —y Z.

Based on the concept of connectedness, we de-
fine the connected regions associated to a given im-
age:

Definition 4.4 Letting f € KE, to each x' € E it is
associated a connected region RS (x) of order m, the
set of all points y € E for which xﬂf'y,

Again, we can have either 4- or 8-connected re-
gions, depending on the neighborhood considered.
We note also that the connected regions of order 0 in
a binary image f correspond to the usual connected
components of f. Moreover, it is obvious that for all
feKE veFE,

R{(z) C Rl(z), for n > m (15)

Note that if y € R/ (z) and f(y) = f(z), then ob-
viously R/ (y) = R/ (z). This means a significant
storage space savings in the implementation, for it
is not necessary to allocate distinct lists to hold the
regions for all the pixels in the image.

As a last step before the definition of the AASFs
proposed in this work, we must define the corcepts
of translation and symmetrical structuring element.

Definition 4.5 The translation of a set B € P(FE)
by a point x = (¢,d) € E is an operation between
P(E) x E and P(FE) defined in terms of the usual

sum opereration “+7 between integers:
B+z={(a+c,b+d), Y(a,b)e B}NE

By abuse of notation, we also denote by “+” the
translation operator, since it can be viewed as an ex-
tended sum operator. The neutral element of this
extended sum is an arbitrary point o = (0,0) € F
called the origin. Further, the complementary oper-
ation B — x can be defined as

B—x=B+(—x)={(a—c,b—d),¥Y(a,b) € B}NE

Definition 4.6 A symmetrical structuring element
1s a set B € P(E) for which

{a}=bCc B & {b}—aC B, VYa,bec E (16)

We are now equipped to give the following defi-
nition: '

Definition 4.7 Let f € KE be a gray-level image,
B € P(E) be a symmetrical structuring element and
I = {ti,ta,...,t,} be a sequence of integers such
that t; > t;_y, fori = 1,2,...,N. We define the
(adaptive) structuring functions I'; € Q* C A as:
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Io(z) = B+=x (17)
Tilz) = R{z(x) U(B+z) (18)

fori =1,...,N. The following operators are the

Adaptive Alternating Sequential Filters (AASF's):

ANq+ = nrynry_,-..np, (19)
AMq« = mpympy_, ... mp, (20)
ASqs = ST'n STn—y - - - ST (21)
ARa« = rpyTry_y--- hﬂo (22)

where the operators nr,, mr,, sr, and rr, are de-
fined in the same way as in def. 3.1. The opera-
tors ANqs, AMq+, ASq+ and ARq- are called re-
spectively the open-close, close-open, open-close-open
and close-open-close AASFs.

Theorem 4.1 The AASFs defined in (19)-(22) are
filters.

The proof of the above theorem is based on
showing that the structuring functions I'; match def-
inition 3.1, that is, I'; is symmetrical and Q* C A*.
and i .
I <Ij, Vi,jwith0<i<j<N
and then applying theorem 3.1 (See [4] for more de-
tails). :

The set B in the definition of the structuring
functions I'; is selected as a small symmetrical struc-
turing element, which function is to avoid the prob-
lem of connected regions consisting of a single point
(by the symmetry property of —;, those are unde-
sirable isolated non-overlapping regions)

We also point out that the lackness of transitiv-
ity of the connectedness operator, far from being a
drawback, is very important to make sure that the
structuring regions will overlap and also to reduce
the possibility that they may extend over natural
edges of the image.

5 Experimental Results

We have based our implementation of the ASFs and
AASFs on the Khoros image processing system, run-
ning in a Sun SPARC10 workstation under Unix and
X11R5. Khoros is a very popular open platform de-
veloped at New Mexico University and freely avail-
able through anonymous ftp.

For implementing the ASFs, we have used the
opening and closing operators of MMach, a Khoros
toolbox for Mathematical Morphology [2]. MMach is
also freely available through anonymous ftp at Sao
Paulo University. For the AASFs, however, we had
to write a specific program, which was integrated to
our local Khoros system, in order to implement the
operators of erosion and dilation by adaptive struc-
turing functions.
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We have used two test images. The first one
is an artificial image consisting of particles of vari-
ous shapes and sizes on a dark background (fig. 1-a),
which we call the “blobs” image, while the second
is a real image, a photograph of the surface of the
moon (fig. 2-a), the “moon” image.

We evaluated the performance of the AASFs a-
gaint the usual ASFs qualitatively and also quan-
titatively, by utilizing two similarity criterions: the
RMS and the (difference) entropy. These functionals
are applied on the absolute difference between the
filtered image and the original image, and are given
respectively by:

MS =
B N

(23)

k
H = - da(i)logy dn (i) (24)
1=0 .

where N is the total number of pixels in the image,
and dj is the normalized histogram [5] of the abso-
lute difference image. We remark also that we define
0log20 as zero, in case the histogram is zero for one
or more points in the interval [0, k].

The RMS applied to the absolute difference of
the images gives a value proportional to the pixel-by-
pixel euclidean distance between them, so it is zero
if and only if the images are equal, and it gets larger
as the difference between the images increases. Since
the ASFs and AASFs are iterated approximative fil-
ters, sometimes they converge to values slightly d-
ifferent than in the original image, specially in the
case of uniform regions, although the overall aspect
of the image is usually improved. As the RMS pe-
nalizes these variations very much, we use also the
entropy, a well-known concept of information theory
[7] which, in spite of not being a metric like the RMS,
gives a very good measure of the similarity between
images when applied to the normalized histogram of
the absolute difference. It is easy to see from (24)
that H = 0 if and only if the absolute difference is
a constant image, that is a simple global shift of the
image, which is immaterial for visual inspection pur-
poses. Likewise, the entropy will be small when the
difference between the images consists simply of a
few uniform regions, but it will increase as the dif-
ference show more and more variation. From (24),
we see that the entropy takes its largest value for

1
dh(?):k—_‘_l, fOfiIO,l,...,IC

that is, all gray levels are present in the same propor-
tion (when the image “disorder” is greatest), which
corresponds to a value Hmax = log.(k + 1), that
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(b)

(d)

Figure 1: Evaluation of the performance of ASFs and AASFs for the blobs image: (a) original image, (b)
noisy image, (¢) ASF open-close filtered image (IT=9) and (d) AASF open-close filtered image (IT=9)

is, the number of bits of the image (for instance, for
k‘ = 255, Hmax = 8)

For carrying out the experiment of noise-removal,
we first added zero-mean Gaussian noise to each of
the images (figs. 1-b and 2-b) and then compared the
performance of the ASF and AASF open-close filters
(egs. 8 and 19) for the blobs image, and the ASF and
AASF close-open filters (egs. 9 and 20) for the moon
image. The results obtained by the computation of
the RMS and entropy for these filters are presented
in tables 1 and 2. As both images are of type byte,
the entropy is in the range [0,8]. We have set the
number of iterations as N = 10 for the blobs im-
age and N = 6 for the moon image. In the case of
the blobs image we show the partial results for some
values of IT, due to limitation of space. We have u-
tilized as primitive structuring element for the ASFs
(see egs. 12 and 13) the small set N4(0)Uo, which is
the same set used for the AASFs (def. 4.7). Hence,
the first iteration (/7 = 0) gives obviously the same
result for both ASFs and AASFs.
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The set of values I (def. 4.7) used for computing
the connected regions should start with a small value,
and the separation between the values should not
be large, for then the principle of minimizing the
distortion of the “larger” filters by application of the
“smaller” ones first would be destroyed. In our case,
we have adopted the simple set I = {1,2,3,...,N}.

In the case of the blobs image, we note that for
the AASF the entropy was always decreasing for larg-
er IT (for IT=9 it is very small), while for the ASF it
decreased at the beginning, and then increased. As
to the RMS, the AASF managed to stay reasonably
close to the original noisy image, but the RMS for
the ASF rises very fast from the fourth iteration on,
indicating that the ASF filtered image becomes very
distant from the original image. The best results for
both criterions are achieved by the AASF, for IT=1
(RMS) and IT=9 (entropy). In figs. 1-c and 1-d we
see respectively the ASF and AASF filtered blobs im-
ages for IT=9. Note how the AASF, unlike the ASF,
preserved very well the edges of the constant regions,
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(c)
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(d)

Figure 2: Evaluation of the performance of ASFs and AASFs for the moon image: (a) original image, (b)
noisy image, (c) ASF close-open filtered image (IT=2) and (d) AASF close-open filtered image (IT=2)

yielding an image very close to the original, at least
by visual inspection (that is why the entropy is so
low, though the RMS is greater than the original).

For the moon image, we see that the RMS and
the entropy for the AASF were always below the orig-
inal values, with both criteria achieving a minimum
for IT=2. For the ASF, however, the values of RM-
S and entropy exceeded the original for IT>2 and
IT> 3, respectively. The best global result is again
achieved by the AASF, in the case IT=2. In figs. 2-c
and 2-d we see respectively the ASF and AASF fil-
tered moon images for IT=2. See how the fine details
(the little craters and hills) were almost completely
removed by the ASF (the degradation for larger val-
ues of IT is even worse), while they were much better
preserved by the AASF.

6 Conclusion

We have shown that the application of the adaptive-
neighborhood image processing paradigm to Mathe-

matical Morphology can give good results. We have
developed a rigorous definition of AASFs, the Adap-
tive Alternating Sequential Filters, and have demon-
strated their superior performance against the usual
ASFs, for the synthetic and real images utilized. We
have evaluated the two techniques not only qualita-
tively, but have employed also numerical measures
of the similarity between the filtered images and the
original ones. We think that the idea of building
morphological operators which locally adapt to the
features of an image is very promising, and there is
certainly much work to be done on this subject.
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Filter Criterion | IT=0 |IT=1|IT=2|IT=3|IT=5|IT=7|IT=9

ASF open-close RMS 5.372 5.394 7.863 | 13.079 | 24.080 | 35.668 | 45.648
Entropy 3.452 3.102 2.869 2.785 2.814 2.983 3.038

AASF open-close RMS 5.372 5.333 6.557 8.350 9.870 8.097 | 14.859
Entropy 3.452 3.432 3.240 3.465 2.164 1.748 1.276

RMS of original noisy image

7.942

Entropy of original noisy image = 4.081

Table 1: Results of the application of the ASF and AASF open-close filters to the blobs image

Filter Criterion | IT=0 |IT=1|IT=2|IT=3|IT=4|1IT=5

ASF close-open RMS 8.046 9.340 | 10.462 | 11.273 | 12.080 | 12.545
Entropy 4.078 4.256 4.387 4.464 4.536 4.590

AASF close-open RMS 8.046 8.014 7.991 8.141 8.475 8.939
Entropy 4.078 4.070 4.067 4.093 4.155 4.235

RMS of original noisy image = 9.927

Entropy of original noisy image = '4.398

Table 2: Results of the application of the ASF and AASF close-open filters to the moon image
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