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Abstract. Radiosity is a sampling and reconstruction method that approximates radiance func-
tion of real environments. Bad scene sampling leads to many artifacts in final images. Discontinuity
meshing can provide initial meshing that warrants good sampling for regions with discontinuities
in the illumination function. Although, that technique is unable to work in regions with no dis-
continuities. In such situations, adaptive subdivision can improve sampling. Even using adequate
sampling, bad results are achieved if inadequate reconstruction techniques are being used. Good
results have been obtained by using bicubic reconstruction of illumination functions. This paper
analyses different combinations of sampling and reconstruction techniques and their contributions

to improve realistic imagery.

1 Introduction

Surface’s radiosity describes an arbitrary scalar func-
tion whose function space dimension is infinite. This
means that solving the radiosity equation for a point
z on a surface does not determine the radiosity at
an immediately neighboring location [Cohen-Wallace
(1993)]. As a result, a full and exact solution to the
radiosity equation requires either finding the exact
functional form of the radiosity across each surface
or computing radiosity values for an infinite number
of surface points. Because these are impossible tasks,
one must use an approximate solution. The radios-
ity method computes an approximation of radiance
values at discrete locations in the environment which
are interpolated during the reconstruction step.

Traditionally, the radiosity method involves four
steps (figure 1): environment meshing, form factors
calculation, linear system of equations solution and
reconstruction.

FORM SYSTEM OF
MESHING FACTORS EQUATIONS JONSTRUCTION
|_carcuiaTion | SOLUTION

Figure 1: Usual radiosity pipeline.

Form factors are geometrical relationships among
elements that compose the environment. Their eval-
uation is the most expensive part of the radiosity
method. Although there is no analitycal solution
to the general form factor integral when involving

complex shapes or occlusions, numerical methods are
used to approximate that integral as accurate as de-
sired [Cohen-Greenberg (1985)], [Wallace-Elmquist-
Haines (1989)], [Schroder-Hanrahan (1993)], [Malley
(1988)].

Linear systems solution and form factors cal-
culation are obtained using numerical methods and
the accuracy of the results can be controlled. On
the other hand, as the radiosity algorithm is based
on sampling and reconstruction of the illumination
function, it is very sensitive to sampled points and in-
terpolation techniques used. In this way, impressive
improvements to the final images can be obtained by
driving effort to meshing and reconstruction steps.

Typical radiosity algorithms approximate illu-
mination functions simulating patches with constant
radiosity and use interpolation techniques to smooth
results. The real illumination functions of scenes
with occlusion are not piecewise smooth nor totally
smooth. They are piecewise smooth (C*)! within
regions bounded by discontinuities of various orders?.

1Ck indicates that a function is continuous in all deriva-
tives up to and including k. C° indicates that a function is
continuous in value (there are no sudden jumps). C! indicates
continuity in slope (there are no kinks), and C* indicates that
the function is smooth (continuous in all derivatives) [Cohen-
Wallace (1993)].

2A function has a D* discontinuity at z if it is C*—1 but
not C* there. D° indicates discontinuity in the function itself
(value discontinuity). D! and D? indicate discontinuities in
the first and second derivatives of the function, respectively
[Cohen-Wallace (1993)].
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The discontinuities are caused by transitions in oc-
clusion between sources and receivers of light and
can only be resolved at element boundaries, since the
polynomial basis functions (interpolation) are con-
tinuous on the element interior [Bastos-Sousa-Ferrei-
ra (1993)].

Sampling strategies include discontinuity mesh-
ing (a priori meshing) [Heckbert (1992)], [Lischinski-
Tampieri-Greenberg (1992)], [Drettakis (1994)] and
adaptive subdivision (a posteriori subdivision) [Co-
hen et al. (1986)] techniques. Traditional rendering
techniques used for reconstructing the illumination
functions are constant (flat), bilinear and quadratic
interpolations, but bicubic interpolation has shown
to be necessary when continuity of first and second
derivatives in the reconstructed function is desired
[Bastos-Sousa-Ferreira (1993)).

This paper analyses combined uses of disconti-
nuity meshing and adaptive subdivision either with
bilinear or bicubic interpolation of the radiosity func-
tion. It shows that the combined use of a priori
meshing with bicubic reconstruction leads to good
compromise between image accuracy and computa-
tional costs involved.

2 Radiosity Matrix Solution

Algorithms used for solving radiosity linear systems
of equations can be physically interpreted in two ba-
sic ways: gathering and shooting energy methods.

The first approach for solving the systems of
equations was the application of algorithms such as
Gauss Elimination [Goral et. al. (1984)] and Gauss-
Seidel [Cohen-Greenberg (1985)]. This approach can
be physically understood as gathering for each patch
the energy being emitted and/or reflected by all pa-
tches in the scene. This means that after each step
(each patch processed) the algorithm computes the
final radiosity of one patch. For getting an image of
the scene with no unprocessed patches (black patches)
it is necessary to process every patch in the scene,
with a computational cost of O(n?), where n is the
number of patches in the scene.

In 1988, Cohen et al. [Cohen et al. (1988)] pre-
sented a progressive refinement method for solving
the systems of equations based on the opposite way
of light. At each step of the algorithm the patch with
the largest unshot radiosity shoots its energy to all
other patches. This means that after each step of
the method (with computational cost of O(n)) the
radiosity of every patch is updated and a new im-
age can be generated each time closer to the final
solution.

For patches with constant radiosity the progres-
sive radiosity method follows the pseudocode pre-
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sented in Algorithm 1.

1. for(i = each patech){
2 RAD; = EMISSIVITY;,
3 unshotRAD, = EMISSIVITY;;
4.}

5. while(not converged){
6 i = patch with largest unshotRAD;» AREA;;

7 for(j = each patch){

8 Arad = unshotRAD« REFL;« FORM _FACT;;;
9. unshotRAD; = unshotRAD; + Arad,

10. RAD; = RAD; + Arad,

11. }

12. unshotRAD, = 0;
13. Display new image;
14. }

Algorithm 1: Pseudocode for progressive refinement
radiosity.

3 Meshing strategies

Scene discretization is a sampling task which can lead
to artifacts in the final images. Using large patches
in regions of the scene with high radiosity gradients
results in inadequate and low precision reconstruc-
tion funtions (radiosity) at those regions. The simple
use of finer meshes strongly increases the computa-
tional cost and can be not enough for resolving some
situations as, for instance, bad discontinuity repre-
sentations in illumination functions [Bastos-Sousa-
Ferreira (1993)] [Cohen-Wallace (1993)]. Ideally, the
domain must be subdivided more finely only where
it will improve the accuracy significantly.

 Automatic meshing strategies can or can not use
information about the illumination function behav-
ior. If no information is available, only naive uniform
or non-uniform subdivision can be applied. Both
approaches are inadequate even for simple environ-
ments. The use of uniform meshing will frequently
distribute the errors in the approximation of the ra-
diosity function in an unevenly way over the mesh.
As computational effort is equally distributed over
the mesh, it has very unequal contributions to the
resulting accuracy. Non-uniform meshing obtained
without any knowledge of the radiosity function be-
havior can not warrant better computational effort
distribuition than a uniform one.

Obtaining an optimal mesh normally requires
some knowledge about the illumination function.
Techniques that use such information can be char-
acterized as either a priori or a posteriori. A priori
techniques are used to determine discontinuity edges
in the radiosity function before the solution is per-
formed. After solution has been totally or parcially
performed a posteriori techniques are used to refine
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the mesh in regions with high radiosity gradients and
no discontinuities.

3.1 A Priori Meshing - Discontinuity Mesh-
ing

Discontinuity meshing is an a priori technique in
which the original mesh is improved by generating
edges corresponding to boundaries involving shadow
regions. These include lit-to-penumbra, penumbra-
to-penumbra and penumbra-to-umbra transitions.
Such edges are obtained based on purely geometric
informations.

Discontinuity edges are used to represent discon-
tinuities in value (C?), and in first (C!) and second
(C?) derivatives of the radiosity function that pro-
vide clues to three-dimensional shape, proximity and
other geometrical relationships. The failure to cor-
rectly reproduce discontinuities can degrade image
quality dramatically [Cohen-Wallace (1993)].

Discontinuities in value of the radiosity func-
tion can occur where one surface touches another.
Discontinuities in first and second derivatives of ra-
diosity function can occur at umbra and penumbra
boundaries, as well as between different penumbra
regions.

Light source

& Occluder

Figure 2: A prio'ri meshing

Figure 2 shows the discontinuity edges created
by an area light source on a reflector patch shadowed
by an occluder. All the patches are aligned rectan-
gles on parallel planes. The discontinuity edges are
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generated by projecting each edge of the occluder
onto the reflector under the point of view of each
vertex of the light source. For instance, vertex I of
the light source projects edge A of the occluder onto
the reflector from point /4B to point 14D.

The implementation of discontinuity meshing in
Algorithm 1 can be done before line 1 (before per-
forming the solution of the radiosity matrix). The
simplest implementation (brute force) has computa-
tional cost of O(n®), where n is the number of patches
in the scene [Lischinski-Tampieri-Greenberg (1992)].

It must be noted that light sources and occlud-
ers have to be processed as a whole and not by their
compounding patches. That is, if a(n) light souce
(occluder) is subdivided into patches, the disconti-
nuity meshing algorithm has to process the vertices
(edges) of the whole light source (occluder) without
taking into account its subdivision. This is true be-
cause across a light source there is no change in emis-
sivity even if it is composed by some patches. In the
same way, across an occluder there is no change in
visibility between reflector and light source. This
observation does not reduce the computational cost
order of the discontinuity meshing algorithm, but re-
duces its final computational cost (reducing the value
of n by grouping patches as objects).

3.2 A Posteriort Subdivision - Gradients Re-
duction

A posteriori meshing algorithms refine the mesh af-
ter the solution of the radiosity matrix has been at
least partially completed. An initial approximation
is obtained using a mesh determined a priori. That
mesh is then refined in regions where the local gra-
dient is high, using information such as the radiosity
gradient provided by the initial approximation of the
radiosity function. Adaptive subdivision decreases
the local error by increasing the mesh density and
it has been used in almost all radiosity a posteriori
meshing implementations.

A posteriori refinement is not very effective for
reducing errors in the neighborhood of discontinu-
ites because it generally does not completely elimi-
nate artifacts even when using high density meshes.
On the other hand, it can be very effective when
high gradients are entirely contained in regions that
do not exhibit discontinuities (e.g., completely lit re-
gions). In such situations, the discontinuity meshing
algorithm can not act.

The implementation of adaptive subdivision in
Algorithm 1 can be done between lines 12 and 13 (af-
ter partially performing the solution of the radiosity
matrix). The computational cost of applying adap-
tive subdivision is O(n) for each step of the progres-
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sive refinement algorithm, where n is the number of
patches in the scene.

In this work, after processing each shooting patch
all patches are processed evaluating vertices radios-
ity standard deviation for each patch. If the stan-
dard deviation is higher than an informed thresh-
old the patch is binary subdivided. Another way of
controlling the adaptive subdivision is limiting the
maximum depth any quadtree can reach. The data
structure used to keep that information is a quadtree
for each patch. After applying the adaptive subdi-
vision algorithm it is necessary to compute radios-
ity value at every new (generated) vertex and patch.
The traditional approach is to use bilinear interpola-
tion for approximating radiosity at the new vertices
and patches. In this work, a gathering approach has
been used to evaluate radiosity at those new vertices
and patches. Along the progressive refinement algo-
rithm a list of patches that have already shot their
energy is kept. After binary subdividing a patch, ra-
diosity is evaluated at the new vertices by gathering
the energy from the patches in that list. This ap-
proach warrants more accurate radiosity values for
the new vertices than the traditional one. Figure 6
illutrates the improvement provided by adaptive sub-
division over the uniform mesh of Figure 5.

4 Reconstruction Step

The last step in radiosity pipeline is reconstruction.
Images are generated interpolating sampled values of
the radiosity function.

Since discontinuities in the illumination func-
tions may be of various orders, interpolation schemes
that enforce the appropriate degree of continuity at a
particular patch boundary are required. The failure
to correctly resolve those discontinuities can result
in highly visible artifacts [Cohen-Wallace (1993)).

There are some reconstruction models, and the
simplest one is the constant or faceted shading - a sin-
gle value of the illumination function is used to shade
an entire patch. As the name suggests, this model
presents images with faceted appearance, caused by
value discontinuities in the reconstruction function
at the edges of the mesh (C-! - discontinuous in
value).

To reduce discontinuity problems a bilinear in-
terpolation model can be used. Bilinear interpola-
tion can ensure continuity of value or magnitude,
but cannot eliminate derivative discontinuities (C°
- continuous in value, discontinuous in derivative).

Discontinuities in value and/or in derivative in
places where the illumination function should be
smooth may appear as Mach band effects (artifacts)
in generated images. To obtain reconstruction func-
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tions continuously differentiable higher-order inter-
polation schemes must be used [Bastos-Sousa-Fer-
reira (1993)].

Although continuity of value and derivative is
desirable for reconstruction functions, care must be
taken in cases where the illumination function pre-
sents magnitude and/or slope discontinuities. To be
faithful to the illumination function a reconstruction
function should be continuous where the illumination
function is continuous and also preserve its disconti-
nuities.

Quadratic interpolation schemes can avoid Mach
band effects in almost every cases, but cannot guar-
antee derivative continuity between adjacent patches
nor correctly handle derivative discontinuities.

A bicubic reconstruction scheme based on para-
metric bicubic Hermite interpolation has been used
to correctly handle all kind of continuity/discontinui-
ties in the reconstruction function up to the second
derivative [Bastos-Sousa-Ferreira (1993)].

4.1 Reconstruction Problem

The reconstruction problem corresponds to correctly
interpolate radiosity functions based on sampled
points warranting that their continuities and discon-
tinuities be perfectly represented.

In radiosity the objects of a scene are tesselated
in geometrical patches. For simplicity the bicubic re-
construction function is tesselated in reconstruction
patches directly associated to geometrical ones. For
each geometrical patch there is a bicubic Hermite one
for each color component (Red, Green and Blue).

It was assumed that continuity of the geomet-
rical normal vector implies continuity of the recon-
struction function. However, the a prior: discontinu-
ity meshing algorithm may indicate any kind of dis-
continuity at any point of the scene. In this way, all
the reconstruction patches that share a vertex must
share a single tangent plane to the radiosity function
(gradient vector) at that point, unless a discontinu-
ity is detected there [Bastos-Sousa-Ferreira (1993)].
If there is a discontinuity at a geometrical point there
will be a vertex for each patch sharing the same geo-
metrical properties. These vertices will have different
gradient vectors.

The correct reconstruction of discontinuities be-
tween patches requires that adjacent elements do not
share vertices (nodes) along such boundaries. A ver-
tex is duplicated if there is any situation that causes
a discontinuity in the illumination function at that
vertex. In the same way, an edge is duplicated if
there is any discontinuity, at least, at one of its ver-
tices. A discontinuity between patches at a vertex or
edge occurs if:
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e the geometrical normal vector is discontinuous;
o the reflectivity is discontinuous;
e the emissivity is discontinuous;

e it is a part of the boundary between umbra and
penumbra areas;

® it is a part of the boundary between penumbra
areas or

e it is a part of the boundary between penumbra
and fully lit areas.

Keeping all these rules in mind a final mesh is
created, the radiosity at each vertex computed and
an approximation of the gradient vector of the illumi-
nation function obtained for each vertex. Using the
radiosity value and gradient vector at each vertex of
a patch, the final color component of a pixel is eval-
uated using bicubic Hermite interpolation for any
patch in the scene [Bastos-Sousa-Ferreira (1993)).

Special attention must be given to the prob-
lem of mapping discontinuity edges when it is neces-
sary to subdivide a reflector introducing discontinu-
ity vertices. T-vertices [Cohen-Wallace (1993)] (see,
for instance, figure 2 vertex 3AD) must be avoided
in order to warrant good reconstructions. A sim-
ple solution able to handle T-vertices is to propagate
every new discontinuity edge beyond its discontinu-
ity vertices along the patches and provide that these
prolonged edges be treated as continuity ones (fig-
ure 3). This can be achieved by duplicating discon-
tinuity vertices as explained above and keeping just
one vertex for each continuity geometrical point. The
inability to handle such situations introduces some
artifacts which can be perceived as Mach band ef-
fects (figures 9 and 10).

— Discontinuity Edges
-- Continuity Edges

Figure 3: T-vertices elimination by prolonged edges.

Other situations that require special attention
are those in which no umbra is generated. This can
occur when either the relative size of the occluder

259

is small if compared to the light source (figure 4) or
when the occluder size is small if compared to its dis-
tance to the reflector. In such situations, the use of
the simple discontinuity meshing strategy described
in section 3.1 is not enough to produce all the actual
discontinuity edges (some penumbra-to-lit areas dis-
continuities are not represented). This problem can
be solved by adding to that strategy the projection of
the light source edges through the occluder vertices
onto the reflector.

Light Source

Figure 4: Shadow with no umbra.

5 Results

The combined approach of discontinuity meshing and
adaptive subdivision techniques, and bilinear and
bicubic reconstruction is being implemented on Sil-
icon Graphics Iris Crimson workstations and on a
CRAY Y-MP2E in C. It was used a simple geo-
metrical scene with one light source, one occluder
and two shadowed patches. Form factors compu-
tation was carried out by using ray casting algo-
rithm [Wallace-Elmquist-Haines (1989)] undersam-
pling shooters only at their centers. The results in
Figures 5 to 8 are presented with mesh and corre-
sponding bilinear (traditional) reconstruction.
Figure 5 presents the uniform initial mesh 37
vertices) for the scene with its corresponding im-
age. It can be seen that the mesh cannot correctly
represent the shadow. Figure 6 presents the mesh
(1375 vertices) generated with adaptive subdivision
and maximum quadtree depth level equal to four.
It can be noted that there is no distinction between
umbra and penumbra areas, although directions of
these boundaries coincide with binary subdivision di-
rections. Figure 7 presents the mesh (149 vertices)
created using the discontinuity meshing algorithm.
Although there are fewer patches than with adaptive
subdivision, the shadow is perfectly described split-
ing umbra, penumbra and lit areas. Figure 8 presents
the mesh (2217 vertices) created using both dis-
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Figure 6: A posteriori meshing and image.

continuity meshing and adaptive subdivision algo-
rithms (with maximum quadtree depth level equal
to four). The abscence of penumbra is explained by
that the shooters were sampled just at their central
points for form factors computation.

In order to compare bicubic and bilinear recon-
structions it was used one mesh (figure 7) obtained
with discontinuity subdivision, since bicubic recon-
struction must exhibit continuity in regions with no
shadows and preserve discontinuities between discon-
tinuous regions. Figure 9 presents the image gener-
ated using bilinear interpolation between vertices of
the same patch and figure 10 is the corresponding
image for bicubic reconstruction. It can be noted
that Mach band effects were avoided in the vertical
patch when using bicubic interpolation scheme and
that the image looks more realistic. Mach band ef-
fects observed on the horizontal reflector patch of
figure 10 occur as consequence of not treating pro-
longed edges (figure 3) as continuity ones.

6 Relative Error Comparison

In order to compare the results accuracy obtained
with discontinuity meshing, adaptive subdivision, bi-
linear and bicubic reconstructions techniques a su-
persampled reference image of the scene was used.
The two shadowed patches were uniformly subdi-
vided into 10,000 polygons each and the light source
Anais do VII SIBGRAPI, novembro de 1994
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Figure 8: Final mesh and image.

and the occluder were not subdivided (20,012 ver-
tices). Bilinear interpolation was used as reconstruc-
tion technique and form factors were computed using
ray casting with 16 sampling points. The relative er-
ror was computed by taking the absolute value of
the subtraction between the RGB values of the ref-
erence image and those of each image to be compared
divided by the maximum possible relative error for
each pixel. To sample all regions of interest it was
chosen a vertical central line. Important transition
points are depicted in figure 11 as letters from A to
J and refered on figures 12 and 13. These letters
correspond to the following points:

A top boundary of the vertical patch;

B sampling edge of the initial mesh;

C top boundary of the occluder;

D bottom boundary of the occluder;

E top boundary of the penumbra region;

F top boundary of the umbra region;

G bottom boundary of the vertical patch;
H bottom boundary of the umbra region;

I bottom boundary of the penumbra region;

J bottom boundary of the horizontal patch.
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Figure 9: A priori mesh and bilinear interpolation.

Figure 12 presents the relative error of the red
component of both a priori and a posteriori meshing
techniques combined with bilinear reconstruction. It
can be observed that in regions with high gradient
in the radiosity function containing no discontinu-
ities (areas from A to C) a posteriori subdivision pre-
sented more accurate results. On the other hand, a
priori meshing was superior in regions that present
discontinuities (from H to I).

Another measure used was the relative error dis-
tribution over the images. It was obtained as the sum
of relative errors of all pixels divided by the number
of pixels of the image. Using this approach a priori
strategy shown to be 21.6% more accurate than a
posterior: strategy.

Figure 13 presents the relative error of the red
component in a priori and a posteriori subdivisions
reconstructed with bilinear interpolation compared
with a priori subdivision reconstructed with bicubic
interpolation. It must be noted that in the bilin-
ear case were used 2217 vertices while in the bicubic
case only 149 sampling points. It can be observed
that in regions from A to E (including high gradient
regions) and from H to I (a penumbra region) bicu-
bic interpolation has shown to be more effective on
reconstructing the radiosity function. On the other
hand, high sampling rates were superior in regions
with low gradient (G to H and I to J).

The relative error distribution observed in bicu-
bic and bilinear reconstructions has shown to be
22.7% lesser in bicubic case although it used only
6.7% of the total number of sampling points used in

»

8

/ \

Figure 11: Reference mesh for relative error analysis.

the bilinear case.

7 Conclusion and Further Work

It was presented an analysis of the combined use
of discontinuity meshing and adaptive subdivision
techniques, and bilinear and bicubic reconstructions.
Combination of discontinuity meshing with bicubic
reconstruction has proved to be an excellent com-
promise between image accuracy and computational
costs involved, requiring less dense meshes and pro-
viding better results than those obtained with finer
meshes resonstructed using bilinear interpolation.
The additional computation associated to bicubic re-
construction is not significant if compared to the cost
of computing radiosity at sampling points.

Aspects of the present technique that suggest
further research are:

Reduction of the computational cost of the dis-
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Figure 12: Comparison of relative error (red compo-
nent) for images obtained with a priori and a poste-
riori subdivision techniques.
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Figure 13: Comparison of relative error (red compo-
nent) for images obtained with bilinear and bicubic
reconstruction techniques.

continuity meshing algorithm by using vozels
(octrees) for selecting patches before applying
the algorithm.

For interactive applications the progressive radi-
osity approach [Cohen et al. (1988)] could be
combined with a progressive meshing technique.
In such an approach, a priori meshing would be
applied before each step of the progressive re-
finement algorithm only for the current shooter
if it is an emitter. After each step of the con-
vergence algorithm a posteriori meshing is ap-
plied for the current mesh. Rapid convergence
would be achieved and making as much progress
as possible at the beginning of the algorithm
would be preserved. It would also eliminate un-
necessary wait for a complete traditional a pri-

Anais do VII SIBGRAPI, novembro de 1994

R. M. R. DE BASTOS, M. M. DE OLIVEIRA NETO

ort meshing, allowing the presentation of inter-
mediate results keeping the benefits of a prior:
meshing.
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