Interactive Construction of L-Systems in 2- and 3-Space

CHRISTOPH STREIT
HANSPETER BIERI

University of Berne
Institut fiir Informatik und angewandte Mathematik
Léanggassstrasse 51, CH-3012 Berne, Switzerland
streit@iam.unibe.ch
bieriQ@iam.unibe.ch

Abstract.

This paper presents a new approach to the construction of L-systems in computer

graphics. We describe methods for the graphical representation of L-system productions and their
interactive manipulation in 2- and 3-space. Their use makes it easy, even for unexperienced users,
to apply the formalism of L-systems for the purpose of geometric modeling.

1 Introduction

Lindenmayer systems [Lin68] - or L-systems for
short — are a powerful tool for the generation of a
large variety of geometric objects. However, it is a
nontrivial task, in general, to find the descriptions
that will lead to the desired models.

An important factor with the design of a tool for
the interactive manipulation of L-systems is its sim-
plicity for the user. Direct manipulation techniques
[Zie91] are widely used. For constructions in 2- and
3-space, a number of methods are known to display
and manipulate geometric models. But most of them
are not intuitive enough to the user. In this paper we
present a new approach by introducing Edge Trees to-
gether with an appropriate construction mechanism
(in form of a graphical editor), which we expect to
improve this situation.

2 L-systems

L-systems are a type of string rewriting systems. Re-
writing is a technique for defining complex objects
by repeatedly replacing parts of a string, starting
from a simple initial string and using a set of rewrit-
ing rules or productions. Each production replaces
a left-hand side (LHS, predecessor) by a right-hand
side (RHS, successor). An L-system definition con-
sists of productions and an initial string, the aziom.
The production a — ab, e.g., means that the sym-
bol a is to be replaced by the string ab. The LHS
of an L-system production consists always of a sin-
gle symbol to be replaced by the production’s RHS.
The rewriting process starts at the axiom w, and the
productions are applied in parallel to the appropri-
ate symbols. If no production is provided for a given
predecessor, the identity production is assumed to

belong to the set of productions.

There are many classes of L-systems. Through-
out this paper we will only use deterministic and
context-free L-systems which normally are paramet-
ric. As we will mainly work with simple examples,
not much formalism will be needed. For detailed for-
mal definitions and discussions of the properties of
various L-systems the reader is referred to [RS74],
[RS92] [PL90], [Str93].

The following example of an L-system has only
two productions. The string rewriting process is
shown for the first five derivation steps:

b
|
a
w: b [
P a—ab ab
p2: b—oa /1
ab a

L

ab a ab

/I LN

ab a abab a

3 Turtle interpretation of strings

When modeling geometric objects by means of L-
systems, a graphical interpretation of the derived
strings is desired. Several approaches have been pro-
posed to this problem. Prusinkiewicz [PL90] intro-
duced an interpretation based on turtle graphics
[Ad81] that is widely used nowadays.

The idea consists in associating turtle commands
with L-system symbols. After generating the desired
number of derivations, i.e. executing the L-system,
all turtle commands associated with symbols of the
resulting string are executed, i.e. the L-system is

Anais do VII SIBGRAPI (1994) 109-115

110

w: +(30)F+(120)F+(120)F

p1: F — F[+(60)F—(120)F]—(60)F+(120)F—(60)F

(a)

C. STREIT, H. BIERI

P1: —

(b) (c)

Figure 1: Representation of an extended Koch curve: (a) textual, (b) graphical, (c) the result after 4

derivation steps.

interpreted. It is advantageous with L-systems to
keep the interpretation step independent from the
execution step. In the resulting string there may
also occur meta symbols, i.e. with no turtle com-
mands associated. These symbols serve as dummies
and allow a modular definition of the productions.
E.g. the definition for a tree could include a produc-
tion describing the trunk: trunk — ... branch, and
productions describing the branches and the leaves:
branch — ... leaf, leaf — In this example
trunk, branch and leaf represent meta symbols.
They may be replaced, e.g., when the model is re-
fined. Meta symbols are ignored when executing the
turtle commands.

Interpreting an L-system by executing turtle
commands results in the representation of a geomet-
ric object, as it is desired. It is necessary, of course,
to associate the appropriate turtle commands with
the symbols used by the L-system.

At any time, a turtle is represented by its cur-
rent state, i.e. its position and orientation. The fol-
lowing turtle commands are common when generat-
ing objects in 2-space:

F,F(d) Move forward a distance of length
d and draw the corresponding line

segment.

f, {(d) Move forward a distance of length

d without drawing a line segment.
+, +(6)
) —(6)

[Push the current state of the turtle
onto a pushdown stack.

Turn to the left by angle é.
Turn to the right by angle 6.

] Pop the top element from the stack
and make it the current state of the
turtle.

If the commands F, £, + and - are used without
parameters, a common setting is d = 1, § = 90°.

Anais do VII SIBGRAPI, novembro de 1994

[and] indicate the beginning and the end of an
additional path.

Turtle interpretation of L-systems is also pos-
sible in 3-space [Ad81], [PL90]. To control the ad-
ditional degree of freedom two rotation commands
have to be added. For examples, we refer to the fol-
lowing sections.

4 Graphical representation of L-systems

The axiom and the productions of an L-system are
normally defined tertually. When using turtle graph-
ics, the result looks as the example in Figure 1(a)
shows, i.e. it is rather difficult to understand by a
nonexpert. Much more user-friendly is specifying L-
systems graphically, as indicated in Figure 1(b). Of
course, the result must be the same, in this case an
extended Koch curve, as shown in Figure 1(c).

In the following, we will present a new graphical
representation which has proved to be surprisingly
user-friendly, in particular with regard to complex
applications in 3-space. For as users we would like to
‘play’ interactively and comfortably with L-systems,
i.e. to modify their definition and to get quickly a
graphical representation of the result. The main tool
we propose for this purpose is the EdgeTree which
will be introduced in the next section.

4.1 The EdgeTree

The EdgeTree is a new graphical tool for the interac-
tive specification of L-systems. It is also a (simple)
data structure.

Figure 2 shows the ordinary textual represen-
tation of the RHS of a production and the equiva-
lent graphical representation as an EdgeTree: Each
F-command is replaced by a line segment, and each
f-command by a dotted line segment. These line seg-
ments are oriented. The position of the turtle after a
move is indicated by a small white square. The meta
symbol Leaf is represented as a marker attached to
the representation of the command to which it be-
longs. In the same way, any production using turtle

INTERACTIVE CONSTRUCTION OF L-SYSTEMS IN 2- AND 3-SPACE

17

Leaf

F [+1] [-Leaf] F

Figure 2: A textual turtle representation and its cor-
responding EdgeTree.

commands can be represented graphically by means
of EdgeTrees (one for the LHS and one for the RHS),
and the same holds for axioms. This turns out to be
very practical for the user working interactively.

An EdgeTree can easily be implemented by a
data structure, i.e. an ordered general tree - which
we call EdgeTree, too. The following code segment
in C defines the node structure of an EdgeTree:

struct EdgeTreeNode {
EdgeTreeNode* parent;
EdgeTreeNodeList* children;
Vector to; /* terminal point of the edge */
int endMarker;

1:

The end marker contained in the code segment
indicates that we have not yet completely defined
what an EdgeTree is. We will complete its definition
in Section 4.3.

4.2 Operations with EdgeTrees

It must be possible to create and modify EdgeTrees
interactively. That is, we need a suitable graphical
editor. There are many operations which appear to
be useful when working with EdgeTrees. However,
our experience has shown that we only need a very
small set of 5 operations in order to construct and
manipulate EdgeTrees interactively. They are shown
in Figure 3, and it is seen that 3 of them change the
topology of the given EdgeTree and the remaining 2
only its appearance on the screen.

4.3 Conversions

The EdgeTree turns out to be a very convenient tool
to work interactively with L-systems for modeling
geometric objects. On the other hand, it is conve-
nient to make use of standard packages for executing
the rewriting process of L-systems. These packages
work with the textual representation of turtle com-
mands. Hence, it must be possible to convert each
representation into the other.

111

Y=Y v=T

(a) Add (b) Insert
(c) Delete
(d) Move (e) Rotate

Figure 3: Operations with EdgeTrees.

It is obvious from the foregoing that the Ed-
geTree belonging to the textually represented LHS
or RHS of a production is determined uniquely and
can easily be created. The inverse conversion is not
so straightforward: It is not hard to see, e.g., that
the EdgeTree on the right of Figure 4 corresponds (at

Figure 4: EdgeTree representation of a simple pro-
duction.

least) to the RHS of each of the following 4 produc-
tions. That is, the conversion EdgeTree — textual
representation is not unique, in general.

a) F-F[+@B0)F][—-(30)F]F
b) F—F[[F][—(30) F] +(30) F]
) F—F[+(30)F][F]—(30)F
d) F—=F[F][—-(30)F]+(30)F
Starting at the axiom w = F and executing

5 derivation steps in each case, we get 4 different
objects, as Figure 5 shows.

Anais do VII SIBGRAPI, novembro de 1994

112

Figure 5: Results after 5 derivation steps.

In order to get a one-to-one correspondence we
refine our definition of the EdgeTree by marking one
of its nodes as its terminal point. This point will be
called end marker (see structure EdgeTreeNode on
page 3). It indicates the final position of the turtle
after having moved through the whole tree and will
be represented by a small filled circle. It is assumed
that the starting position of the turtle is always at
the root of the tree. Figure 4 indicates the beginning
and the end of a replacement by means of 2 dashed
lines. Now, the EdgeTree of the RHS corresponds
only to the first of the 4 textual representations.

The following algorithm in pseudo-C transforms
an EdgeTree data structure to its corresponding tex-
tual representation. The algorithm traverses the Ed-
geTree in preorder. For each node it visits, turtle
commands are generated and convertToTurtle is
recursively called for all child nodes.

void convertToTurtle(EdgeTreeNode* node)

{
Turtle t;
generateCommands (node, t);

for (all children n of node) {
if (no edge in the subtree of n is
terminated by the end marker) {
save turtle t on stack
print(" [u) ;

generateCommands(n, t);

Anais do VII SIBGRAPI, novembro de 1994

C. STREIT, H. BIERI

convertToTurtle(n);

if (no edge in the subtree of n is
terminated by the end marker) {
restore turtle from stack
print("]");

The function generateCommands determines the
rotation and move commands for the graphical rep-
resentation of the edge just visited. It has to distin-
guish between the 2D and 3D case. For the 2D case
one rotation command suffices, whereas in 3D two
rotation commands are necessary.

Obviously, our algorithm assumes that the end
marker always resides in the last branch visited dur-
ing the traversal. This can easily be ensured by first
executing a normalization step, as follows:

void normalize(EdgeTreeNode* node)

{
for (all children n of node)
if (subtree of n contains the end marker) {
move n at the end of the children’s list
normalize(n);

}

Figure 6 illustrates how our algorithm finds the
textual representation of the RHS EdgeTree in Fig-
ure 4 starting from its data structure. Numbers show
in which order the edges are traversed, and the fol-
lowing list indicates how the required turtle com-
mands are associated by convertToTurtle.

®
4

Figure 6: An example illustrating the execution of
convertToTurtle.

1. Edge 1 is visited and the corresponding sub-
tree contains the end marker
- F

2. No end marker found for edge 2

— [-(45)F]

3. No end marker found for edge 3

4. Edge 4 has the end marker attached
- F

INTERACTIVE CONSTRUCTION OF L-SYSTEMS IN 2- AND 3-SPACE

5 The editor GEdit

The EdgeTree data structure together with the op-
erations shown in Figure 3 form the kernel of our
graphical editor GEdit for the interactive creation
and manipulation of L-systems. When designing
GEdit, we had especially the inexperienced user in
mind and tried to make ‘playing’ with L-systems in
2- and 3-space for him (or her) intuitive and easy. We
implemented direct manipulation techniques [Zie91],
above all a new method for constructing in 3-space
(cf. Figure 9).
GEdit consists of the following three parts:

1. The main window (cf. Figure 7). It displays the
current L-system definition and is the starting
point for all subsequent manipulations.

2. The aziom editor (cf. Figure 10). It allows the
interactive construction of a single EdgeTree in
2- or 3-space. Our new technique to make con-
structions in 3-space easier, is included. Switch-
ing from the plain 2D view to the perspective
3D view is possible without restrictions.

3. The production editor (cf. Figure 8). It dis-
plays the EdgeTrees representing the LHS and
the RHS of a production and allows to manipu-
late interactively both of them.

|~ axiom

— productions

Figure 7: The main window of GEdit.

Although the user may work either with 2D or
3D EdgeTrees, their internal representation is al-
ways 3D. This offers the advantage that the more
appropriate mode can always easily be chosen. Even
switching between the two modes is possible at any
time.

Some of our figures (e.g. the RHS in Figure 8)
look rather like graphs than trees. The reason is,
of course, that turtle positions belonging to different
paths may coincide. This indicates that also struc-
tures more general than trees can be modeled using
GEdit.

113

Figure 8: Interactive manipulation of a single pro-
duction.

6 Construction in 3-space

As we have already emphasized, we intended to de-
sign an editor that should be very easy to use. There-
fore, we considered the known methods for construct-
ing interactively in 3-space, i.e. the multi view tech-
niques [FvDFH90], not appropriate enough. Our ap-
proach uses a combination of the 3 orthographic pro-
Jections ground view, front view and side view and a
perspective projection in order to construct and ma-
nipulate EdgeTrees in 3-space (cf. Figure 9). New is
that these 4 views are combined within one represen-
tation, so that the relations between them are more
intuitive to the user. The actual construction process
uses only the 3 orthographic views (this appeared to
us more natural), but the topological operations, i.e
add, insert and delete (cf. Figure 3), may also be
performed using the perspective view.

Figure 10 shows how the axiom editor of GEdit
allows constructions in 3-space by providing the 4
views incorporated in a cube, as Figure 9 explains.
This cube — and the construction it contains — can
arbitrarily be rotated, which allows the user to com-
prehend the 3D situation more quickly. This rotation
has been implemented applying the rolling ball tech-
nique (Han92], which makes interactive 3D rotations
possible by using 2D control devices. A good alter-
native could be the use of the arcball technique as
introduced by Shoemake [Sho94].

The production editor, too, allows to use these
techniques for constructions in 3-space (cf. Figure
11).

7 Examples

Figure 11 shows the definition for a simple L-system
in graphical form. The EdgeTree representing the
RHS of the only production is ternary. This example
has been taken from [PL90], but it has been modi-

Anais do VII SIBGRAPI, novembro de 1994

114

Figure 9: The combination of 3 orthographic and 1
perspective projections in a single representation.

fied to get just one production. Figure 12(a) states
the corresponding textual representation. (The not
yet explained command /(§) rotates the turtle in 3-
space around the axis of its movement by the angle §
(counterclockwise). I denotes a length parameter.!)
Figure 12(b) shows the result after 6 derivation steps.

Figure 13 shows the definition of the L-system
for generating the picture in Figure 14, i.e. a branch
with leaves. The final picture has been obtained by
means of an additional rendering step using the soft-
ware Rayshade.

8 Conclusion

We have presented techniques and algorithms for the
interactive construction of L-systems in 2- and 3-
space. By using a graphical representation for the
axiom and the productions, the task of L-system
construction can be considerably simplified. Our in-
teractive approach encourages the user to play with
L-system productions, and as a result geometric ob-
jects can be generated which often turn out to be
very surprising.

1Our implementation uses parametric L-systems [Lin74]
which allow the association of any number of attributes with
L-system symbols. The values of these attributes may be com-
puted as required.

Anais do VII SIBGRAPI, novembro de 1994

C. STREIT, H. BIER

Figure 10: The manipulation of EdgeTrees in 3-
space.

Figure 11: The LHS and the RHS of the production
of the tree example.

w: F(400) A(100)
pi: A(l) = F(l) [/(135) +(36) F(I) A(l-0.93)]
[/(-44.5037) +(36) F(l)
/(50.5403) A(l-0.93)]
/(-152.005) +(36) F(l)
/(66.7288) A(l - 0.93)

(b)

Figure 12: (a) Turtle graphics definition for trees.
(b) The tree generated by 5 derivations steps.

INTERACTIVE CONSTRUCTION OF L-SYSTEMS IN 2- AND 3-SPACE 115

References

[Ad81] H. Abelson and A.A. diSessa. Turtle Ge-
ometry. The MIT Press, 1981.

[FvDFH90] J.D. Foley, A. van Dam, S.K. Feiner,
and J.F. Hughes. Computer Graph-
ics: Principles and Practice. Addison-
Wesley, 2nd edition, 1990.

[Han92] A.J. Hanson. The Rolling Ball. In
D. Kirk, editor, Graphics Gems III,
pages 51-60. Academic Press, 1992.

[Lin68] A. Lindenmayer. Mathematical models
for cellular interaction in development.
Journal of Theoretical Biology, 18:280—

315, 1968.
t T [Lin74] A. Lindenmayer. Adding continu-
ous components to L-systems. In
c —— L —

G. Rozenberg and A. Salomaa, edi-
tors, L Systems, pages 55-68. Springer-
Verlag, 1974.

Figure 13: The 3 productions for generating branches

. [PL90] P. Prusinkiewicz and A. Lindenmayer.
with leaves.

The Algorithmic Beauty of Plants.
Springer-Verlag, 1990.

[RS74] G. Rozenberg and A. Salomaa, editors.
L Systems. Springer-Verlag, 1974.

[RS92] G. Rozenberg and A. Salomaa, editors.
Lindenmayer Systems. Springer-Verlag,
1992.

[Sho94] K. Shoemake. Arcball rotation con-
trol. In P. Heckbert, editor, Graph-
ics Gems IV, pages 175-192. Academic
Press, 1994.

[Str93] C. Streit. Modeling with Lindenmayer-
Systems in Computer Graphics (in Ger-
man). Master’s thesis, University of
Berne, Institut fiir Informatik und ange-
wandte Mathematik, Berne, Switzer-
land, 1993.

[Zie91] J.E. Ziegler. Direct manipulation tech-
niques for the human computer inter-
face. In Eurographics Seminars, Ad-
vances in Computer Graphics VI, pages

Bl dedin 421-448. Springer-Verlag, 1991.

Figure 14: The resulting branch with leaves after 7
derivation steps.

Anais do VII SIBGRAPI, novembro de 1994

