A Depth First Search Strategy for L-systems' Turtle Interpretation

Manuel Menezes de Oliveira Neto
Vitor César Benvenuti

FURB - Regional University of Blumenau
Rua Anténio da Veiga, 140
Caixa Postal 1507
89.010-971 Blumenau, SC, Brasil
furb@ibm.ufsc.br

Abstract. L-systems have become one of the most popular approaches for plants and trees modeling.
Although they have been widely explored by many researchers, they are almost always treated at
grammar-level, while few attention has been given to implementation issues. The only known published
algorithmic description for L-systems' turtle interpretation is based on a two steps assembly and
interpretation process over a string. This paper proposes a recursive more natural interpretation
algorithm that operates in parallel to the process of translation of grammar's symbols, benefiting from
its recursive nature. The proposed algorithm dispenses the traditional string assembly. It also has
proved to be faster and more robust than the string-based one.

Introduction

The most far reaching goal for image synthesis may be
the creation of a visual experience identical to that
which would be experienced in viewing the real
environment [Cohen-Wallace (1993)]. A fundamental
difficulty in achieving total visual realism is the
complexity of the real world [Foley et al. (1990)].

Natural phenomena resist geometric modeling.
For instance, "the shape of a leaf of a tree may be
modeled with polygons and its stem may be modeled
with a spline tube, but to place explicitly every limb,
branch, twig and leaf of a tree would be impossible time
consuming and cumbersome” [Foley et al. (1990)]. So,
not only the modeling of natural phenomena but of
many complex objects require a simpler not geometric
approach. One possible solution is the use of large class
of objects which can be adjusted parametrically [Foley
et al. (1990)]. Watt [Watt-Watt (1992)] presents two
motivations to the use of procedural modeling:
animation of objects can be easily achieved by use of
time-varying parameters; the second one is its low-cost
visual complexity. Fractal-based terrain generation,
Fourier synthesis, three-dimensional texture mapping,
particle systems and grammar-based modeling are
examples of these techniques. Although some of these
are very popular, all of them possess a specificity [Watt-
Watt (1992)]. For instance, grammar-based modeling is
better suited to model plants and trees.

Many procedural methods for generating images
of plants and trees have been proposed in the last few
years [Reeves-Blau (1985)], [Prusinkiewicz et al.
(1988)], [Refiye et al (1988)], [Barnsley et al. (1988)],
[Viennot et al. (1989)]. The most important ones are
iterated function systems (IFS for short) [Barnsley

(1988)] and grammar-based systems [Prusinkiewicz-
Lindenmayer (1990)].

This paper rewies these two techniques and
presents a detailed description of L-Systems: a
grammar-based system used in computer graphics for
realistic visualization of plant structures and
developmental processes. Then, it discuss the algorithm
presented by Saupe [Peitgen-Saupe (1988)] for L-
systems' turtle interpretation and propouses a more
concise and elegant one based on depth first search
strategy [Tremblay-Sorenson (1984)]. This is a more
natural approach that operates simultaneously to the
process of translation of grammar's symbols, benefiting
from the recursive nature of the translation process.

Iterated Function Systems

A planar iterated function system is a finite set of
contractive affine mappings 7' = {7,7,,...,T } which

map the plane R? into itself. It also requires a set of
probabilities {p,,p,,...,p,}, where p. >0 and

Zp, =1. The set defined by 7 is the smallest
1=1
nonempty set A, closed in the topological sense, such
that the image y of any point X € 4 under any of the
mappings 7, € T also belongs to A [Barnslcy (1988)].
IFS algorithms include the ability to produce
complicate images and textures from small databases
and are potentially suitable to parallel implementations.
Another important feature is that the Collage
algorithm, based on Collage Theorem [Barnsley
(1988)], provides a means of interactive geometric
modeling. In the two-dimensional case, the input to the

Anais do VII SIBGRAPI (1994) 101-108

102

algorithm is a target image which can be obtained
digitalizing an image of the object to be modeled

M. M. DE OLIVEIRA NETO, V. C. BENVENUTI

replacing symbols of an initial description (axiom) by
another ones according to a set of rewriting or

[Barnsley et al. (1988)]. Figure 1 was generated with an production rules. Although grammar-based definitions

iterated function system.

Figure 1. A fern obtained with IFS. (After [Barnsley
(1988)]. :

Grammar-Based Systems

Although IFS algorithms are very powerful, their
mathematical foundations are unfamiliar to most non
matematicians. On the other hand. grammar-based
algorithms are very simple and can be easily
understood.

Plant structures exhibit some simple and elegant
features that contribute to their beauty such as bilateral
symmetry of leaves, rotational symmetry of flowers,
helical arrangements of scales in pine cones and self-
similarity [Prusinkiewicz - Lindenmayer (1990)].
Mandelbrot [Mandelbrot (1982)] describes self-
similarity as a property of a fractal object in which each
part of a shape is geometrically similar to the whole. In
any domain in which the objects being modeled exhibit
sufficient regularity. there may be an opportunity to
develop a grammar-based model [Foley et al. (1990)].

The main idea of grammar-based systems is the
notion of defining complex objects by successively

Anais do VII SIBGRAPI, novembro de 1994

are powerful tools and it is possible to recognize a
topological relationship between symbols, the grammar
itself has no inherent geometric content. So, using a
grammar-based model requires both a grammar and a
geometric interpretation of the language [Foley et al.
(1990)).

Grammars are also useful in many other fields in
computer science, such as formal definition of
programming languages [Aho-Sehti-Ullman (1986)].

L-Systems

The most popular grammar-based technique for image
synthesis is Lindenmayer system (L-system for short).
Prusinkiewicz [Prusinkiewicz-Lindenmayer (1990)]
gives a formal definition to a context-free L-system
(noted OL-system): a string OL-system is an ordered

triplet G = (V' ,w, P) where V is the alphabet of the

system, W €V is a noncmpty word called the axiom

and P cVxV * (V" is the set of all words over }) is a
finite set of production. A production (a,y) € P is

written as @ — . The letter @ and the word } are

called the predecessor and the successor of this
production, respectively. It is assumed that for any letter
a €V, there is at least one word y €V such that
a— y. If no production is explicitly specified for a
given predecessor a €V, the identity a—a
production is assumed to belong to the set of production
rules /. An OL-system is deterministic (noted DOL-
system) if and only if for each a €} there is exactly
one y €V suchthata — y.

L-systems can be used to describe the branching
topology of modeled plants and their production rules
can be applied in parallel to replace all symbols in a
given expression simultaneously. Association of
geometric features to the symbols of the language
makes L-systems detailed enough to allow their use in
computer graphics for realistic visualization of plant
structures and developmental processes [Prusinkiewicz
- Lindenayer (1990)].

Smith [Smith (1984)] demonstrated the potential
of L-systems for realistic image synthesis. Szilard and
Quinton [Szilard-Quinton (1979)] demonstrated that
simple DOL-systems could generate fractal curves.
Siromoney and Subramanian [Siromoney-Subramanian
(1983)] specified L-systems that generate classical
space-filling curves. Prusinkiewicz focused on L-system
interpretation based on a LOGO-style turtle
[Prusinkiewicz-Lindenmayer (1990)]. His approach
uses some predefined symbols. A brief description of

A DEPTH FIRST SEARCH STRATEGY FOR L-SYSTEMS’ TURTLE INTERPRETATION

the most useful ones for a two-dimensional space is
given below. For a complete description of the symbols
used in the turtle LOGO-style see [Prusinkiewicz -
Lindenayer (1990)].

F : draws a line segment of length 4 from current
(x,y) coordinates to (x,y'), where

x =x+dcosa,y = y+dcosaand a is a
resultant rotation angle;
f :moves from (x,y)to(x,y) without drawing;
+ : rotates the drawing direction by & degrees in
counter-clockwise sense;
- rotates the drawing direction by & degrees in
clockwise sense;
[: saves current position parameters in a stack (it's
used to draw ramifications);
] : restores position parameters from the stack;

Two parameters must be informed: the number of
recursive interpretations for the axiom and the
rotational angle to be apllied at each rotation symbol.
In order to clarify these concepts, two simple examples
are ilustrated by figures 2 and 3. Both objects were
produced with 6 levels of recursion and &= 60°. Tablc
1 sumarizes their data.

Figure 2. Koch's curve [Koch (1905)]

Table 1: Objects' data for figures 2 and 3

Object | Axiom Productions Rules

Koch | F--F--F F—>F+F--F+F

Sierp. | FXF--FF--FF | F»FF
X—o--FXF+HFXF++FXF--

103

All plants generated by the same DOL-system are
identical: an attempt to combine then in the same
picture would produce an artificial regularity. To solve
this problem, Prusinkiewcz [Prusinkiewicz-
Lindenmayer (1990)] sugest stochastic application of
production rules. This warrants that both topology and
geometry will change from plant to plant, preserving
general aspects of a plant, but modifying its details.
Another important aspect covers context-sensitive L-
systems. In this case, production rules are applicable, or
not, according to the context they appear. Thus, somes
rules can only be applied to some plant's parts. This
enables to model some form changes that occur due, for
example, to the flow of nutrients or hormones
[Prusinkiewicz - Lindenmayer (1990)].

&
H 4

£ £
A Al

A A A

vV

F.
A A

666 v;v v' v
v;vv;v v;v v;v vev v;v v;v v;v

Figure 3: Sierpinsky gasket [Sierpinski (1915)]

Prusinkiewicz also uses special symbols in the
production rules to indicate the positioning of plant
organs such as leaves and petals. The results obained
with this technique are pretty good (figure 4).

Saupe's Algorithm for L-Systems' Turtle

Interpretation

Although L-systems are very popular, they are almost
always described at grammar-level. Many authors
provide long comments on L-systems but no
algorithmic description can be found either in
[Prusinkiewicz et al. (1988)], [Prusinkiewicz -
Lindenmayer (1990)], [Foley et al. (1990)] and [Watt -
Watt (1992)]. Saupe [Peitgen-Saupe (1988)] gives an
algorithmic description suitable for implementation.
The main procedures with their arguments, variables
and functions are listed below (extracted from [Peitgen-
Saupe (1988)]).

Anais do VII SIBGRAPI, novembro de 1994

104

Figure 4: Plant organs: leaves and petals. (After
[Prusinkiewicz - Lindenmayer (1990)]

{ Fractal curves and plants using OL-systems }
ALGORITHM Plot-OL-System (maxlcvel)
Arguments maxlevel number of cycles in string generation

Globals axiom string with the axiom of OL-system
Karf(] charadter array, inputs of produdion
Rule[] string array, outputs of production
num number of production rules

TurtleDirN# of possible directions of turtle
Variables str string to be generated & interpreted
Xmin,Xmax range of the curve in x direction
ymin,ymax range of the curve in y direction
BEGIN
GenerateString (maxlevel, str)
ClearUpString (str)
GetCurveSize (str, xmin, Xxmax, ymin, ymax)
TurtleInterpretation (str, xmin, xmax, ymin, ymax)
END

{ String generation in OL-Systems }
Arguments maxlevel number of cycles in string generation
Sstr output string

Globals axiom string with the axiom of OL-system
Kar(] charactcr array. inputs of production
Rule[] string array, outputs of production
num number of production rulcs

Anais do VII SIBGRAPI, novembro de 1994

M. M. DE OLIVEIRA NETO, V. C. BENVENUTI

Variables level integer, # of string generation cycle

command character
str0 string
ik integer

Functions strlen(s) retumsthe length of string s
strapp(s,t) retums string s appended by string t
getchar(s,k) retums the kth character of string s
strcpy(s,t) copies string t into string s
ALGORITHM GenerateString (maxlevel, str)
begin
strcpy (str0, axiom)
Strcpy (Su, "”)
for level =1 to maxlevel do
for k=1 to strlen (str0) do
command := getchar(str0, k)
i=0
while (i < num and
not command = Kar[i]) do
i=i+1
end while
if (command = Kar[i]) then
str := strapp(str, Rule[i])

cnd if
cnd for
strcpy (str0, str)
cnd for
cnd

{Clean out all redundant state preserving commands}

Arguments str string

Variables str0 string, initialized to "
i integer
C character

Functions strlen(s) retums the length of string s
strappc(s,C) ret string s appended by character ¢
getchar(s,k) retums the kth character of string s
Strcpy(s,t) copies string t into string s

ALGORITHM CleanUpString (str)

begin

for level =1 to strlen (str) do
¢ .= getchar(str, i)
if (c="F' or c=f or c='+' or c='"-'
c="|"or c="[' or c="]') then
str0 := strapp(str0, c)

end if
end for
strcpy (str, str0)
end
Saupe [Peitgen-Saupe (1988)] presents three more
procedures GetCurveSize, UpdateTurtleState and

TurtleInterpretation which are not important in this
context.

Saupe's algorithm is based on a two steps process
which can be observed in procedure Plot-OL-System. Its

A DEPTH FIRST SEARCH STRATEGY FOR L-SYSTEMS’ TURTLE INTERPRETATION

first line calls GenerateString which generates a string
to be interpreted by Turtlelnterpretation (last line).
Another feature of Saupe's method is its iterativity that
can be observed in the outer for loop in GenerateString.
Iterativity was wused although grammar-based
descriptions have a recursive nature [Aho - Sehti -
Ullman (1986)]. The use of string-based
implementations leads to many unnecessary copy and
append string operations, which are critical when the
object being modeled needs large recursion level or uses
many long production rules. Figure 5 ilustrates Saupe's
process for string assembly. Colors were used to clear
the process.

Axiom Production rule
F - F F>F+F+F
level string
0 F - F
1 F+F+F - F+F+F
2 F+F+F+ F+F+F + F+F+F—

F+F+F + F+F+F + F+F+F

Figure 5: String assembly by Saupe's algorithm

Another feature of Saupe's algorithm is the use of
a clean up string step (ClearUpString procedure). It is
used to extract all non-terminal symbols from the string
that will be interpreted. The string interpretation step
(Turtleinterpretation) must analyze each string symbol
in order to decide which actions- have to be carried out.
This process, implemented as a case statement over
string symbols, points out that a clean up step is
actually unnecessary.

The Depth First Search (DFS) Strategy

A more natural turtle interpretation algorithm can be
supported by recursion. Each time a predecessor is
found in the axiom, the current state is stacked and the
selected production rule is analyzed in the same way.
If the current symbol is not a predecessor (it is said to
be a terminal [Sethi (1989)]) or if the maximum
recursion level was reached, the symbol must be
interpreted. This defines an algorithm in an elegant
fashion closely related to the grammar that must be
parsed. Figure 6 sumarizes its behavior. Again, colors
were used to clarify the process. Its main procedures,
parameters, variables and functions are presented below
using the same syntax used by Saupe in [Peitgen-Saupe
(1988)].

105

{ Fractal curves and plants using OL-systems }
ALGORITHM Depth_First_Search (maxlevel)
Arguments maxlevel maximum recursion level

Globals axiom string with the axiom of OL-system
Kar[] character array, inputs of production
Rulel] string array, outputs of production

Variables Xmin,Xmax range of the curve in x direction
YMin,ymax range of the curve in y direction
begin
GetCurveSize (xmin, ymin, Xmax, ymax)
InterpDraw (0, maxlevel, 1, axiom)
end

{Interprets and draws the picture}
Arguments clevel current recursion level
maxlevel maximun recursion level
pos position for analysis
str axiom or production rule
Functions getchar(s k) retums the kth character of string s
act_over(C)interprets the symbol s - uses a
case statement
ALGORITHM InterpDraw(clevel,maxlevel,pos, str)
begin
if (clevel = maxlevel) then
¢ = getchar(str,pos)
while (not (c = eol))
if (c=TF or c='f or c='+' or c="-'
¢='"or ¢='[' or ¢='I') then
act_over(c)
end if
¢ = getchar(str,pos)
end while
else
¢ = getchar(str,pos)
while (not (c = eol))
if (c in Rule[])
InterpDraw(clevel+1,maxlevel, 1, Rule)
end if
¢ = getchar(str,pos)
end while
end if
end

Using DFS, L-systems intcrpretation is started as
soon as a tcrminal symbol is found or thc maximum
recursion level is reached. It is not nccessary to wait for
knowing thc complctc scquence of symbols. Thc
process is started very carly in the analysis stcp and
cach time a portion of the L-system is intcrpreted, the
memory uscd to storc it is libcrated. This lcads to more
clever memory management.

DFS algorithm is a morc natural solution for L-
systcms' turtlc intcrpretation, since it reflects grammar's
recursive naturc. It Icads to a morc concisc and clear
code, as can be observed in the presented procedures.
Observe that InterpDraw embodies all comands used by

Anais do VII SIBGRAPI, novembro de 1994

106

either Saupe's GenerateString, ClearUpString and
Turtlelnterpretation procedures. It also shows that
ClearUpString is unnecessary.

level
. [F] - [
B+ | E+E+E

FAFAF (P p

2 [F+F+F] [F=F+F] [F*F+F| [F+F+F] FiF-T [F<F<F,

expression evaluated

Figure 6: Depth first solution for axiom F - F and
production rule F—»F+F+F. Numbered arrows indicate
the flow (order) of avaliation.

As there no time spent with copy and append
string operations and with a clean up procedure, DFS is
faster than Saupe's algorithm.

The same strategy is used, with few modifications,
to calculate the limits of the picture (GetCurveSize). It
is only necessary to update the limit coordinates (xmin,
ymin, xmax, ymax) during a first exploration, using a
standard segment length d (usually one). After that, the
actual length is obtained by scaling d according to
viewport dimensions.

Results

In order to compare DFS with Saupe's approach, both
algorithms were implemented. DFS was implemented
as described in the last section. For Saupe's version, it
was used a linked linear list [Tremblay-Sorenson
(1984)] to contain the string: each node containing a
symbol field and a pointer to the next node of the list.
This was used to avoid problems with insufficient static
memory allocation. In such a way, the algorithm can
use all avaliable memory. It also avoids the need of
copying the string, since new symbols can be inserted
in any part of the list with a low computational cost.
The clean up step was ignored. The analysis was
carried out with the described improved Saupe's
version.

Both programs were coded in Turbo Pascal 6.0!
and run on a IBM PC compatible 386 SX 40 MHz with
4 megabytes of RAM memory and Microsoft DOS 5.0

1Trade mark of Borland International Inc.

Anais do VII SIBGRAPI, novembro de 1994

M. M. DE OLIVEIRA NETO, V. C. BENVENUTI

operating system. Images were displayed on a color
monitor with SVGA board with 1 megabyte of video
memory. Execution times were measured as the
difference of the values returned by the Turbo Pascal's
gettime function. This function was called immediately
before the start of the procedures and immediately after
their finish. It must be noted that as the clock time is
not updated each hundredth of second, gettime does not
provide a safe measure for differences less than some
treshold.

Both programs were submitted to sets of runs.
Figure 7 shows the times recorded for the
interpretation of the following L-system which
corresponds to tree presented in figure 8 (extracted
from [Prusinkiewicz-Lindenmayer (1990)]):

axiom : X
production rules: X—F-[[X]+X]+F[+FX]-X
F—FF

For this particular L-system, Saupe's improved
version did not supported more than 5 iterations. Since
then, the program returned a heap overflow error
message. The same message was presented for all L-
systems interpretations using Saupe's algorithm, since a
certain number of iterations are executed (this number
varied from model to model). With such a restriction,
the algorithms could not be compared for complex
images, which require large number of recursive calls
and many and complex production rules. These
complex models would be used to compare algorithms'
performances.

The algorithms were also executed for 5 more L-
systems presented in [Prusinkiewicz - Lindenmayer
(1990)]. These L-systems are described in table 2.

2500 :
2000 — i [

15 ODFS .
1000 OSaupe's]
500 I l l]
n "

2 3 4 5
levels of recursion

Figurc 7: Time (in thousandths of sccond) for a sct of
runs involving DFS and Saupc's improved algorithms.

The maximum number of iterations supported by
Saupe's algorithm for the models listed in table 2 was,
respectively, 5, 5, 4, 7 and 7. Coincidentally, these are
the same recursion levels used to generate these pictures
in [Prusinkiewicz-Lindenmayer (1990)]. Although, at
first glance, these values seems to be too small to cause

A DEPTH FIRST SEARCH STRATEGY FOR L-SYSTEMS’ TURTLE INTERPRETATION

a program halt, they hide an exponential growth of the
string length. Table 3 shows the behavior of the string
length for the first L-system from table 2. Figure 9
ilustrates the growth of the string.

‘Table 2: L-systems used to compare DSF and Saupe's
improved algorithm.

Tree # | Axiom Productions
1 F F—F[+F]F[-F]F
2 F FoF[+F]F[-F][F]
3 F F—FF-[-F+F+F]+[+F-F-F]
4 X X->F[+X]F[-X]+X
F—>FF
5 X X—F[+X][-X]JFX
F—>FF

On the other hand, DFS supported 57 levels of
recursion for all these models and for all others used to
test it. DFS fails only when the system reaches its stack
size (64 Kbytes). DFS does not need to know the final
sequence of symbols to start the process of
interpretation. It is started very early in the analysis step
and each time a portion of the L-system is interpreted,
the memory used to store it is liberated.

Figure 8: A tree model used to compare the algorithms.

107

Table3: Length of the string versus levels of recursion

level of recursion | length of the string
0 11
1 61
2 311
3 1,562
4 7,813
5 39,080

For a typical SVGA resolution with addressability
of 1024x768 pixels, it was observed that for models like
those described in tables 1 and 2, more than eigth or
nine levels of recursion can not improve the quality of
the pictures. They are limited by the impossibility to
draw lines shorter than a pixel.

40000
35088 -
30000 £
25008 d
20000
15000 ,/
10008
5000 e
0 &
1 2

string length

levels of recursion

Figure 9: String growth curve for the first L-system
from table 2.

Figures 2, 3, 8 and 9 were rendered using DFS
algorithm.

Conclusions

Although L-systems have become one of the most
popular approaches for plants and trees modeling, few
attention has been given to implementation issues. This
paper detailed L-systems concepts and analyzed Saupe's
algorithm for L-systems turtle interpretation. It points
some drawbacks of Saupe's approach and proposes a
depth first search strategy as a better solution to the
problem of interpretation. DFS proved to be a more
concise. natural and elegant way for approaching this
problem, since it reflects the recursive nature of the
grammar to be parsed. It is faster than Saupe's
algorithm since it eliminates some unecessary steps
such as assembly and clean up of a string. It also proved
to be more robust than Saupe's, supporting until 57
levels of recursion.

Althoug DFS can be used to generate realistic
images of plants and trees which can be used in a

Anais do VII SIBGRAPI, novembro de 1994

108

rendering pipeline [Foley et al. (1990)], it is not
suitable for animating plants developmental processes.
Anyway, the proposed algorithm can be used in any
situation in which this kind of animation is not
required. To the purpose of developmental animation,
Saupe's algorithm, as stated earlier, is not suitable
either, since a left to right interpretation of an already
assembled string will produce the same effect as a depth
first search would.

Figure 10: Example of a plant generated with DFS.

Acknowledgments

The authors would like to thank Rui Bastos, at National
Supercomputing Center of Federal University of Rio
Grande do Sul, for his comments. We gratefully thank
Marcelo Walter at University of British Columbia for
providing useful information about related works.

References

A. Aho. R. Sehti, J. Ullman, Compilers - Principles,
Techniques and Tools. Addison Wesley. 1986.

M. Barnsley, Fractals Evervwhere. Academic Press,
1988.

M. Barnsley et al.. Harnessing chaos for image
synthesis, Computer Graphics 22 (1988) 131-140,

(Proceedings of SIGGRAPH '88).

Anais do VII SIBGRAPI, novembro de 1994

M. M. DE OLIVEIRA NETO, V. C. BENVENUTI

M. Cohen, J. Wallace, Radiosity and Realistic Image
Synthesis, Academic Press, 1993.

J. Foley et al., Computer Graphics principles and
practice, Addison Wesley, 1990.

H. Koch, Une méthode géométric élementaire pour
I'étude de certaines questions de la théorie des
courbes planes. Acta mathematica 30 (1905), 145-
174.

B. Mandelbrot, The Fractal Geometry of Nature, H. W.
Freeman, 1982.

P. Prusinkiewicz, A. Lindenmayer, J. Hanan,
Developmental models of herbaceous plants for
computer imagery purposes, Computer Graphics 22

(1988) 141-150, (Proceedings of SIGGRAPH '88).

P. Prusinkiewicz, A. Lindemayer, The Algorithmic
Beauty of Plants, Springer Verlag, 1990.

W. Reeves, R. Blau, Approximate and probabilistic
algorithms for shading and rendering particle
systems, Computer Graphics 19 (1985) 359-376,
(Proceedings of SIGGRAPH '85).

P. Reffye et al., Plant models faithful to botanical
structure and development, Computer Graphics 22 (
1988) 151-158, (Proceedings of SIGGRAPH '88).

D. Saupe. A Unified approach to fractal curves and
plants. In H. Peitgen, D. Saupe, editors, The Science

of Fractal Images, 273-286, Springer Verlag, 1988.

R. Sethi, Programming Languages: Concepts and
Constructs, Addison Wesley, 1989.

W. Sierpinski. Sur une courbe dont tout point est un
point de ramification. Comptes Rendus
hebdomadaire des séances de I'Académie des
Sciences, 160 (1915) 302-305.

R. Siromoney, K. Subramanian, Space-filling curves
and infinite graphs. In H. Ehrig, M. Nagel, G.
Rozemberg, editors, Graph grammar and ther
application to computer science, Second
International Workshop, Lecture Notes in Computer

Science, 380-391, Springer Verlag, 1983.

A. Smith. Plants, fractals and formal languages,
Computer Graphics 18 (1984) 1-10, (Proceedings of
SIGGRAPH '84).

A. Szilard, R. Quinton, An Interpretation for DOL
systems by computer graphics,. The Science
Terrapin. 4 (1979), 8-13.

J. Tremblay, P. Sorenson, An Introduction to Data
Structures with Applications, McGraw-Hill, 1984.

X.Viennot et al., Combinatotial analysis of ramified
patterns and computer imagery of trees, Computer
Graphics 23 (1989) 3140, (Proceedings of
SIGGRAPH '89).

A. Watt, M. Watt, Advanced Animation and Rendering
Techniques theory and practice, Addison Wesley,
1992.

A DEPTH FIRST SEARCH STRATEGY FOR L-SYSTEMS' TURTLE INTERPRETATION

Figure 4 Figure 8

Figuras a cores do artigo A depth first search strategy for L-systems’ Turtle
interpretation

Anais do SIBGRAPI VII, novembro de 1994

user
Texto digitado

user
Texto digitado
A DEPTH FIRST SEARCH STRATEGY FOR L-SYSTEMS' TURTLE INTERPRETATION

