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Abstract. A suitable model to represent procedures to analyse binary images is in terms of set
transformations. Mathematical morphology is a general framework to represent set transformations
as chains of four elementary operators (namely erosion, anti-erosion and their duals dilation and
anti-dilation). In the present article, we present the general model proposed within the AMM
projectfor automated generation of mathematical morphology procedures to analyse binary images.
We also discuss one of the three identified strategies for simplification of the automatically generated
procedures and show an example of its application.

1 Introduction

The analysis of binary (i.e. “black-and-white”) im-
ages is an important tool in several areas as diverse as
quantitative microscopy, cartography, office automa-
tion and industrial process control. Mathematical
morphology, introduced in the 1960’s by G. Math-
eron, J. Serra and colleagues at “Ecole des Mines de
Paris”, is a general framework for set transformations
which is particularly suitable to express translation-
invariant procedures for image analysis [14, 16, 17].
Central to mathematical morphology is the decom-
position of set transformations in terms of four el-
ementary operators: dilation (§), erosion (¢), anti-
dilation (6°) and anti-erosion (€2). These opera-
tors admit procedural interpretations as abstract ma-
chines. To date, many implementations of the so-
called morphological machines are available in hard-
ware (12, 18, 7, 11, 6] and in software [13, 3, 5, 2.

We explore the problem of automatically gen-
erating efficient implementations of mathematical
morphology procedures, and analyse an example of
the particular problem of binary shape recognition.
We develop our analysis based on the general model
proposed within the AMM project, in which we
identify three different strategies that can cooper-
ate to generate efficient procedures. In the present
article we explore one of them.

In order to make the paper self-contained, in
section 2 we present the basic definitions of mathe-
matical morphology and the formulation of the prob-
lem of shape recognition in binary images within this
framework. In section 3 we briefly review the AMM
model and discuss in some detail the contert-based
stmplification strategy for mathematical morphology
procedures. In section 4 we present an example of
procedure generation and context-based simplifica-

tion. Finally, in section 5 we present some further
discussion and propose future research.

2 Mathematical Morphology

A binary image can be represented as subsets of a
set £ C Z*®. An image transformation can thus be
represented as a mapping from a collection of subsets
of E (the input image) to another (the output image).

Mathematical morphology is a framework to
characterise translation-invariant set transforma-
tions. Let 2% be the collection of all subsets of a
finite non-empty set E. The set E is assumed to
be an abelian group with respect to a binary opera-
tion denoted by “+”. The zero element of (E, +) is
denoted by 0.

For any h € E,X C E, the set X} = {y €
Eyy=2z+h,z € X} is called the translate of X by
h. In particular, Xy = X.

A set transformation ¥ : 28 — 2F s called
translation-invariant iff (X)) = P(X)a, X C
E,h € E. The kernel K(¢) of a translation-invariant
transformation v is the subcollection of 2€ defined
by K(v) ={X CE.0 € y(X)}.

Four translation-invariant transformations de-
serve special attention:

e a transformation e¢g is called an erosion if
GB(X) = {.’E € E.B; C X};

e a transformation ép is called a dilation if

0p(X) = {e€ EB.NX #{}};

e a transformation €% is called an anti-erosion if

4X)={z€ EB.NX°#{}};

e a transformation 6% is called an anti-dilation if
05(X)={z€ E.B; C X°}.
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In all these transformations, X¢ denotes the
complement to the set X (i.e. X¢ = E\ X), and
the set B C E is named the structuring element of
the transformations.

Given two subsets A,B € 26 A C B, a closed
interval [A, B] in 2F is a collection of subsets of E
such that [4,B] = {X C E.AC X C B}. The
subsets A and B are called respectively the left and
right extremities of the closed interval.

A useful property of erosions and anti-dilations
is that they can represent any translation-invariant
transformation, as proved in [1] in the following

Standard Decomposition Theorem: Let
be a translation-invariant transformation and K(%)
be the kernel of this transformation. Then,

Y(X) = U{ea(X) N 63 (X).[4, B CK(¥)}, X C E.

A dual result can be expressed in terms of dila-
tions and anti-erosions.

The set B(y) of all maximally closed intervals
contained in K (%) is called the basis of ¥ (a closed
interval contained in K(¢) is mazimally closed if it
is not properly contained in any other interval con-
tained in K(v)).

It was also proved in [1] that K(¢) can be re-
placed by B(%) in the formulation of the Standard
Decomposition Theorem, i.e. that

$(X) = Ufea(X) N 85.(X).[4, B] C B($)},X C E.

In most practical situations, the transformations
of interest are those that depend on a local neigh-
bourhood of points only. A translation-invariant
transformation is called limited iff there exists a win-
dow W C E such that h € (X) — h € (X NWy).

If 4 is limited and [A4, B] € B(¢), then A, B¢ C
W. In other words, the structuring elements of the
erosions and anti-dilations of 1 are subsets of W.

An important feature of translation-invariant
transformations is that they are closely related to
boolean functions: for each limited translation-
invariant transformation v there exists a correspond-
ing boolean function b : 2% — {1, T} such that
b(X) = T — 0 € ¥(X), and for each boolean ex-
pression b constructed from 2% there exists a cor-
responding limited translation-invariant transforma-
tion given by ¥(X) = {h € E.b(XNW,) = T}. Once
a boolean expression b(X) as above is transformed to
minimal disjunctive normal form, the positive and
the negated variables correspond respectively to the
left and to the complement of the right extremities of
the basis of the corresponding transformation (X).
This property was explored in [4] to obtain optimal
morphological filters for image analysis.
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A transformation v is called a window trans-
formation with respect to W C E iff there exists
a subcollection D C 2% such that %(X) = {h €
EWnNX_, € D}. A window transformation can be
used to “tag” particular shapes in D by producing
point markers, thus working as a shape recognition
procedure. Window transformations are translation-
invariant, and the kernel of a window transformation
¥ is given by K(¢) = {X C EWNX € D}.

3 The AMM Model

The general model for automating the generation of
efficient procedures for mathematical morphology is
presented in figure 1. In this model, three differ-
ent approaches cooperate to generate mathematical
morphology procedures: transformation of propo-
sitional expressions representing classes of images,
PAC-learning of the same classes of images, and di-
rect procedure derivation in terms of high-level, ab-
stract descriptions of image transformations using
theorem proving techniques.

Images and image transformations can be envis-
aged as propositional formulae in which basic propo-
sitions represent points in Z2. In order to make
the correspondence between images and propositions
more natural, we adopt a non-conventional way of
indexing basic propositions (see figure 2). The al-
phabet of our propositional language is defined as
follows:

e a countable set of basic propositions

®=1{ poo, qoo, P10, q10, P11,
q11, Po1, qo1, P-11, qg-11,
p-10, 9¢-10, P-1-1, g-1-1, Po-1,
qgo-1, Pi-1, 4qi1-1, }

e the conventional connectives = A, V, —, —.

Intuitively, propositions p;; represent points of
“input” images and propositions ¢;; represent points
of “output” (i.e. “transformed”) images. To “true”
basic propositions correspond “black” points, and to
“false” basic propositions correspond “white” points.
Finally, an image transformation is represented as a
collection of formulae of the form P «— Q, in which
P contains only propositions p;; and @ contains only
propositions g¢;;.

A translation-invariant transformation % can be
represented as a single formula Py «— ggo, in which
Py represents the local rule which characterises the
transformation. Given a translation-invariant trans-
formation ¢, we can construct the boolean expres-
sion corresponding to the basis B(%) of v, which
characterises a procedural description of 1: assum-
ing Py as being in disjunctive normal form, the basis
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Figure 2: Correspondence between Basic Proposi-
tions and Points

B(%) is given by the intervals [A;, Bf] where A; and
B; are respectively the points corresponding to the
“positive” and to the “negated” basic propositions
ocurring in each disjunct ¢; € P,. Thus, given a
complete but informal specification of the 1, once
it is rewritten as a propositional formula Py — qoo
and then normalised to disjunctive normal form, we
obtain the “canonical implementation” of ¥ in terms
of its basis.

In many practical situations, however, we can-
not count on a complete specification of 1. In-
deed, what we do have most frequently for a trans-
formation ¢ is a (non-exhaustive) collection of “in-
put/output” examples. In these cases, the best we
can do is approximate the specification of Y via in-
ductive learning of the corresponding boolean func-
tion, e.g. using a PAC-learning algorithm [19, 10].

We frequently have additional knowledge about
the desired transformation in terms of abstractions of
“chunks” of mathematical morphology basic opera-
tors that yield to specific effects on generic images -
e.g. border extraction, skeletisation, etc. — which are
used to guide (and sometimes to specify completely)
the implementation of image transformations. In
such cases, we can use automatic theorem proving
techniques to synthesise the corresponding morpho-
logical operators [9].

We consider three independent ways of simplify-
ing the implementation of v corresponding to B(y):

1. via contert-based simplification;

2. via the appropriate utilisation of algebraic
rewrite rules that preserve the specification of

¥ 21, 8]; and

3. via the appropriate simplification of the subpro-
cedures ocurring in 1% based on their abstract
interpretations as “chunks” of operators for im-
age transformations rather than general propo-
sitional formulae, in a similar vein to the “auto-
matic” generation of mathematical morphology
procedures suggested in [9].

In the following paragraphs we discuss the first
of these simplification strategies (which is the sim-
plest of the three).

By contert-based simplification we understand
the appropriate use of available a priori information
about the family of “input” images. This informa-
tion is encoded as a disjunction of propositional for-
mulae P; corresponding to the shapes that actually
occur as “inputs”. In other words, if we have a prior:
information about the collection of shapes that we
can get as “inputs”(i.e. our contert), we can reduce
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Figure 3: A 3 x 3 Isolated Square and a 3 x 3 Square
with a Hole in the Middle

our shape recognition task to the task of identifying
only the distinguishing features among these shapes.

Given a priori information that our context is
bound to the set C = {Py,..., P,}, a shape recog-
nition transformation ¢ = P, « ggo can be re-
stated as Pw — goo, Where 13¢ takes into account
that any occurring shape must be an element of C.
Usually (but not necessarily) this information simpli-
fies the “canonical implementation” of 1, as the ex-
ample in the following section illustrates. Similarly
to the shapes to be recognised, context information
may also be given via examples and approximated
via inductive learning.

4 An Example

Let the shape to be recognised be a 3 x 3 isolated
square, i.e. a square with no holes and sizes 3 points
long, in which all neighbouring points are “black”
(figure 3(a)). This simple shape recognition task can
be characterised as: '

A _pij A A —pio
—ls-,j$lp1] -2<1<2 plz -2<1L2 p’ 2

AP 2 A -2 —  qoo-
-1<5<1 -1<5<1

The corresponding basis of the transformation
is given by the single interval [A4, B], where 4 =
{-1,0,1}? and B® = {-2,-1,0,1,2}%\ A (figure
4(a)).

Now assume that we know a prior: that the
only occurring shapes in our “input” images are iso-
lated squares with no holes (figure 3(a)) and isolated
squares with a hole in the middle (figure 3(b)) - all
3 x 3 squares. In other words, we know a prior: that
whenever we find a 3 x 3 “cross”, this “cross” must
belong to the target shape. The simplification of
is obtained as follows:

® CZ{Pl,PQ}
o P=

A Pij A Tpin A Tpico A Tp2j A Tp-oaj.

—-1<1,5<1 J—:g.gz -2<1<2 -1<;<1 -1<;<1
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The normalisation of this last expression gives:

pio A Ppoj A Poo < goo-

A
1€{-1,1} JE{-1,1})

The basis of this transformation can now
be given by the interval [A,B], where A =
{(—1,0),(1,0),(0,0),(0,—-1),(0,1)} and B¢ = {} -
which is clearly “simpler” than [A, B], as it requires
less points to be constructed (figure 4(b)).

5 Discussion and Future Work

In this paper we briefly reviewed the general model
proposed in the AMM project to automatically gen-
erate implementations of mathematical morphology
operators, and discussed one of the three simplifi-
cation strategies considered in this project. Assum-
ing a complete specification of shapes occurring in
input images and of the shape(s) to be recognised,
we presented a general procedure that can generate
the corresponding image transformation . Further-
more, we showed how a prior: information can be
used to simplify the implementation of this transfor-
mation.

The application of artificial intelligence tech-
niques to automate the generation of procedures for
image analysis has been studied by other authors
(e.g. [15, 20, 22]. To our knowledge, however, we
are the first ones to explore the integration of an ex-
tensive use of the result conveyed by the Standard
Decomposition Theorem with PAC-learning tech-
niques and automatic theorem proving techniques to
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synthesise mathematical morphology operators, to-
gether with algebraic rewrite rules, heuristic proce-
dure abstraction and context-based simplification to
improve the efficiency of these operators.

Immediate future work in the AMM project
includes:

e the analysis of patterns of input images to char-
acterise in which cases the utilisation of a prior:
information can be profitable;

e a more thorough analysis of the algebraic prop-
erties of the basic operators of mathematical
morphology, so that we can specify and imple-
ment a rewrite system to simplify chains of op-
erators;

e the abstract analysis based on the intended
meanings of specific chains of operators, and the
construction of a library of subprocedure simpli-
fications based on such meanings;

e the analysis of the computational complexity of
learning shapes to be recognised and classes of
a priori occurring shapes.

All these future research goals shall be imple-
mented to constitute an integrated environment for
the automatic generation of mathematical morphol-
ogy procedures.
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